

MTCA applications at HZDR

Michael Kuntzsch for the ELBE RF, Timing and Synchronization group

Institute of Radiation Physics · Radiation Source ELBE · Dr. Michael Kuntzsch · www.hzdr.de

Outline

Introduction to ELBE accelerator

> LLRF

- > Bunch arrival time monitor
- Beam based Feedback
- ps-Timing System
- Outlook

Introduction ELBE

 \succ

User facility since 2001

Dr. Michael Kuntzsch | ELBE Center for High Power Radiation Sources | Helmholtz-Zentrum Dresden Rossendorf

Macro pulsed mode for beam tuning

3

LLRF

Single cavity regulation for CW operation

- Operation of 2 NRF and 4 SRF cavities
- Adaption of DESY development and tailored for CW operation
- External CPU to run 6 LLRF server in parallel
- LLRF server based on ChimeraTK, communication through OPC/UA
- Reference implementation for other CW machines (TARLA, MESA)

 10^{4}

10⁵

Frequency [Hz]

0.0054 % RMS

DRESDEN

concep

മ

ົດ

Electron Bunch Diagnostics

Bunch Compression Monitor - BCM

- Pyroelectric detector (movable)
- Schottky diode RF Detector (fixed)
- > Wire grid as beam splitter for parallel measurements
- > Silicon OTR screen / reflection of dipole radiation
- > up to 13 MHz beam rate CW (usually 100 kHz)

- SIS8900 RTM and SIS8300-L2 for readout
- Electronics currently tested in lab-setup
- to be installed at ELBE in 2025

7

Electron Bunch Diagnostics

Amplitude Pickup Signal C DSBAM on FMC25 carrier board DSBAM on FMC25 carrier board FMC-MOTDRV22 for delay stages Angelovski, M. Kuntzsch, M.K. Czwalinna, et al.: Evaluation of the cone-shaped pickup performance for low charge sub-10~fs arrival-time measurements at free electron laser facilities. Physical Review Special Topics - Accelerators and Beams 18 (2015), S. 012801.

THz Beamline – fundamental concept

- Goal: stabilize electron bunch parameter close to THz generation
- BAM as sensor

9

- Error signal is send to dedicated beam-based feedback FPGA (TCK7 AMC)
- > Modulates amplitude of cavity C4 in order to stabilize arrival time

BBF integration

A. Maalberg, M. Kuntzsch, and E. Petlenkov,
"Real-Time Regulation of Beam-Based Feedback:
Implementing an FPGA Solution for a Continuous Wave Linear Accelerator,"
Sensors, vol. 22, no. 16, p. 6236, 2022

BBF – controller basics

12

- > Jitter suppression down to 19 fs rms (from > 60 fs rms)
- > almost all instabilities removed in controller bandwidth of 3.5 kHz
- > System to be extended for BCM feedback as soon as readout in place

A. Maalberg, M. Kuntzsch, K. Zenker and E. Petlenkov,
"Regulation of electron bunch arrival time for a continuous-wave linac:
Exploring the application of the H2 mixed-sensitivity problem",
'Phys. Rev. Accel. Beams, vol. 26, p. 072801, 2023

Requirements for New Timing System

- Pattern generation from single shot to 26 MHz CW
- Macro pulsed patterns beam for tuning
- Highly flexible bunch patterns for biology experiments
- > Parallel (and interleaved) operation of two electron guns
- Kicker control to allow multi- user operation
- Single instance for pattern generation
- Distribution to receivers galvanically isolated (no RF cables!)
- Interface to MPS system and parameter check
- Low jitter and drift compensation on picosecond level

Feasibility study and European Tender → awarded to COSYLAB with Micro Research Finland hardware

MRF MicroTCA.4 hardware

- MicroTCA based Micro Research Finland hardware (www.mrf.fi)
- MicroTCA event receivers (EVRs) for machine timing and selected users
- PCIe receiver for compact and cost effective user timing stations >
- Flexible, modular topology
- Universal output modules for various logic levels
- Picosecond level jitter (< 5 ps)
- Drift compensation (< 10 ps)
- NDA MRF HZDR to exchange sources (hw/fw) \geq

LVTTL

TTL

LVPECL

LVPECI

tunina

1 mm POP

Optical

NIM

Timing System EPICS mrfioc2

- Implementation based on EPICS mrfioc2 (<u>https://github.com/epics-modules/mrfioc2</u>)
- Application tailored to ELBE's requirements
 - Operation modes pre-defined
 - Parameter set, calculation and check
 - Error monitoring
- "Phoebus" GUIs for EVMs and EVRs
 - Commissioning
 - Debugging
 - Error monitoring
- WinCC GUI (ELBE SCADA)

concept

Topology

- Two EVMs
 - first to serve injector 1 and ELBE EVRs \succ
 - \succ second to serve injector 2 and diagnostic beamline
- SRF Gun can be operated independently in a dedicated diagnostic beamline in parallel to ELBE \succ
- All communication to PLC through EVM1 IOC >
- 130 MHz event clock (7.7 ns event rate) >
- Prescalers to generate bunch clock (up to 26 MHz) >

							Display										
											(100	%		•	•][-
PLC				Date And Tim	ne			Hea	utbeat		E١	/WE\	/R Statu	s			
O@ELBE	_MPS_P	PLC-1000		[0, 0, 0, 0, 0, 0, 25237476092	0, 0, 0] 215183400	Pa	assive 👻	•	Hb PLC Hb IOC	451680 85071					0 0b1	b11 111	
EVM	ExtHz	EvtClk Src		EvtClk Freq					FwVer	НwТоро	2.3.0-5	7-g0	00.29.0	0-11	IOC	0	
0 1	50.0 Hz	RF (Ext)		130.0 MHz					207.c	0x0000			Expe	rt	a:0.0	slot	:2
0 2	50.0 Hz	Upstream		130.0 MHz					207.c	0x0006			Expe	rt	5:0.0	slot	=5
EVR	Sec	Target	0	Lck Actual	Correction	Lck	HwType		FwVer	НwТоро	2.3.0-5	7-g0	00.29.0	0-11	IOC	1	
0 1	IN1	3000.000 n	S	165.843 ns	2834.155 ns	0	mTCA-EVR-30	00U	207.c1	0x0003	Out	puts	Expe	rt	9:0.0	slot	3
EVR	Sec	Target	0	Lck Actual	Correction	Lck	HwType		FwVer	НwТоро	2.3.0-5	7-g0	00.29.0	0-11	IOC	2	
2	RP	3000.000 n	s	135.620 ns	2864.379 ns	0	mTCA-EVR-30	00U	207.c1	0x0007	Out	puts	Expe	rt	6:0.0	slot	-4

383.275 ns 2616.723 ns

140.626 ns 2859.372 ns

Correction Lck HwType

3.0-57-a

.3.0-57-g0 00.29.00-1

mTCA-EVR-300U 207.c1 0x0067

mTCA-EVR-300U 207.c1 0x0005

Connection to MPS

- Machine interface through Siemens PLC
 - > PLC is main instance for machine protection
 - calculates allowed beam parameters based on machine state
 - receives and issues interlocks
- heartbeat signal to monitor connection
- major change of ELBE's MPS structure

Outlook

Proposal for ELBE successor machine "DALI" (Dresden Advanced Light Infrastructure)

- > 2x 50 MeV SRF Linac for THz generation
 - RF requirements: 2x 2 modules á 2 cavities with each 1x 15 kW SSPAs = 8x 15 kW SSPAs
- > very positive evaluation of proposed machine by Helmholtz management
 - part of the HGF photon roadmap (together with PETRA IV and BESSY III)
- MTCA as baseline for accelerator control and diagnostics
 - > goal: use as many COTS components as possible

Parameters	MIR-THz FEL-oscillator	Superradiant THz and Positrons			
Electron beam energy	50 MeV	50 MeV			
Bunch charge	100 pC	1 nC			
Electron pulse length	Few ps	200 fs – few ps			
Transverse emittance	<15 mm·mrad	<15 mm⋅mrad			
Bunch repetition rate	10 MHz	100 kHz – 1 MHz			
Average beam current	1 mA	1 mA			

Table 2: Photon beam parameters of the proposed facility available for user experiments

Parameter	Superradiant MIR-THz	Broadband THz	MIR-THz FEL Oscillator		
Wavelength range	10 µm – 3 mm	120 µm – 3 mm	10 – 120 µm		
Frequency range	0.1 – 30 THz	0.1 – 2.5 THz	2.5 – 30 THz		
Pulse energy	100 – 1000 µJ	100 µJ	10 µJ		
Repetition rate	0.1 – 1 MHz	0.1 – 1 MHz	10 MHz		
Pulse length (RMS)	0.2 – 15 ps	0.2 ps	1 – 25 ps		
Peak power	20 – 500 MW	500 MW	~1 MW		
Photons per pulse	10 ¹⁶ - 10 ¹⁸	10 ¹⁸	10 ¹³		
Photon energy	0.4 – 125 meV	0.4 - 10 meV	10 – 125 meV		
Bandwidth	0.5 – 15 %	100%	0.5 - 3.0 %		

Table 3: Beam parameters for positron sources

Parameter	Positron Annihilation Lifetime Spectroscopy	High-intensity Positron Source, microbeam	High-intensity Positron Source TRHEPD, open- beam port			
Repetition rate	100 kHz – 1 MHz	100 kHz – 1 MHz	1 MHz			
Positron rate	5 x 10 ⁹ / s	1 x 10 ⁸ / s, remoderated	1 x 10 ⁷ / s, remoderated			
Time spread	<150 ps FWHM	<500 ps FWHM	-			
Beam diameter	5 mm	50 µm	1 mm, low divergence			
Positron kinetic energy	500 eV - 30 keV	5 eV – 8 keV	10 keV – 20 keV			

Conclusion

- > LLRF and diagnostics implemented based on MTCA platform at ELBE
- > very strong collaboration with DESY MSK (hardware, software and firmware) THANK YOU!!
- > ChimeraTK is a key element to be able to integrate systems into ELBE control system

- > now more than 10 years of experience with MTCA
- > MTCA will be baseline for planned DALI machine

BBF – controller basics

- \succ \mathcal{H}_2 regulator in mixed sensitivity configuration
- > Dynamics come from external input d, modeled by G_d

> Bunch compressor GBC is static (a constant factor)

A. Maalberg, M. Kuntzsch, and E. Petlenkov, "Regulation of the Linear Accelerator ELBE Exploiting Continuous Wave Mode of a Superconducting RF Cavity," in Proc. 2022 Am. Control Conf., 2022, pp. 5346–5353

