

Summary on the MicroTCA Workshop in China

Zeran Zhou, USTC
December 2024

The 13th MicroTCA Workshop for Industry and Research, DESY Hamburg

Outline

Introduction

Highlights

• Summary

Introduction

2024 MicroTCA/ATCA

for Large Scientific Facility Control International Workshop

Organizer: University of Science and Technology of China(USTC)

Sep. 18-Sep. 20, 2024 Hefei, China

Committees

Chair:

Yalin Lu (Chair), USTC Holger Schlarb (Co-chair), DESY

Program Committee:

Bo Liu (Chair), SARI
Mark Plesko (Co-Chair), Cosylab
Jianshe Cao (Co-Chair), IHEP
Lin Wang, USTC
Paul Chu, Nanjing University
Ruishi Mao, IMP
Zeran Zhou, USTC
Liqun Hu, ASIPP
Rong Liu, Beijing Normal University
Lei Shi, IASF
Junqiang Zhang, Chongqing University

Local Organizing Committee:

Zeran Zhou (Chair), USTC
Yanfeng Sui (Co-chair), IHEP
JianYe, Cosylab
Xinpeng Ma, IHEP
Hongrui Cao, ASIPP
Jie Zhang, IHEP
Hongli Ding, IASF
Min Li, IMP
Qiuping Huang, USTC
Chen Yu, USTC

Shanghai Advanced Research Institute, Chinese Academy of Sciences (SARI)

Institute of High Energy Physics, Chinese Academy of Sciences (IHEP)

Institute Of Plasma Physics Chinese Academy Of Sciences(ASIPP)

Cosylab

Institute of Modern Physics, Chinese Academy of Sciences (IMP)

Institute of Advanced Science Facilities, Shenzhen (IASF)

Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences

Chongqing University(CQU)

Beijing Normal University

Statistics

Indico page: https://indico.pnp.ustc.edu.cn/event/1979/

Tutorial welcome	Rong Liu	Workshop welcome	Yalin Lu 🥝	Keynote Speech: Super Tau Charm Facility: Physics and Challenges	Zhengguo Zh 🖉
	14:00 - 14:15		08:30 - 08:40		08:30 - 09:00
LLRF application MTCA.4	Nan Gan @	Summary and Highlights of 12th MicroTCA Workshop at DESY in Hamburg	Holger Schlarb @ 08:40 - 09:05	Progress on Super Tau Charm Facility Accelerators	Qing Luo 🥝
Con approximation of	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Electronic development planning of S3FEL beam measurement system	Lei Shi		09:00 - 09:25
	14:15 - 14:45		09:05 - 09:30	Design of Debug and Slow Control Interface for Complex and Distributed Electronic System	Tao Xue 🥝
MicroTCA-based Timing System	Fang Liu @	HALF Microwave System development	Jian Pang 🥝		09:25 - 09:50
	Contrator (Manual)		09:30 - 09:55	MTCA status on Linac of IHEP	Xinpeng Ma
	14:45 - 15:15	Progress and industry application of MTCA/ATCA localization platform	Hongrui Cao 🕜	Coffee Break	00.00 10.10
Coffee Break			09:55 - 10:20		10:15 - 10:40
		Coffee Break + Photograph		The progress of the MTCA.4 based LLRF system in LUTF	Junqiang Zhang 🥝
	15:15 - 15:50		10:20 - 10:55		10:40 - 11:05
MTCA Management	Herbert Erd	Preliminary Deployment of MTCA.4 Based LLRF System for the S3FEL LINAC	Jinfu Zhu 🛭 🕝	Al and Data Applications for Particle Accelerators	Paul Chu 🥝
			10:55 - 11:20		11:05 - 11:30
	15:50 - 16:20	An interface RTM board for HEPS timing based on MicroTCA.4	Jin Zhang @ 11:20 - 11:45	Keynote Speech: CAN THE CONTROL SYSTEM BE BOUGHT FROM INDUSTRY ?	Mark Ples
Application Development on the MicroTO	CA.4 Platform:	Main Oscillator with sub-fs Resolution and High Performance Local Oscillator Generation		regions speeds. San the Southoe Storem be Boson Trons in Boson Tr	
Challenges and Solutions Cagil Guernues			11:45 - 12:10		13:30 - 14:00
Cagli Guernues			Accesses the second of the	Design and Development of Timing System Prototype using MicroTCA.4 AMC for CSNS-II	Sinong Cheng @ 14:00 - 14:25
FWK - an open-source FPGA framework	by DESY for larg	Motion Controller in MicroTCA	Michael Randall	MicroTCA Infrastructure and Hardware Portfolio for Scientific Applications	Michael Fenner @
scientific projects Michael Buechler		MicroTCA Specification Developments	Kay Rehlich		14:25 - 14:50
			14:00 - 14:25	Introductions on Struck mTCA.4 based solutions	Rong Liu 🥝
		MTCA in photon science - the new motion controller in action	Martin Tolkiehn		14:50 - 15:15
T	0.3		14:25 · 14:50	Coffee Break	
Participants:	82 =	Status of the DAMC-UNIZUP AMC card for the future PETRA IV BPM electronics	Manuel Cargnelutti @		15:15 - 15:35
_			14:50 - 15:15	LLRF Development for CSNS LINAC based on mTCA	Zhexin xie
Institutes: 15		RIGOL modular RF arrays help the application of large scientific devices	Bin Wang @ 15:15 · 15:40		15:35 · 16:00 Yang Wang @
Companies 1	6	Coffee Break		Acquisition and playback equipment based on mtca and its progress	yang wang ⊚ 16:00 - 16:25
Companies: 1	U	2011031001000	15:40 - 16:00	Applications of MTCA in Hybrid Pixel Detectors for HEPS and SHINE	Jie Zhang @
Exhibitors: 1	1	Round Table Discuss			16:25 - 16:50
Exilibitors. 1	ı			Close out	Zeran Zhou

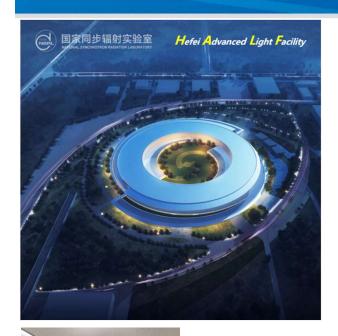
Talks: 32 (including 5 tutorial talks, 2 keynote speeches) & round table discuss

Conference Photos

The 13th MicroTCA Workshop for Industry and Research, DESY Hamburg, 10-12 December 2024, "Summary on the MicroTCA workshop in China" by Zeran Zhou, USTC

Industry Exhibitors

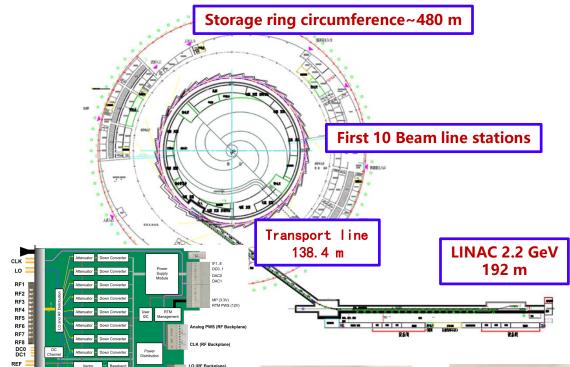
Outline


• Introduction

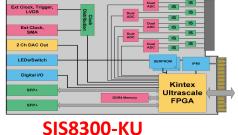
Highlights

• Summary

MTCA Applications in HALF

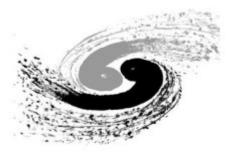


Signal Generator


MTCA **Processor**

Frequency synthesizer

1 kW SSA


DWC8VM1 R13

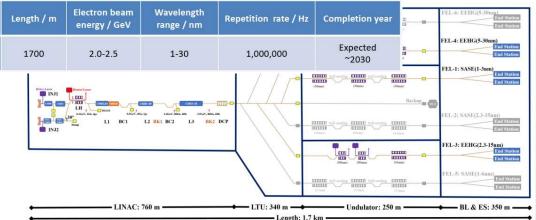
- Micro-Research Finland Oy
- MTCA based
- MTCA-EVM-300M, MTCA-EVR-300U

MTCA Applications in IHEP & HEPS

Main parameters	of HEPS
Beam energy[GeV]	6
Circumference[m]	~1360
Emittance[nm.rad]	0.06
Beam current[mA]	200
Cell Units	48
Injection	Top-up
Brightness[phs/s/mm²/mrad²/0.1%BW]	> 10 ²²

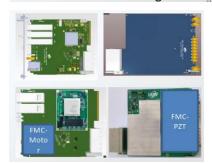
LLRF on BEPCII-U Linac
HEPS Linac LLRF runs stable >1 year

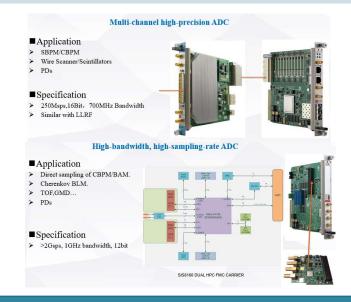
6 MicroTCA chassis.



HEPS Timing System

MTCA Applications in S³FEL





Shenzhen superconducting soft-X-ray free electron laser(S³FEL)

- MTCA.4 Based Hardware will be deployed in both the accelerator and beamline of the S³FEL.
- There are hardware, firmware, software development, and maintenance advantages.

MTCA Applications in LUTF

LUTF is developed in 2 phases, phase I is a pre-research project, including a 500MeV light source and an electron microscope platform; phase II including a 3GeV light source and an electron microscope cluster.

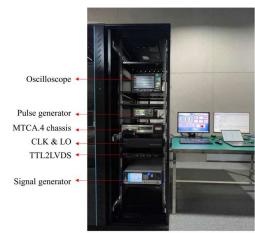
Project duration: 2023.5~2026.5

Parameters	Value	Unit
Energy	0.5	GeV
Ring circumference	76.78	m
Beam current	0.5~1	A
Focusing type	QBA	
Natural emittance	8.56	nm rad
Working point (x, y)	6.198, 3.357	-
Length of straight section	8*4	m
Working frequency	499.8	MHz
Energy loss per turn	4.34	keV
Natural energy spread	0.37×10 ⁻³	

Test platform(2024.09.14)

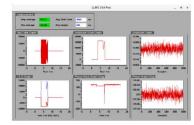
Research building (2024.7.17)

Powerhouse(2024.7.17)


Linac (2024.7.17)

Laboratory for Ultrafast Transient Facility (LUTF)

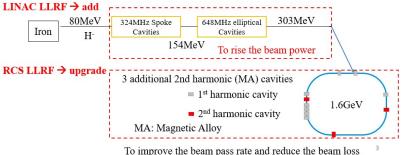
NATIVE-R2



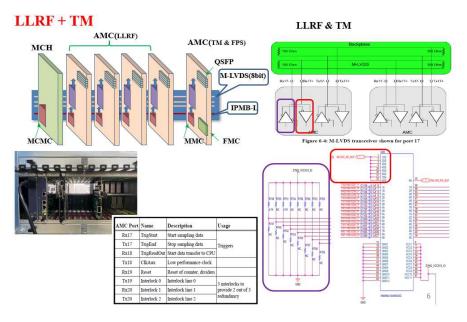
LLRF platform

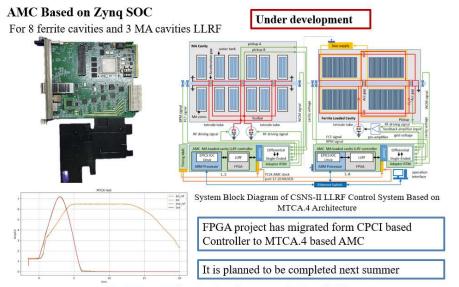
LUTF frequencies

No.	Items	Frequency
1	Main RF	499.79/2998.74MHz
2	LO	474.80/2973.75MHz
3	IF	24.99MHz
4	ADC Clock	124.95MHz



Amplitude and phase stability: 0.01% (rms) , 0.01° (rms)


MTCA Applications in CSNS & CSNS-II



China Spallation Neutron Source (CSNS & CSNS-II)

Single board debugging has been completed with MA cavity

12

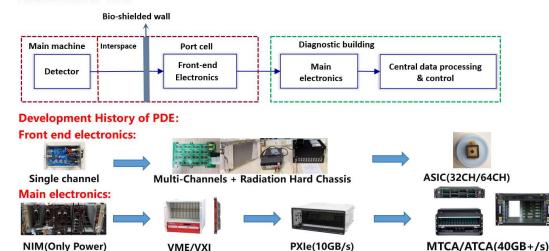
MTCA Applications in ASIPP

Science island

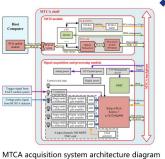
New Energy Research Center CRAFT

- > ASIPP: Institute of Plasma Physics, Chinese Academy of Sciences, founded in Sept. 1978 in Hefei, Anhui Province.
- ▶ Mission of ASIPP: The research of fusion energy based on the tokamak approach.

HT-6B



EAST (Experimental Advanced Superconducting Tokamak)


The Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP)

Architecture of Plasma Diagnostic Electronics

Architecture of PDE:

◆ System design

- > MTCA architecture is widely used in fusion control and diagnostics due to its high data transmission rate, high channel density and high reliability (ITER neutron camera, JET gamma camera, JET gamma spectrum).
- The high-speed pulse signal acquisition and processing system based on MTCA architecture is composed of MTCA chassis, MCH main control module, self-developed signal acquisition and processing board, PCIe data transmission card and host.
- The MCH is the control center that monitors the health status of each board and provides x4-PCle communication links for each board. Extremely high physical event rates, up to several trillion pulse events

Applications of MTCA in Hybrid Pixel Detectors for HEPS and SHINE

HEPS AND SHINE

High Energy Photon Source (HEPS)

- Under construction at Huairou District, Beijing Start the user operation in 2025
- **Key-Parameters**

Parameters	Nominal
Beam energy	6.0 GeV
Emittance	better than 0.06nm×rad
Beam	Higher than 1×1022 phs/s/mm2/mrad2/0.1%BW
Spatial resolution	10 nm
Energy resolution	1 meV
Photon energy	Up to 300keV

- · More than 90 beamlines and end-stations
- · Ref: http://english.ihep.cas.cn/heps/index.html

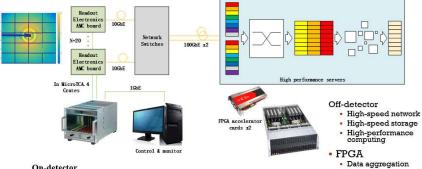
Shanghai High repetitioN rate xfel and Extreme light facility (SHINE)

- · Under construction at Zhangjiang, Shanghai
 - · Start the user operation in 2026
- Key-Parameters

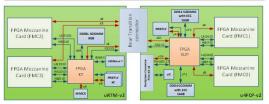
Parameters	Nominal	
Beam energy	8.0 GeV	
Bunch charge	100 pC	
Max rep-rate	1 MHz	
Beam power	0.8 MW	
Photon energy	0.4 - 25 keV	
Pulse length	20 - 50 fs	

- · 3 beamlines and 10 end-stations
- Ref: https://indico.desy.de/event/21806/

HYBRID PIXEL DETECTORS


Specs	HEPS-BPIX
Mode	Photon counting
Pixel size	140 μm x 140 μm
Threshold	Dual
Detectable energy range	8-20 keV
Frame rate	Up to 2 kHz (continuous readout)
Detector	Scalable: 6M, 2M, 1M, or 150K

https://doi.org/10.1088/1748-0221/19/06/P06038



Specs	STARLIGHT (SemiconducTor Array detectoR with Large dynamic ranGe and cHarge inTegrating readout)	
Mode	Charge-integration	
Pixel size	100 μm x 100 μm	
Gain	Self-adaptive 3 gains	
Dynamic range	1 ~ 10000 photons/pulse @12 keV	
Frame rate	12 kHz (continuous readout)	
Detector	A 4.2M pixel detector in vacuum, quadrant movable	

https://doi.org/10.1088/1748-0221/19/04/c04003

uRTM-v2

· u4FCP-v1

On-detector

- · FPGA AMC board
 - Front-end Electronics Control
 - Clock Synchronization
 - Monitoring
 - Data Acquisition

Data sorting

Data compression

· Real-time algorithm

New Developments from Zooneng

MTCA Chassis + Power(10U)
Supports 12 AMCs, 2 MCHs, and 2 PDMs.

MTCA Chassis + Power(2U)
Supports 6 AMCs and 1 MCH, and 1 PDM.

AMC DAQ card Zynq UltraScale , 4CH500M sampling rate, 6GB DDR4

Up-link card

AMC CPU

MCH

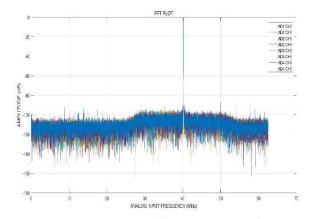
RTM CPU

MMC module


the compatibility between the self-developed MTCA chassis and NAT RTM.

Uplink card + Fiber +AMC_DAQ Application (Communication speed measurement)
Use the optical port on the MCH and the Uplink plugged into a PC to test the R/W speed of the AMC DAQ card

New Developments from Juxun & Everacq


MTCA based signal recorder

AMC board development

I7-6820HQ CPU: 4核心@2.7GHz

16GB DDR4 SRAM;

128G SSD;

Outline

• Introduction

• Highlights

Summary

Summary

- 2024 MicroTCA Workshop in China has been held in USTC, Hefei on September 18~20th.
 - Many institutes from China joined the workshop;
 - Several companies released their products.
- 2025 MicroTCA Workshop in China will be going on, probably in Chongqing University (LUTF).

Group Photo of 2024 MTCA China

Thank you for your attention