

Simulations Q&A

Tom Blackburn Department of Physics, University of Gothenburg *www.gu.se/en/research/plasma-physics*

3 December 2024 SFQED Workshop, DESY

Simulations Q&A Problem statement

Laser defined by normalised amplitude

 $a_0 = eE/(m\omega)$

Collision defined by:

(centre of mass) energy parameter

$$\eta = \gamma (1 + \cos \theta) \omega / m$$
,

quantum nonlinearity parameter

 $\chi = a_0 \eta = \gamma (1 + \cos \theta) E / E_{\rm Sch}$

High-energy electron (or photon)

1

Simulations Q&A Problem statement

Laser defined by normalised amplitude

 $a_0 = eE/(m\omega)$

Collision defined by:

(centre of mass) energy parameter

 $\eta = \gamma (1 + \cos \theta) \omega / m$, quantum nonlinearity parameter

 $\chi = a_0 \eta = \gamma (1 + \cos \theta) E / E_{\rm Sch}$

For $a_0 > 1$ (multiphoton) and $\chi > 1$ (quantum), determine the differential probabilities of all possible final states, going to arbitrarily high multiplicity.

High-energy

electron (or photon)

Simulations Q&A Interaction with the background field

At the probability level, first vertex carries a factor $\alpha I \sim (eE)^2 \sim a_0^2$

At lowest order, draw one photon from the laser to emit one highenergy photon (a gamma ray): **linear** Compton scattering Nonlinear Compton scattering

Probability if $\chi \ll 1$: $\alpha \chi \tau / \eta \sim \alpha a_0 \tau$

Probability if $\chi \gg 1$: $\alpha \chi^{2/3} \tau / \eta$

- Solve Dirac equation for the background field to obtain new basis states (plane EM wave = Volkov states).
- The probability current coincides with classical solution of the Lorentz force equation.
- Construct Feynman rules as usual and expand perturbatively in the coupling to the radiation field, α.

UNIVERSITY OF GOTHENBURG

Simulations Q&A What can theory tell us?

$$-\frac{\mathsf{d}^{3}\mathbb{P}}{\mathsf{d}f\mathsf{d}^{2}\mathbf{r}_{\perp}} = \frac{\alpha m^{2}}{(4\pi\omega_{0}p^{+})^{2}} \frac{f}{1-f} \frac{1}{2} \sum_{\mathsf{spin},\mathsf{pol}} \left|\sum_{j} \mathscr{T}_{j} \mathscr{C}_{j}\right|^{2}$$

- Fundamental approach: treat interaction with laser field exactly (i.e. nonperturbatively) and expand perturbatively in the dynamical EM field (i.e. the high-energy photons).
- Limitations: transition between asymptotic states → complete knowledge of background field required, can't do arbitrary field configurations, backreaction neglected, multiplicity (# particles in final state).

electron-seeded + pulsed plane wave:

Narozhnyi and Fofanov, Sov Phys JETP 83, 14 (1996)

Boca and Florescu, PRA 80, 053403 (2009) Harvey, Heinzl and Ilderton, PRA 79, 063407 (2009) Mackenroth, Di Piazza and Keitel, PRL 105, 063903 (2010) Heinzl, Ilderton and Marklund, PLB 692, 250 (2010)

Krajewska and Kaminski, PRA 85, 062102 (2012) ... and many more Lötstedt and Jentschura, PRL 103, 110404 (2009)

Seipt and Kämpfer, PRD 85, 101701 (2012) Mackenroth and Di Piazza, PRL 110, 070402 (2013)

King, PRA 91, 033415 (2015) Dinu and Torgrimsson, PRD 99, 096018 (2019) Hu, Muller and Keitel, PRL 105, 080401 (2010) Ilderton, PRL 106, 020404 (2011) King and Ruhl, PRD 88, 013005 (2013) Dinu and Torgrimsson, PRD 97, 036021 (2018) King and Fedotov, PRD 98, 16005 (2018) Mackenroth and Di Piazza, PRD 98, 116002 (2018) Dinu and Torgrimsson, PRD 102, 16018 (2020)

Also: resummation techniques for very high-order processes

Simulations Q&A Beyond plane waves

- The plane wave is the paradigmatic choice of background for calculations of nonlinear classical and quantum processes in strong electromagnetic fields.
- Classical and quantum dynamics of an electron in a plane-wave background are exactly solvable [see, for example, Heinzl and Ilderton, PRL 118, 113202 (2017)]

Simulations Q&A Beyond plane waves

- Lasers reach high intensity by focusing
 getting close to the diffraction limit
- A focusing electromagnetic pulse has to be described numerically (usually with a certain degree of approximation).
- No complete theory for QED interactions exists in this background. High-energy approximations possible [Di Piazza, PRL 113, 040402 (2014)]

Simulations Q&A Local approximations

- QED rates in the LCFA / LMA + point-like emission events linked by classical trajectories that are determined by Lorentz force / ponderomotive force equation.
- Higher-order processes are broken down into a chain of first-order processes.
- Requires $a_0 \gg 1$ (strictly, $a_0^3/\chi \gg 1$) or sufficiently long pulses.

How do we study strong EM fields? (Theory) Probability rates

- Probability for a single-vertex process is given by a double integral over phase variables φ₁ and φ₂.
- Exchange for average phase $\varphi_{av} = (\varphi_1 + \varphi_2)/2$ and interference phase $\varphi = (\varphi_1 \varphi_2)/2$.
- In the limit that the interference phase is small, the probability is a single integral over a probability rate.

from Di Piazza et al, PRA 98, 012134 (2018)

What if *a*₀ is not large? Adding QED to classical simulations

- Conventional (whether single-particle or PIC) codes that model strong-field QED processes are "semiclassical."
- Particles have well-defined trajectories.
- QED events occur non-deterministically according to the relevant probability rate, along this trajectory.

What if a_0 is not large? Using the LCFA

- The standard approach is based on the locally constant field approximation.
- Rate calculated for a constant, crossed background.
- Quantity that enters the rate is the instantaneous (kinetic) momentum π^{μ} and the quantum parameter χ .
- Equation of motion is the Lorentz force $\dot{\pi}^{\mu} = -e F^{\mu\nu} \pi_{\nu}/m.$

What if *a*₀ is not large? Using the LCFA

- The standard approach is based on the locally constant field approximation.
- Rate calculated for a constant, crossed background.
- Quantity that enters the rate is the instantaneous (kinetic) momentum π^{μ} and the quantum parameter χ .
- Equation of motion is the Lorentz force $\dot{\pi}^{\mu} = -e F^{\mu\nu} \pi_{\nu}/m.$

What if *a*₀ is not large? Using the LCFA

- For this to work well, the formation length of a photon emission event must be much smaller than the laser wavelength...
- if the field is strong and the emitted photon energy is not small.
- In the transition regime, we need to account for interference effects at the scale of the laser wavelength.

- Rate calculated for a plane EM wave with a slowly varying envelope (locally monochromatic approximation).
- Quantity that enters the rate is the quasimomentum $q^{\mu} = \langle \pi^{\mu} \rangle$, which is a cycle-averaged quantity, and the local parameters $\langle a^2 \rangle$ and $\eta = k.q/m^2$.
- Equation of motion is the relativistic ponderomotive force $\dot{\boldsymbol{q}} = -\frac{m^2}{2q^0} \nabla \langle a^2 \rangle$

- Rate calculated for a plane EM wave with a slowly varying envelope (locally monochromatic approximation).
- Quantity that enters the rate is the quasimomentum $q^{\mu} = \langle \pi^{\mu} \rangle$, which is a cycle-averaged quantity, and the local parameters $\langle a^2 \rangle$ and $\eta = k.q/m^2$.
- Equation of motion is the relativistic ponderomotive force $\dot{\boldsymbol{q}} = -\frac{m^2}{2q^0} \nabla \langle a^2 \rangle$

- Rate calculated for a plane EM wave with a slowly varying envelope (locally monochromatic approximation).
- Quantity that enters the rate is the quasimomentum $q^{\mu} = \langle \pi^{\mu} \rangle$, which is a cycle-averaged quantity, and the local parameters $\langle a^2 \rangle$ and $\eta = k.q/m^2$.
- Equation of motion is the relativistic ponderomotive force $\dot{\boldsymbol{q}} = -\frac{m^2}{2q^0} \nabla \langle a^2 \rangle$

- Already used (if not named as such) in codes like NI (C. Bula/E144) and CAIN.
- Formalised in Heinzl, King and Macleod, PRA 102, 063110 (2020).
- Derived from plane-wave QED, combines a slowly varying envelope approximation and an expansion in a local phase.

Simulations Q&A LUXE's theory/simulation requirements

Electron + laser

Nonlinear Compton scattering

Signals:

GOTHENBURG

- Intensity dependence of Compton edges
- γ-photon angular profile

Needed:

• Photon emission rate

Bremsstrahlung γ + laser Nonlinear Breit-Wheeler pair production $e^{-(p_{-})}$

 $\gamma(k)$

Signals:

 Intensity dependence of positron yield

Needed:

 Pair creation rate, unpolarized γ photons

Electron + laser

Nonlinear trident pair creation

Signals:

 Intensity dependence of positron yield

Needed:

- Photon emission rate, γpolarization resolved
- Pair creation rate, γpolarization resolved

- Code vs code:
 - Comparison of different codes (Ptarmigan, PIC), what they can or cannot do.
 - Why doesn't the LCFA work at $a_0 = 1$?
 - Why has no-one else implemented the LMA?
 - Is it possible to include the LMA in PIC?
 - How to simulate SFQED in crystals?
- Accuracy:
 - How accurate are our simulations (how can we even estimate this)? How can we benchmark the accuracy of approximations (e.g. LMA) in the nonperturbative regime, where few data exist (if any) and no reliable theoretical calculation exists?
 - Where do simulation tools really reach their limits and need testing?
 - If LUXE were to find significant disagreements with expectations, which part of the modelling would be first addressed?

Q: Comparison of different codes (Ptarmigan, PIC)?

$$\begin{aligned} \frac{\partial \phi_e}{\partial t} + \frac{\mathbf{p}}{\gamma m} \cdot \frac{\partial \phi_e}{\partial \mathbf{r}} - e\left(\mathbf{E} + \frac{\mathbf{p} \times \mathbf{B}}{\gamma m}\right) \cdot \frac{\partial \phi_e}{\partial \mathbf{p}} = \\ &- \phi_e \int w_{e \to e\gamma}(\mathbf{p}, \mathbf{q}) \, \mathrm{d}^3 \mathbf{q} \\ &+ \int \phi'_e w_{e \to e\gamma}(\mathbf{p}', \mathbf{p}' - \mathbf{p}) \, \mathrm{d}^3 \mathbf{p}', \end{aligned}$$

photon emission

$$+ \int_{0}^{1} \left[\phi_{\pm} \frac{dP^{c}}{d\epsilon'} + \phi_{\gamma} \frac{dP^{b}}{d\epsilon'} \right] d\epsilon$$
pair creation

Sokolov et al, PRL 105, 195005 (2010) Elkina et al, PRSTAB 14, 054401 (2011) Bulanov et al, PRA 87, 062110 (2013)

- In LCFA mode, Ptarmigan and PIC codes work in almost the same way, because they're solving almost the same problem.
- PIC codes don't have an equivalent of LMA mode.
- Subtle differences in implementation: Ptarmigan uses triple-differential rates, not single-differential. Spin not available, but polarization is.

Simulations Q&A Particle-in-cell codes + QED

- Particle-in-cell codes solve for the classical evolution of the electron (etc) distribution functions, as sampled by 'macroparticles'.
- Probability rates for all QED processes integrated along macroparticle trajectory.
- Electrons recoil on photon emission, new electrons and positrons added on photon decay.

Simulations Q&A PIC codes that include SFQED processes

Q: Why doesn't the LCFA work at $a_0 = 1$?

- Interference.
- Formation length comparable in size to the laser wavelength.
- The electron "knows" about the oscillation of the background field.
- Undulator vs wiggler.

Q: Why has no-one else implemented the LMA?

- They have!
- NI [E144, see Appendix of Bamber et al, PRD 60, 092004 (1997)]
- CAIN [https://wwwjlc.kek.jp/subg/ir/lib/cain21b.manual/ main.html]
- Unclear how they propagate the particles between interactions (ballistically?)

Q: Is it possible to include the LMA in PIC?

from Massimo et al, PPCF 61, 124001 (2019)

• Yes...

...but no.

- Envelope solvers solve the same (classical) equations of motion as Ptarmigan.
- Lightfront momentum must be large!

Q: How to simulate QED effects in crystals?

Nielsen, Holtzapple and King, PRD 106, 013010 (2022)

- LCFA, of course.
- Define an equivalent a_0 using the oscillation frequency of a channelled positron as $6E_0^{1/2}$ [100 GeV].
- If multiplicity < 1 (fewer than one photon per electron on average), another option is Baier-Katkov, which assumes a classical trajectory. Patch together trajectories if multiplicity is larger...

- Code vs code:
 - Comparison of different codes (Ptarmigan, PIC), what they can or cannot do.
 - Why doesn't the LCFA work at $a_0 = 1$?
 - Why has no-one else implemented the LMA?
 - Is it possible to include the LMA in PIC?
 - How to simulate SFQED in crystals?
- Accuracy:
 - How accurate are our simulations (how can we even estimate this)? How can we benchmark the accuracy of approximations (e.g. LMA) in the nonperturbative regime, where few data exist (if any) and no reliable theoretical calculation exists?
 - Where do simulation tools really reach their limits and need testing?
 - If LUXE were to find significant disagreements with expectations, which part of the modelling would be first addressed?

Q: How accurate are our simulations? How do we even estimate this?

- Verification: how well does a code reproduce the underlying theory.
- Size of missing terms?
 - Terms unknown, code does not compute an expansion.
- Argument based on asymptotics:
 - Plane wave? Diffraction angle small
 - LCFA? a_0 and a_0^3/χ large
 - LMA? Pulse duration large

- Compare where we can: single emission (or classical regime).
- Procedure:
 - Probability → mean number of photons.
 - Disable recoil to guarantee Poisson statistics.

Q: If LUXE were to find significant disagreements with expectations, which part of the modelling would be first addressed?

- In general, assumptions about collision parameters first, especially laser structure.
- Otherwise, it depends on the regime. At low a₀, theory is best constrained (perturbative), so plane wave + LMA there.
- At higher *a*₀, cascade approximation (propagation between events).

- Code vs code:
 - Comparison of different codes (Ptarmigan, PIC), what they can or cannot do.
 - Why doesn't the LCFA work at $a_0 = 1$?
 - Why has no-one else implemented the LMA?
 - Is it possible to include the LMA in PIC?
 - How to simulate SFQED in crystals?
- Accuracy:
 - How accurate are our simulations (how can we even estimate this)? How can we benchmark the accuracy of approximations (e.g. LMA) in the nonperturbative regime, where few data exist (if any) and no reliable theoretical calculation exists?
 - Where do simulation tools really reach their limits and need testing?
 - If LUXE were to find significant disagreements with expectations, which part of the modelling would be first addressed?

Simulations with Ptarmigan Overview

A male ptarmigan in winter plumage

- Ptarmigan is a Monte-Carlo particletracking code that simulates the interaction between high-energy electron/photon beams and laser pulses.
- Designed to be accurate (and fast) across the full range of a₀.
- Single-particle, so collective interactions neglected, as well as feedback on the laser fields.

Simulations with Ptarmigan Physics coverage

Process	Polarization			Available modes		
	e ⁺ /e ⁻	γ	laser	QED	classical	modified classical
Photon emission	averaged (initial), summed (final)	arbitrary	LP / CP	LMA / LCFA	LMA / LCFA	LCFA
Pair creation	summed	arbitrary	LP / CP	LMA / LCFA	n/a	n/a

- Fundamental processes included are: photon emission (NLC) and electronpositron pair creation (NLBW).
- All processes fully angularly resolved.
- Building blocks for higher-order processes, like EM showers.

Simulations with Ptarmigan Physics coverage

Process	Polarization			Available modes		
	e+/e-	γ	laser	QED	classical	modified classical
Photon emission	averaged (initial), summed (final)	arbitrary	LP / CP	LMA / LCFA	LMA / LCFA	LCFA
Pair creation	summed	arbitrary	LP / CP	LMA / LCFA	n/a	n/a

- LMA available for $a_0 \le 20$ and $\eta = \chi/a_0 \le 2$ [170 GeV @ $\lambda = 800$ nm]
- LCFA available for arbitrary χ .

 Classical radiation reaction also available (Landau-Lifshitz, including Gaunt factor if so desired)

Simulations with Ptarmigan Approximations compared

- Locally constant field approximation
- Advantage: build arbitrary fields from slices of constant, crossed field.
- Disadvantage: no interference effects, does not work in transition regime.

- Locally monochromatic approximation
- Advantage: includes wavelength-scale interference effects, works at all a₀.
- Disadvantage: background must be sufficiently "plane-wave-like", i.e. amplitude and frequency required.

Simulations with Ptarmigan Benchmarking example

• $a_0 = 2.5$, under LMA:

• Photon spectra at fixed electron energy parameter $\eta = 0.1$ (8 GeV @ 800 nm laser wavelength). *E*-pol: photons polarized parallel to laser *E*; *B*-pol, perpendicular to *E*.

Simulations with Ptarmigan Access

- Open source and permissively licensed, available on Github (github.com/tgblackburn/ptarmigan).
- Documentation and example input files included, and more being added.
- MPI and HDF5 support available as opt-in features.
- Pull requests (bug fixed, additional features) always welcome!