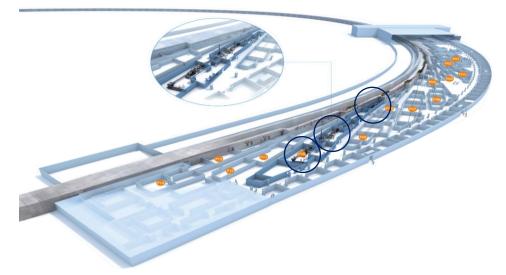
Status Update on the Open-Source Synchronous Multi-Axis Motion Controller Solution for Large-Scale Experimental Physics Projects

Michael Randall, Cagil Guemues, Michael Fenner, Martin Killenberg, Jens Georg, Patrick Huesmann, Stanislav Chystiakov, Martin Tolkiehn, Linus Pithan

Hamburg, 11th of December 2024

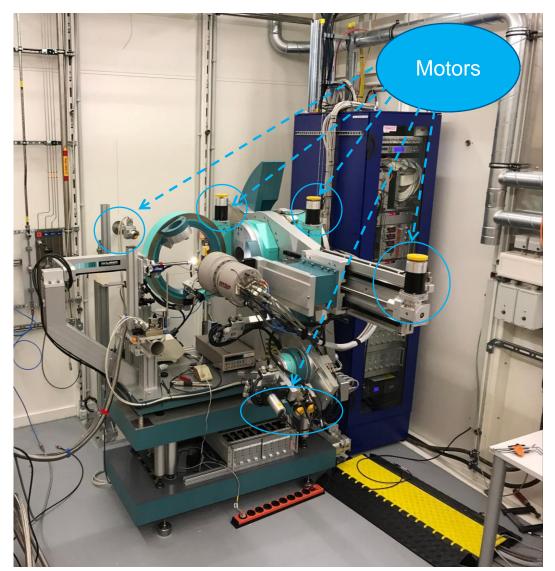


HELMHOLTZ

Motivation

DESY Experimental Needs:

Requirement to control motors in experiments.



Petra IV MicroTCA Infrastructure:

- Planned replacement for VME systems.
- Lack of a suitable multi-axis motion controller.

Enhancements Needed:

- Increase the number of motors for synchronous motion.
- Address experiment-specific requirements, such as positiontriggered data acquisition.

Diffractometer at Beamline (Martin Tolkiehn)

Large Investments on DESY Campus

- Beamlines equipped with hundreds of existing motor drivers.
- Commercial drivers integrated into proprietary ZMX+ frame.

- Legacy hardware, but good enough to keep.
- Incompatible interface:
 - Users complain about long, stiff cables.
 - Sensitive connectors (SCSI II).
 - 4 cables per motor driver frame.
 - Wide connector unsuitable for MicroTCA.
- Limited number of encoders.
- Need for a drop-in replacement due to the outlined issues.

SCSI connector on back panel of DESY ZMX+ frame

VME based Motion Controller -OMS MAXv

Hardware

DAMC-MOTCTRL:

- Funded by DESY Generator Program.
- MicroTCA.4 based Motion Controller.
- Controls up to 48 motors/axis per card.
- Replaces six VME cards, i.e. three ZMX frames can be operated with one card.
- Four SCSI cables have been replaced with a single fiber link.

*Check out the 11th MicroTCA Workshop Talk about the Multi-axis Motion Controller

ZMX+ Connection Board:

- Drop-in replacement for the deprecated interface card of the ZMX+ frame.
- Artix (XC7A50T).
- 6 LEMO 8-pin:
 - 4x Encoder Inputs.
 - 2x Direct Motor Step & Direction.
- 2 RJ45:
 - Interconnection between boards within the ZMX+ frame (daisy chain).

Heterogeneous Processing:

- Zynq UltraScale+ (XCZU2EG) with 2GB DDR4 32-bit.
- Kintex (XC7K160) with 4GB DDR3 64-bit.

SFP+ Ports (5 in Total):

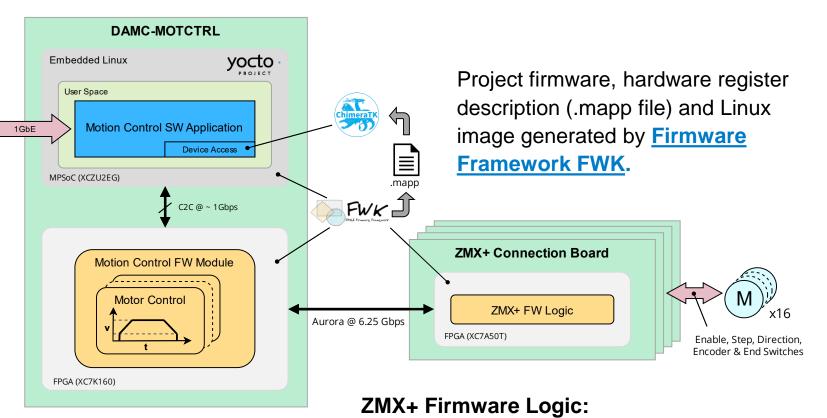
- 3x Motor interfaces.
- 2x Ring topology (EtherCAT, SERCOS).

GPIOs:

• 26-pin connector supporting 3.3V/5V GPIOs.

Interconnected ZMX+ Connection boards

spec


Firmware Overview & Current State

Motion Control SW Application:

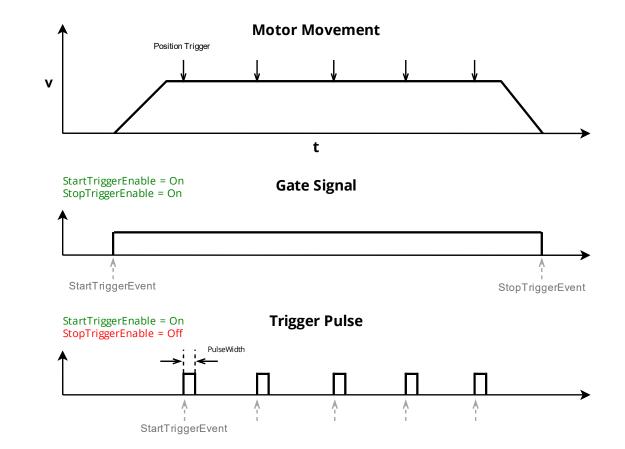
- Interface to external high-level instrument control software spec.
- Parses motion commands and orchestrates axis logic.
- Uses UIO backend of ChimeraTK-DeviceAccess.

Motion Control FW Module:

- Generic multi-axis controller.
- Verified using the Universal VHDL Verification Methodology (UVVM).
- Wraps per-axis submodules.
 - Linear acceleration profile.
- Clock-edge synchronous motion.
- Per-axis encoder and limit switches.

Single-board operation

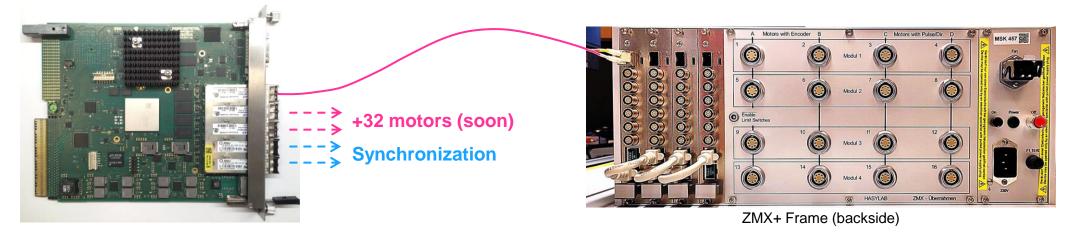
Multiplex / demutiplex motor signals.


• Apply user front panel interface.

Position Triggered Acquisition

- One of the earliest requests.
- Common solution:
 - Move-stop-trigger approach.
 - External step counter.

New Trigger Capability Implemented:


- Supports up to eight trigger signals.
- Trigger events:
 - Motor active.
 - Motor/encoder position change with divider.
 - Software trigger command.
- Trigger mode (rising/falling/any edge).
- Configurable pulse width.
- Routable to 24 GPIOs and µTCA backplane.

The **first version was released** and successfully applied in a live accelerator experiment. Check out the <u>presentation materials</u> of previous talk for more information.

Further Achievements / Next Steps

• Full ZMX+ Crate Supported: hosting 16 motor, per axis encoder and limit switches

- Third Test System Operational; additional installations scheduled for next year.
- Valuable Feedback Loops: Continuous user feedback driving improvements.
 - Example: Support for absolute encoders scheduled within the next six months.
- Strong Demand for EtherCAT Interface:
 - Short cycle times (<< 1 ms) and precise synchronization (<< 1µs)
 - Seamless synchronization with other commercial off-the-shelf components
 - Solution for inter-board synchronization
 - Standardized CiA402 Motion Control Profile for Control Software Integration

Check out the source code and documentation:

- Open-Source Petra IV Motion Control Project
- Open-Source Motion Control Firmware Module

Contact

Deutsches Elektronen-
Synchrotron DESYMichael Randall (FW/SW); Cagil Guemues (FW); Jens Georg (SW); Michael Fenner (HW)MSK

www.desy.de

Thank you