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• DESY Fellow & Helmholtz AI PI:
• Particle Physics
• Numerical Mathematics
• Machine Learning Research
• Computer Vision & Generative AI

Leveraging machine learning methods, and 
numerical algorithms for computational efficiency, 

and synthetic data generation

Quasi-probabilistic Machine Learning  
   Learning probabilistic models when the likelihood of an event is 
   negative

NEEDLE - Petabyte Scale Neural Statistical 
Inferencing
   Extract more information from the same data

DeGeSim: Deep Generative AI for Scientific 
Detectors
    Image-to-Image Translation using Diffusion Models

→Statistics Research
→ Open-source Software Development

→Fundamental ML Research

→Computer Vision
→ Generative AI (Diffusion Models)

Neural Compression using Likelihood Ratio 
Estimation - WLCG

Compressing synthetic data on WLCG via importance 
sampling

Overview: Dr. Stephen Jiggins

Calibrated neural likelihood ratio estimators as a 
compression algorithm for data on Worldwide LHC 
Computing GRID

Generative ML methods for creating synthetic 
data in detectors at the Large Hadron Collider

Statistical hypothesis testing toolkit for massively 
distributed scientific computing HPCs 

When your data can be interpreted as occurring 
with ‘negative’ probability probabilistic ML 
methods fail• Machine Learning Research:

• Expanding probabilistic machine 
learning to extended probabilities for 
science & financial modelling

• Research into generative AI for 
sparse data and noisy computer 
vision problems

• sfffff

• Data Science:
• Statistical Toolkits

• Computer Science:
• Compression of petabyte data

Applied

Research



• Synthetic data generation accounts for ~60% of 
compute resources:

Synthetic Data on Worldwide LHC GRID

https://cloud.datapane.com/reports/dkjK28A/big-data-2021/ - Image by Luca Clissa
Source: CERN-LHCC-2022-005

https://cloud.datapane.com/reports/dkjK28A/big-data-2021/
https://cds.cern.ch/record/2802918?ln=en
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• Multiple stages to Monte Carlo simulation

Neural Importance Sampling
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• Multiple stages to Monte Carlo simulation

• Neural Likelihood Ratio Importance Sampling
• Only simulate the first step, and then transform data into 

target distributions using importance weights

• Reduce disk usage by ~50-66% 

WLCG Storage
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•
• Deployed using ONNX in a C++/Python 

ETL workflow on the WLCG

Neural Importance Sampling

https://github.com/sjiggins/carl-torch
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