

Tim Wilksen 13th MTCA Workshop Hamburg, 10.12.2024

HELMHOLTZ

Outline

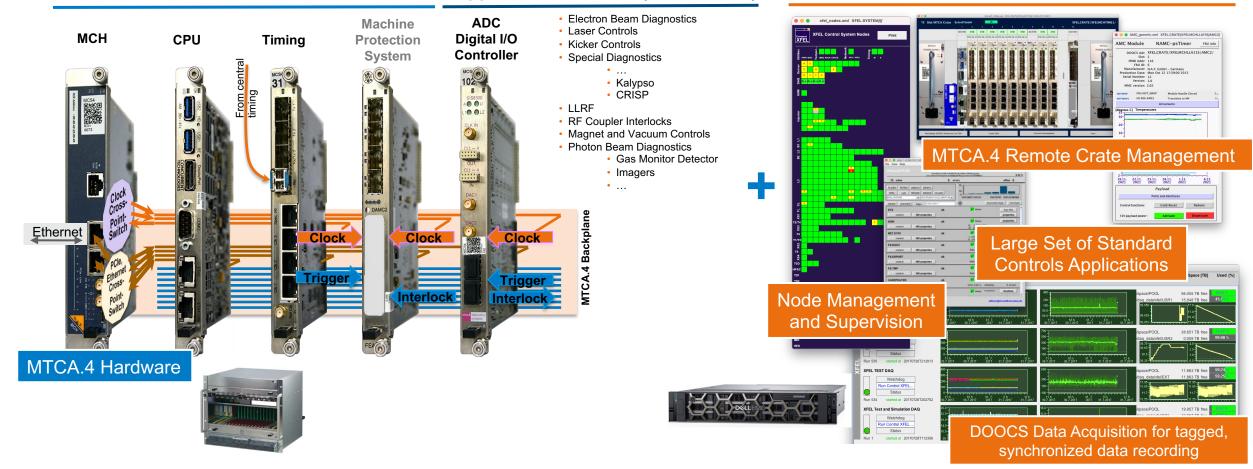
MTCA-based Accelerator Control Systems at DESY

- 1 Baseline
- The MTCA.4 Platform
- 2 Accelerator User Facilities @ DESY
- XFEL Accelerator
- FLASH
- PETRA III
- 3 Projects
- SINBAD-ARES and REGAE
- Test Facilities: PITZ, CMTB, AMTF, FALCO and TS4I
- Projects: PETRA IV and KALDERA

4 Summary

Baseline

Baseline


MTCA Common Modules

MTCA.4 Platform as Integral Part of DESY Control System Standard

MTCA.4 platform connects and integrates well into accelerator controls landscape!

Common Hardware Platform	MTCA.4 Platform (PICMG Standard)	
	Industry Standards (PLC/OPC-UA)	
	Computer center grade server nodes	
Common Software Framework	Linux as operating system	
	Open Source solutions	
	DOOCS as base control system software framework	
	Interfaces TINE, Karabo, EPICS v3 + v7, (Tango)	

Control System Applications

Application Modules (AMC + RTM)

Accelerator Facilities @ DESY

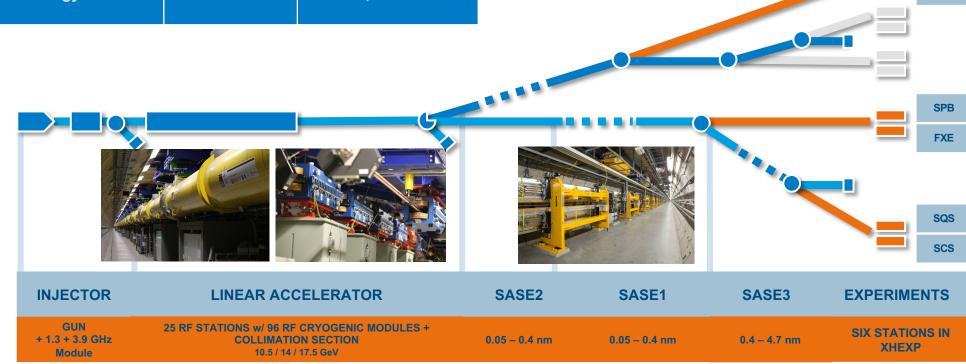
Accelerators and Projects at DESY

User Facilities FELs and Synchrotron + Test Facilities and ARD Projects

The European XFEL

Accelerator Layout

Parameters Pulse Repetition Rate Bunch Repetition Rate RF Pulse (Flat Top) Electron Bunches Photon Pulses Electron Bunch Charge	Design 1 - 10 Hz 0.5 - 4.5 MHz 650 μs 27000 / s 27000 / s 0.02 – 1.0 nC	Achieved 1 - 10 Hz 0.1 - 4.5 MHz 600 - 650 μs 27000 / s @ XTL 5000 / s 0.1 - 0.5 nC	 About 700.000 loc 30 k hybrid chann data acquisition (A About 40 TByte/d O (10 PB)/y – store
Electron Beam Energy Photon Energy	6 – 17.5 GeV 0.2 – 25 keV	11 - 17.5 GeV 0.6 - 1.2; 7 - 19.3 keV	


Accelerator Control System Data Volume w/o Experiments

- More than **10 million** addressable DOOCS control system parameters
- About 700.000 local DOOCS archives plus TINE central archives
- nels (== 150 k parameters) at 10 Hz / 4.5 MHz sent to (Accelerator DAQ)
- lay of bunch-resolved DAQ data collected currently –

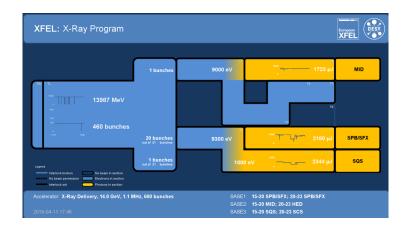
MID

HED

red on 5 PByte dCache hosted by IT

EuXFEL Status 2024

Statistics on MTCA components @ EuXFEL


More than 30 different kinds of MTCA-based software applications are in use

Essential to have a portfolio of standard solutions for modular and efficient system integration!

- About **300 MTCA systems** @ EuXFEL as of 2024:
 - About **4800 MTCA modules** (AMC, RTM, P/S, MCH,...) installed e.g.
 - Timing System: 328 modules
 - DAMC2 AMC: 577 modules
 - DAMC-TCK + DAMC-FMC: 51 + 57 modules
 - SIS ADC AMC and RTM: 558 modules
 - Teledyne ADQ AMC / TEWS: 48 / 20 modules
 - Many RTM solutions for diagnostics BLM, Toroid, MPS, TIL, wire scanner, ...
- About 300 IPMI management server and watchdogs online more than 2000 processes being monitored
- Core systems are running since end of 2013 and injector since 2015.
- Successful machine operations in production mode since 2017.

EuXFEL Status 2024 cont'd

Some experiences and news on MTCA components w/ accelerator control system

- MTCA hardware is very reliable. Core components more than 11 years in operation. •
- Issues likely related to beam operations are the prominent ones (SSD, FPGA w/ SEU) •
 - E.g. XFEL master timing system: 1 failure in 11 years of 24/7/365 operation (x2timer AMC, first production round)

Future 2025+

- XFEL number of MTCA components continue to grow due to many (smaller) modifications of the machine
- Some components are becoming EOL
- Extensibility First CPU generation at installation time is already EOL, still in use though, replacement available but ...
 - ... need future option(s)!
 - Replace TCK7 with DAMC-FMC2ZUP / FMC25 with DAMC-Z7IO (LLRF, SDIAG, ...)

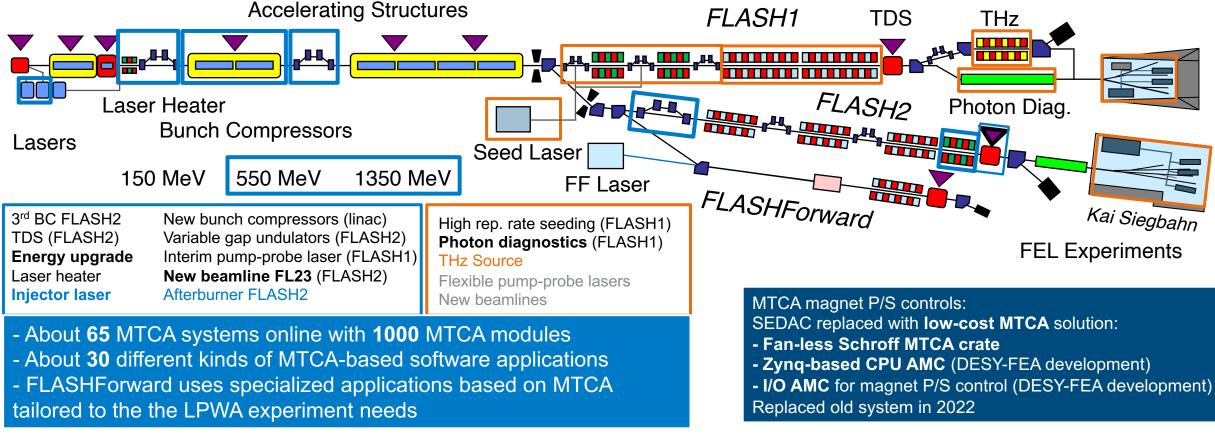
Shutdown July – December 2025 for 1/2 year

- New RF gun and longer RF pulse
- XFELO (Laser Oscillator Experiment)
- ASPECT Atto Second Pulses with eSASE and Chirp/Taper,
- STERN THz source
- SCU superconducting undulator XFEL GmbH
- Extension of beam diagnostics (e.g. BPM) and special diagnostics (BAM, ...)
- **Refurbishments MTCA components**

FLASH 2020+

Upgrade of FLASH 2024/2025

FLASH 2020+ Project – 2 Shutdowns 2021/22 + 2024/25


- New seeded Free-Electron Laser beamline FLASH1
- Move entirely to MTCA platform and replace VME
- MTCA baseline for accelerator and beamline experiments

Ongoing migrations from VME to MTCA (2024/2025):

- NEPAL-F photocathode laser systems w/ MTCA
- FLASH experiment beamline support systems
- Vacuum controls and monitoring w/ MTCA
- Transverse deflecting cavity (LOLA) w/ MTCA

Machine Protection System will become entirely MTCA-based

Projects - ARD et al.

SINBAD-ARES and **REGAE**

ARD Projects

ARES lest facility for:

- Ultra-short electron beams
- Novel diagnostics and MTCA controls (beam diagnostics and machine learning)
- High-gradient accelerating schemes
- Medical applications: VHEE and electron-based CT imaging

Photocathode Laser RF Gun w/ normal-conducting Sband electron LINAC @ 2.99 GHz for production of ultrashort bunches with two RF structures

Electrons @ 50 - 155 MeV, 0.01 - 200 pC, single pulse @ 1 - 50 Hz, 30 fs - 1 ps

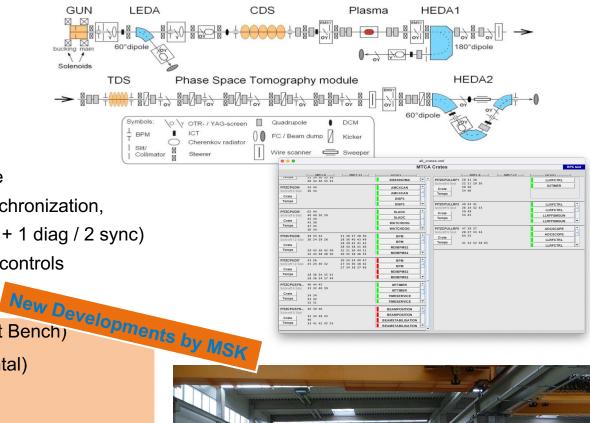
MTCA-based control system:

- Standard MTCA.4 components (Crate, MCH, CPU, Timer)
- Photocathode Laser system, experiment laser
- Synchronization & LLRF (TWS single cavity regulation)
- Beam diagnostics + New developments being tested out
 10 MTCA Systems so far, more to come ...

MTCA-based control system for LLRF and (Laser-Synchronization)

DESY Test Facilities

PITZ, SRF Facilities AMTF, CMTB


PITZ (Photo-Injector Teststand in Zeuthen)

- 1.3 GHz RF photoinjector accelerator at 25 MeV/c, 10 Hz repetition rate
- Formerly VME-based, now MTCA.4 using existing solutions (LLRF, synchronization, electron beam diagnostics, etc. MSK + MDI) – **13 systems** (3 LLRF / 7 + 1 diag / 2 sync)
- NEPAL-P photocathode laser system deployed by FS-LA with MTCA.4 controls

AMTF (Accelerator Module Test Facility) and CMTB (Cryogenic Module Test Bench)

- MTCA system to perform cavity vertical tests (until now only horizontal) HW ready, first version of FW and DOOCS server ready to be tested. Single cavity regulation scheme with a SIS8300-KU and a DWC8VM1. New implementation of a self-exciting loop (SEL) algorithm for critically coupled cavities.
- MTCA system to perform long pulse and CW tests with an SSA SSA is installed, TUEV approved - First test w/ cold cavity in CW performed last week SIS8300-KU with DWC8VM1 (only SW and FW are different from vertical tests). This R&D is motivated + supported by the High Duty Cycle program (XFEL upgrade)
- Preparation work to replace FMC25 with Z7IO

Resonance control for single cavity regulation done with FMC25 + PZT4 but FMC25 is EOL Working on Z7IO (DAMC-FMC1Z7IO) as successor.

GUN

→ ╣╟┣-

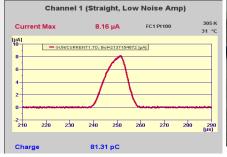
LEDA

TDS

DESY Test Facilities

FALCO and TS4I

New test facility w/ MTCA-based controls since 2024:


FALCO – RF Gun Conditioning Test Stand (Hall III / FLASH) – In operation now!

LLRF, RF Interlocks, Diagnostics

Example: Faraday Cup Read-out for FALCO (DESY MDI)

- Faraday Cup and "dump" in one physical device
- Based on Struck SIS8300-KU board with MSK FWK based firmware
- In-house RTM with 2 x 2 channel (high/low gain for 2 Faraday Cups)
- Measures dark current from 100 nA 10 mA with a max. RF length of 1 ms
- Interlock to secure the dump based on charge (limit 1µC)


Upcoming test facility w/ MTCA-based controls (2025/26):

Teststand for injectors (@AMTF) exploring superconducting RF gun concepts and high-duty cycle operation modes (burst, long pulse + CW mode) for XFEL CW 2030+

- SC RF Gun @ 6 MeV with 8 m beam line and diagnostics using MTCA (LLRF, Laser, ...)
- CW-mode / i.e. repetition rates @ 100 kHz up to 1 MHz (bunch repetition rate)

Controls Perspective: Excellent testbed for high-rate, high-volume read-out concepts! (w/MTCA!)

The PETRA IV Project

The new PETRA IV accelerator will replace PETRA III with an **ultra low** emittance ring (20 pm) adding new experimental halls in two more octants.

PETRA IV will become a MTCA.4-based accelerator control system

- Use XFEL technology and approaches as fits similar size as XFEL expected!
- Adapt, modify and enhance where PETRA IV requires new implementations
- New booster synchrotron DESY IV
- PETRA IV RF 500 MHz and 1.5 GHz 3rd harmonic system w/ solid state amps
- New beam diagnostics turn-by-turn BPM data, advanced feedbacks, single bunch data capabilities more than 4000 magnets

New MTCA Timing System for PETRA IV (DESY MCS/MSK)

- Based on timing system for EuXFEL enhanced for synchrotrons
- Enhanced timing information and signal distribution compared to PETRA III
 - Event-trigger-based system, timestamp / revolution counter distribution
 - Beam-synchronous information distribution, beam modes, ...
- Same timing system h/w for all four instances: accelerator, preaccelerator, plasma injector and experiments
- Advanced hardware design based on x2timer / NAMC-psTimer: DAMC-X3TIMER
 - Xilinx ZYNQ SoC Test currently done w/ DAMC-FMC1Z7IO

PETRA IV BPM system

- DAMC-FMC2ZUP + RTM
- Collaboration I-Tech and DESY MSK

Electron Beam Diagnostics + MPS

SIS8172 + DESY RTM

Fast-Orbit Feedback

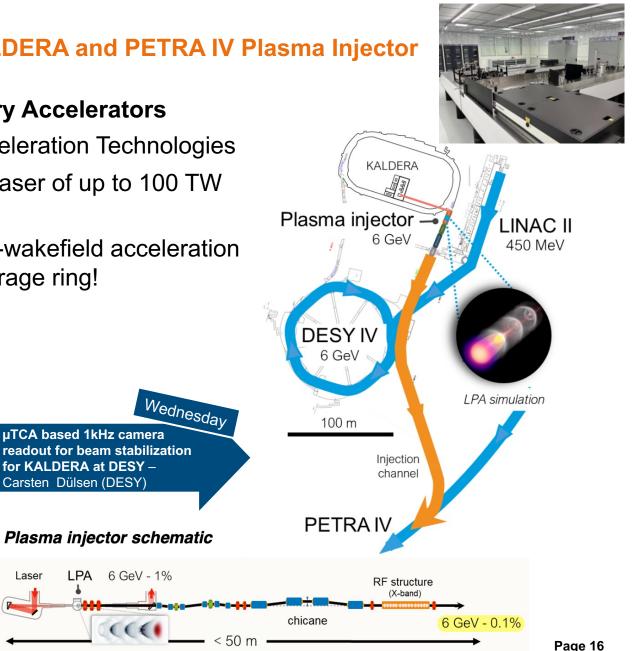
• DAMC-DS5014DR

The use of DAMC-UNIZUP board for the MTCA.4 BPM system for PETRA IV – Ales Bardorfer (I-Tech)

Status Update on MicroTCA based Fast Orbit Feedback System for PETRA IV – Sajid Mirza (DESY MSK)

Wednesday

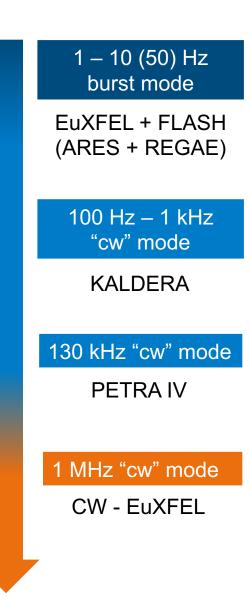
KALDERA


Plasma-Wakefield Acceleration Projects – LUX, KALDERA and PETRA IV Plasma Injector

Laser

KALDERA - KilowAtt Laser at DEsy for Revolutionary Accelerators

- ARD Project on Laser-based Plasma-Wakefield Acceleration Technologies •
- Development of a laser system delivering ultra-fast laser of up to 100 TW • peak power and 100 Hz up to 1 kHz repetition rate
- Produce highly stable electron beams using plasma-wakefield acceleration • techniques and feed this into the new PETRA IV storage ring!
- MTCA-based controls for laser systems and injector (timing, synchronization, beam diagnostics, LLRF control
- CW-System with data rates at initially 100 Hz, then 1 kHz
- Test facility w/ MTCA is operating at 100 Hz (controls) + 1 KHz with accelerator DAQ system
- First tests w/ 1kHz for Farady Cup done based on SIS8300-KU (MSK FWK) by MDI and MCS
- More diagnostics to come w/ MTCA



Summary

- Successful operation of MTCA-based controls at EuXFEL since 2017
- FLASH facility is migrating entirely to MTCA with the upgrade in 2025
- MTCA has arrived at DESY and not just at the accelerator facilities

 lots of MTCA in projects, labs, standalone systems, laser controls, …
- Further standardization of applications using MSK FWK firmware, ChimeraTK hardware access layer
- ARD projects and future facility upgrades will become challenging with respect to its complexity and demands New developments ...
 - Increasing data taking rates kHz up to MHz rep rates, higher data volume
 - Needs continuous evolution and advancement of MTCA solutions of hardware, firmware and software!

Thank you