Improving Signal Integrity of the Yamaichi ANC and Zone 3 Connectors

Michael Fenner, DESY Hamburg 13th MicroTCA Workshop for Industry and Research 11th of December 2024

© DESY 2025

Agenda

Improving Signal Integrity of the Yamaichi AMC Connector
 Improving Signal Integrity over Zone 3

Improving Signal Integrity of the Yamaichi AMC Connector

Addressing possible Obsolescence and better Signal Integrity

A short recap from 2023

- → Replacing the AMC connector is delicate
- → Has huge influence on board performance

- We made a Test board with the new connector
- → We have measured both connectors

10G Eye Test Results Results from 2023

Harting/ ITB/ Rompa results:

- 36.2mV eye height
- 54.9ps eye width

Yamaichi results:

- 26.8mV eye height
- 58.5ps eye width

Similar results (Longer FR4 traces on test board)

TX pre-emphasis settings active (identical settings on both eye diagrams)

- \rightarrow The Yamaichi connector should be way better, but is not...
- \rightarrow We had issues to apply hard gold plating as required

1. Plating specification on the PCB pads MCH PCB : Au 0.30 μ m MIN. over Ni 1.27 μ mMIN.

Courtesy of LeitOn GmbH

How to improve the Connector Layout?

Made according to Data Sheet

Courtesy of Andreas Grüttner, Struck

Shape of the Contact Fingers

Picture from Yamaichi (verification board): Datasheet design, but no hard gold

Shape of the Pads

Picture from Yamaichi (verification board): Datasheet design with hard gold plating

Touching Point \rightarrow We have a stub of 2.55mm

Simulation

→ Various options simulated with Ansys SIwave

Taken into account

- → SI considerations
- → Mechanical considerations

Optimum result:

- → Same pad width
- → Same right end of the pad
- → Pad only 2mm long
- → 1.5mm cut back from the front face

Prototype with improved pads

- → Hard gold plating
- → -1mm and +1mm tolerance on right and left side of the touching point
- → Z-Axis milling by 0.1mm to cut tie bars along the front face of the connectors
- → Perfect alignment
- → Perfect machining
- → shallow step of only 0.1mm
- → Made at Leiton GmbH (a low-cost pool manufacturer); produced in Germany

Results

Eye height improvement: +103%

RX Pattern		TX Pre-Cursor		TX Post-Cursor		TX Diff Swing	
PRBS 7-bit	t 👻	1.67 dB (00111)	~	6.94 dB (10110)	~	1000 mV (11110)	~
PRBS 7-bit	· ~	1.67 dB (00111)	\sim	6.94 dB (10110)	Ŷ	1000 mV (11110)	~
PRBS 7-bit	· ~	1.67 dB (00111)	\sim	6.94 dB (10110)	~	1000 mV (11110)	\sim
PRBS 7-bit	· ~	1.67 dB (00111)	\sim	6.94 dB (10110)	~	1000 mV (11110)	~
00007.5		1.07.40 (00444)	• •	0.01.45.00000	* *	1000	
RX Pattern		TX Pre-Cursor		TX Post-Cursor		TX Diff Swing	
PRBS 7-bit	~	1.67 dB (00111)	~	6.94 dB (10110)	~	1000 mV (11110)	~
PRBS 7-bit	~	1.67 dB (00111)	×	6.94 dB (10110)	×	1000 mV (11110)	~
PRBS 7-bit	~	1.67 dB (00111)	\sim	6.94 dB (10110)	\sim	1000 mV (11110)	~
PRBS 7-bit	~	1.67 dB (00111)	~	6.94 dB (10110)	\sim	1000 mV (11110)	~
0000754		1.07.00.0004445		0.01.40.404400		****	

	RX Pattern		TX Pre-Cursor		TX Post-Cursor		TX Diff Swing	
1	PRBS 7-bit	~	1.67 dB (00111)	~	6.94 dB (10110)	~	1000 mV (11110)	\mathbf{v}
1	PRBS 7-bit	~	1.67 dB (00111)	~	6.94 dB (10110)	\sim	1000 mV (11110)	~
1	PRBS 7-bit	~	1.67 dB (00111)	\sim	6.94 dB (10110)	×	1000 mV (11110)	\sim
1	PRBS 7-bit	~	1.67 dB (00111)	\sim	6.94 dB (10110)	\sim	1000 mV (11110)	\sim
	0000 7 54		4.07.40.004445		0.01.40.0004.00		1000-01/011110	

	RX Pattern		TX Pre-Cursor		TX Post-Cursor		TX Diff Swing	
41								
58	PRBS 7-bit 💊	•	1.94 dB (01000)	~	7.96 dB (11000)	~	1000 mV (11110)	~
50	PRBS 7-bit 🔍	•	1.94 dB (01000)	\sim	7.96 dB (11000)	\sim	1000 mV (11110)	\sim
	PRBS 7-bit 🗠	^	1.94 dB (01000)	\sim	7.96 dB (11000)	~	1000 mV (11110)	~
	PRBS 7-bit 🗸 🗸	,	1.94 dB (01000)	\sim	7.96 dB (11000)	~	1000 mV (11110)	\sim
	PRBS 7-bit 🗸	,	1.94 dB (01000)	\sim	7.96 dB (11000)	~	1000 mV (11110)	\sim

Harting/ ITB/ Rompa Eye Height: 36.2mV Eye Width: 54.9ps

Yamaichi, original footprint, same settings Eye Height: 26.8mV Eye Width: 58.2ps

Yamaichi, new footprint, same settings Eye Height: 41,3mV (**+54%**) Eye Width: 58.0ps

Yamaichi, new footprint, optimized settings Eye Height: 54,6mV (**+103%**) Eye Width: 50.0ps

Cookbook recipe:

DMMC-BoB: Contact us to get the Gerber files. Part of AMC Template: Contact us to get the Altium files.

- The picture shows how to advise the PCB factory to produce edge connector as we have simulated and verified in hardware.
 - 1. Hard Gold plating with optimal tie bars
 - 2. Z-Axis Milling
 - 3. Camfer Region (from Yamaichi Datasheet)

Contact us to get the mounting tool mechanical design files. Page 10

DESY.

Improving Signal Integrity over Zone 3

DAMC-UNIZUP Challenge

Challenge: 0R Jumper Options RTM Class D1.2

- 38x LVDS to RTM
- 4 MGTs to RTM
- 8 MGTs to AMC

RTM Class D1.3

- 28x LVDS to RTM
- 8 MGTs to RTM
- 4 MGTs to AMC

 DAMC-UNIZUP is very flexible

Short trace

(MGT only)

Long trace,

configured

for MGT

(D1.3)

MGT or

LVDS

Jumpers

(set to

MGT)

MGT to

RTM or

AMC

connector

selection

- Normally used as RTM D1.2 (LVDS operation)
- We wanted to build RTM with 8 SFP+ channels (D1.3)
- Ermet ZD rated for 5 Gbps only
- But 10Gbps desired...

DAMC-8SFP+

Fan-out of MGT Channels from DAMC-UNIZUP

DIODES

- We needed to verify UNIZUPs 8 MGTs to RTM
- We designed a 8-SFP+ RTM
- Board works on all other Digital Class AMCs
- Brings 1 to 8 MGTs to RTM 12.5 Gbps: not trivial
- First use of "analog" equalizer
- Development time: 3 months
- Low-cost circuit board and components
- Manufactured in the "PCB pool" from Leiton (Berlin)
- Material: Panasonic R-1566W (Dk=0.010 !!!)

Improving of Signal Integrity by using Equalizers

First use of an analog equalizer for our serial interfaces

- Super critical RTM MGT routing
 on DAMC-UNIZUP
- 10.315 Gbps (up to 12.5 Gbps)
- Bad channel:
 - two 0-ohm bridges
 - Erni connector
- "Warning: it doesn't work" but it does, *if you do it right*...

Short channel: 5 GHz: +6.6dB

Long channel: 5 GHz: +6.6dB

Ρ	I3EQX12	902B: 4 C	onfiguration	s possible	EGA EGA FGA FGA on
	ŧ		Equalizer setting (dB)	¥	****
	@2.5GHz	@3GHz	@4GHz	@5GHz	@6GHz
1	1.8	2.6	4.5	6.6	8.9
2	3.7	4.7	6.7	9.4	11.7 (Default)
3	5.1	6.3	8.7	11.2	13.5
4	6.8	8.2	10.8	13.2	15.3

Short channel: 5 GHz: +13.2dB

Long channel: 5 GHz: +13.2dB

Conclusion for DAMC-UNIZUP

- Even in Minimum equalisation setting (+6.6dB) we achive wideopen eyes (6dB is a lot...)
- Short and long Channels verified
- Tweaking brings more headroom to long channels
- More than enough eye opening at 10 Gbps....
- Class D1.3 verification successful

Long channel: 5 GHz, +13.2dB 1100mV Level, -3.0dB "flat gain"

Thank you!

Contact

DESY. Deutsches Elektronen-Synchrotron

www.desy.de

Michael Fenner MSK michael.fenner@desy.de +49 (0) 40-8998-1885

Backup

