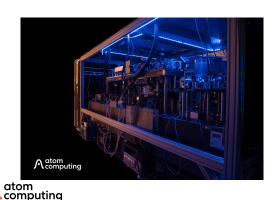
# Update on a MicroTCA-based control system for quantum computers

Jan Marjanovic, Katrina Barnes, Peter Battaglino, Robin Coxe, Christopher Griger, Thomas Hofler, Antonia Jones, Joseph Lauigan, Ciro Nishiguchi, Kelly Ann Pawlak, Aaron Smull

2024-12-10

Acomputing

©2024 Atom Computing. All rights reserved.


# Introduction

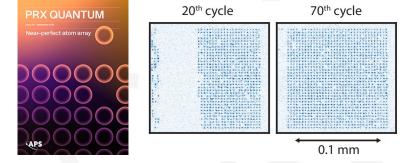


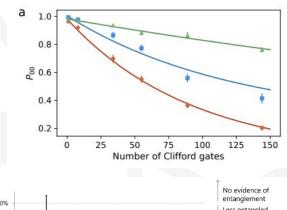

### **Atom Computing**

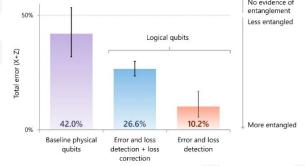
#### Neutral atom quantum computing startup

- Founded in 2018
- Offices in Berkeley, California and Boulder, Colorado and a satellite office in Austin, Texas
- Two generations of quantum computers:
  - 100-qubit prototype (using <sup>87</sup>Sr)
  - 1000-qubit production machine (using <sup>171</sup>Yb)







### **Recent results**

#### **Published papers**

- Iterative assembly of <sup>171</sup>Yb atom arrays with cavity-enhanced optical lattices Jan 2024
  - <u>https://arxiv.org/abs/2401.16177</u>
- High-fidelity universal gates in the <sup>171</sup>Yb ground state nuclear spin qubit - Nov 2024
  - <u>https://arxiv.org/abs/2411.11708</u>
- Logical computation demonstrated with a neutral atom quantum processor - Nov 2024
  - Together with Microsoft Azure Quantum
  - <u>https://arxiv.org/abs/2411.11822</u>









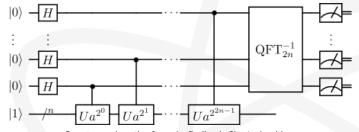




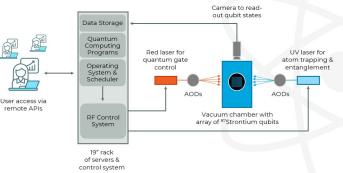
©2024 Atom Computing. All rights reserved.

# MicroTCA




### **Technology Stack**

#### From high-level quantum languages to hardware


Quantum programs (circuits) are translated from a high-level quantum language to individual instructions for the control system

#### **Requirements for the control system:**

- Generate RF signals
  - Frequencies in the MHz to GHz range
- Control adaptive optics, mirrors (piezos)
- Camera capture & atom detection
- Control power supplies to generate magnetic fields



Quantum subroutine for order finding in Shor's algorithm, Bender2k14, CC BY-SA 4.0, via Wikimedia Commons





. . .

### **Control System**

#### Our approach

- MicroTCA platform
- Custom nVent Schroff 9U chassis
  - Double full-size slots
- NAT MCH and power supplies
- A mix of in-house developed board and COTS boards (next slide)
- IPMI for (remote) operation
- Communication interfaces
  - Gigabit Ethernet
  - PCI Express (planned),
  - point to point links (planned)
  - MLVDS
  - clock distribution





### Hardware components

#### A mix of COTS and in-house developments

#### Kowalski

RFSoC, 8 DAC and 8 ADC channels



**Skipper** Trigger/SFP RTM





**Opus DAC** 6 channel DAC **Opus ADC** 6 channel ADC

**DAMC-FMC2ZUP** (COTS) Zyng UltraScale+ MPSoC

> + COTS boards for CoaXPress and SFPs

**The Terminator** Kintex UltraScale



A atom computing

©2024 Atom Computing. All rights reserved.

### **MMC Stamp**

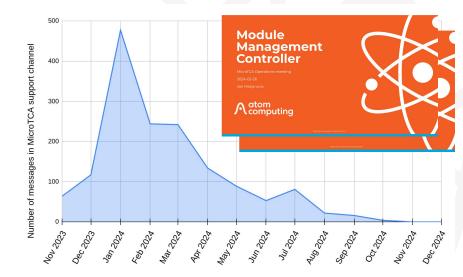
#### Implementation of the MMC on the boards

- All our boards use DESY MMC Stamp to implement the MMC
  - We have licensed the SDK to customize it for our boards
- Robust and reliable implementation
- Easily customizable
- A lot of nice-to-have features
  - UART over IPMI (mmcterm)
    - We contributed a small ease-of-use patch mmcterm <HOST> AMC<slot number>
  - JTAG switching
  - I2C mailbox (partially our contribution)
  - FRU records for custom modules
  - FRU generator (frugy)

| FRU #0:       | AMC                               |  |  |  |  |
|---------------|-----------------------------------|--|--|--|--|
| Product info: | ATOM COMPUTING KOWALSKI AMC       |  |  |  |  |
|               | S/N 0000 P/N 0000                 |  |  |  |  |
|               | Version revC                      |  |  |  |  |
| Board info:   | ATOM COMPUTING KOWALSKI AMC       |  |  |  |  |
|               | S/N 26 P/N 0000                   |  |  |  |  |
| 1.12          | Mfg.Date 2023-02-10 19:42:00      |  |  |  |  |
|               | t requirements: 6.5A              |  |  |  |  |
| Zone3 interfa | ace compat: Class D1.1            |  |  |  |  |
|               |                                   |  |  |  |  |
| FRU #1:       | RTM                               |  |  |  |  |
| Product info: | ATOM COMPUTING SKIPPER RTM        |  |  |  |  |
|               | S/N 0000 P/N 0000                 |  |  |  |  |
| 20 IN 11 12   | Version revB                      |  |  |  |  |
| Board info:   | ATOM COMPUTING SKIPPER RTM        |  |  |  |  |
|               | S/N 1234 P/N 0000                 |  |  |  |  |
|               | Mfg.Date 2023-03-29 22:10:00      |  |  |  |  |
|               | t requirements: 2.5A              |  |  |  |  |
|               | ice compat: Class D1.1            |  |  |  |  |
| Zones interra |                                   |  |  |  |  |
|               | custom AEE board                  |  |  |  |  |
| FRU #2:       | custom AFE board                  |  |  |  |  |
| FRU #2:       | Atom Computing Frobisher variantA |  |  |  |  |
| FRU #2:       |                                   |  |  |  |  |



# **Operational experience**




### **Reliability and user experience**

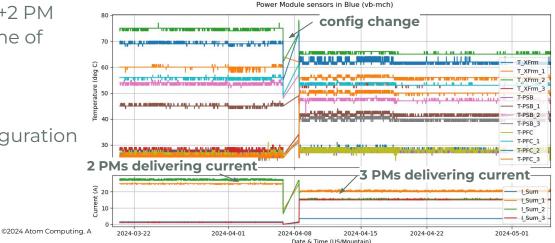
#### Leveraging the advantages of MicroTCA

- Reliability
  - The control system is operating very reliably
  - Excellent uptime
  - Linux on ARM + package manager + versioning = easy upgrades
- User Experience
  - Dedicated Slack support channel
  - Series of lectures, focused on day-to-day work
  - Number of messages in a MicroTCA support Slack channel reduced dramatically

| ZUP #1    | :   | up | 80  | days, | 1:59  |
|-----------|-----|----|-----|-------|-------|
| ZUP #2    | :   | up | 238 | days, | 4:16  |
| Hapyxelor | #1: | up | 238 | days, | 4:11  |
| Hapyxelor | #2: | up | 56  | days, | 5:12  |
| Hapyxelor | #3: | up | 237 | days, | 12:39 |
| Hapyxelor | #4: | up | 238 | days, | 4:11  |
| Hapyxelor | #5: | up | 238 | days, | 4:11  |
| Hapyxelor | #6: | up | 238 | days, | 4:11  |
| Hapyxelor | #7: | up | 202 | days, | 4:44  |






### **Example: temperature**

#### **Power Module redundancy configuration**

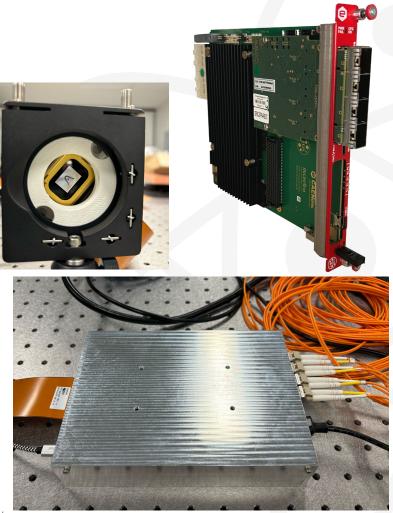
- An incident earlier this year
  - HVAC went down
  - one of the Power Modules tripped from over-temperature
  - the system went into a strange state
  - power cycle was required to restore
- Deployed a tool to monitor the status
- Initially operated the crate in 2+2 PM redundancy configuration, some of temp sensors close to critical
- Used frugy to change the PM assignment configuration
- With 3+1 PM redundancy configuration the temperatures are lower



Power Modules in a custom 9U crate





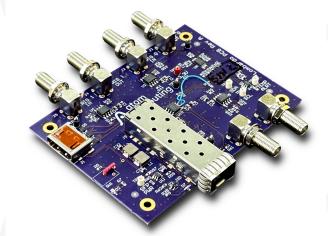

# Hardware development

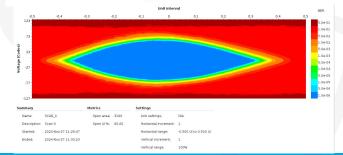


### **DMD controller**

#### Interface to a Digital Micromirror Device

- A new requirement for the system: control a Digital Micromirror Device as a part of the sequence
- Interface part: custom board with Kintex UltraScale+
  - Interfaces with the DMD with parallel LVDS interface (ribbon cable)
- MicroTCA part: DAMC-FMC2ZUP with FMC-4SFP+
- Link between boards: Aurora 64b/66b at 4x10 Gbps





### Lombardo

#### Trigger/SFP extender board for DAMC-FMC2ZUP

- DAMC-FMC2ZUP has a MicroHDMI connector on the front panel for extra triggers, clocks and a transceiver link
- Our requirement:
  - Trigger boards in 1U chassis (LVTTL or White Rabbit)
  - (optional) 10 Gbps Ethernet uplink
- We developed a board called Lombardo
  - Connect to DAMC-FMC2ZUP with MicroHDMI to HDMI cable
  - CC-BY-SA-4.0 license
  - <u>https://github.com/atom-computing</u>
    <u>/lombardo-extender-board</u>









## **Plans for the future**



### **Plans for the future**

#### Scaling the control system for larger computers

- Multi-chassis synchronization
  - Currently one large chassis (MLVDS triggers on the backplane)
     + smaller 1U chassis (front panel trigger)
  - Evaluate White Rabbit
- RF analog front end on an RTM
  - Limited space on the front, cabling
  - (maybe) a new Zone 3 class
    - 8 DACs and 8 ADCs (RF freq)
    - VITA 67 inspired
- A new board will likely be based on Versal AI RF





#### Source: Amphenol SV Microwave



# Summary



### **Summary**

atom computing

#### **Our experience with MicroTCA**

- The control system worked flawlessly and enabled us to achieve excellent results
- Modularity, scalability, remote management, ... are hugely beneficial for QC
- Developed new hardware
  - DMD controller and trigger extender board for DAMC-FMC2ZUP
- Thinking about the next generation control system



# Thank you!

# Acomputing

1