
Optimization of compute-intensive
reconstruction tasks for efficient
usage of CPUs and GPUs
G.Kozlov, A.Redelbach

30.09.2024

Federated Digital Infrastructures

 Universe and
Matter

for Research on

of 122

Introduction

Computing resources:

• GSI Green IT Cube

• ~54000 CPU cores;

• ~400 GPUs;

• PUE: < 1.07

• Goethe NHR

• ~30000 CPU cores;

• 864 GPUs;

• PUE: 1.067

•CBM — future fixed-target heavy-ion experiment at FAIR,
Darmstadt, Germany.

•2.5A to 11A GeV Au+Au collisions.

• Interaction rate: 105-107 collisions per second.

•Up to 1000 charged particles/collision.

•Free streaming data, no hardware triggers.

•Online time-based event reconstruction and
selection is required in the first trigger level. Green IT Cube

of 123

CPU vs GPU: previous studies

• CPUs are more flexible while running of
complicated algorithms.

• GPUs are much faster while doing large
amount of similar calculations.

• Previous studies demonstrate significant
superiority of GPUs in solving tasks such
as hit detection and track fitting.

• Reconstruction in the CBM experiment still
tends to use CPU algorithms.

• More active utilization of GPUs is
encouraged where it can be useful.

0 10 20 30 40 50 60
Number of cores

0

50

100

150

200

250

300

350

400

s
µ

T
ra

ck
s /

0 50 100 150 200 250
Local Item Size

0

200

400

600

800

1000

1200

1400

s
µ

T
ra

ck
s /

2x Intel Xeon Gold 6130 AMD Radeon VII

0 10 20 30 40 50 60
Number of cores

0

5000

10000

15000

20000

25000

30000

D
ig

is
/ m

s

0 50 100 150 200 250
XPU block size

0

50

100

150

200

250

300

350

400

310×

D
ig

is
/ m

s

Track fitting:

4.5 times faster

STS hit finding:

13 times faster

CPU GPU

• Transferring massive computing tasks to the GPU will allow for fast processing of large
amounts of data.

• CPU usage can be focused on tasks that are fundamentally impossible or unprofitable on
the GPU, thus optimizing the use of computing resources.

of 124

CBM data challenges using prototype mCBM setup

Concept for setup:
• Emulate the actual online processing as closely as possible

• Replay recorded data (due to lack of synthetic data)

• mFLES nodes sending timeslice data to be processed by GSI-

VIRGO HPC nodes

Motivation:

• Ensure interoperability

• Identify and address missing components

• Focus on actually employable software

• Reasonable milestones and deadlines

• Make developments visible

• Execute data chain using recorded data

• Container operation: binaries built into

Docker/Apptainer container

• 4 nodes sending recorded raw data (timeslice

format)

• Parallel operation of 10+ processing nodes

• On node parallelization: multi process plus

OpenMP

of 125

CBM data challenges

DC 3

DC 4

Online event building

Integration of mCBM tracking

• Unpacking and event building
with digi triggering of mCBM
detector data;

• Unpackers for all detectors are
included;

• All parts of the integrated
processing chain work stably;

• Proper operation of container
based solution on GSI VIRGO-
HPC cluster.

• Chain includes unpacking, local
reconstruction, CA track finder
and writing of the output data;

• Tracking is based on STS and
TOF hits;

• CA tracking dominates the total
runtime.

of 126

Event reconstruction on GPU

Online event reconstruction:

• Algorithms:

• Hit finding - STS detector - CPU/GPU;

• Track reconstruction - CA tracker - CPU, GPU in progress;

• Running:

• Customizable scripts for building containers - Docker/Apptainer;

• Scripts for submitting SLURM jobs: container based on GSI-VIRGO (data

challenge), benchmarks on Goethe NHR.

XPU - lightweight C++ library for GPU software development:

• Abstraction layer for specific GPU API/compiler.

• Compiles code as CUDA, HIP or regular C++ with OpenMP.

• Provides optimized GPU algorithms with CPU fallback.

• Collects timing data and manages memory allocation.

• Device code is compiled once for each available backend. Device selection

occurs at runtime.

GPU tracking requirements: similar CPU/GPU implementations, high operating speed,
proper utilization of CPUs and GPUs, flexibility.

https://github.com/fweig/xpu

https://github.com/fweig/xpu

of 12

10 32 54 6

0

1

2

3

4

Hit Area

(x,y)

x x x x

Next iteration with
different settings

7

Track reconstruction on GPU (under development)

Grid initialization

Search for triplets and
estimation of triplet

parameters

Neighbours finding

Track-candidates
construction

Track fitting

Used hits suppression

Hits

HitsGrid

Triplets

Triplets

Tracks

Tracks

TracksHits
• Ready for GPU calculations; will be

translated to GPU

• Recursive function; not parallelizable; for
parallelization on GPU it is necessary to
rework the function from scratch

• Simple and fast

• Simple and fast

• The most resource- and time-consuming
part. Combinatorial selection of hit
combinations + segment fitting. Large
volume of mutually independent
calculations.

• CPU parallelization is not very effective.

• There are possibilities for parallel

subtractions on the GPU (?)

of 128

Track reconstruction: CPU and GPU

FindSinglets() FindDoublets() FitDoublets() FindTriplets() FitTriplets()

Target Hit

Station N St N St N+1 St N+2
St N St N+1 St N+2

Station N Station N+1

StoreTriplets()

CPU implementation:

• Sequential calculation of the entire chain

for each hit within a single thread: hit -
singlet - doublets - triplets;

• Low efficiency of intra-event parallelization
due to data access overhead.

GPU implementation:

• Each step of the chain as a single kernel;

• One element (hit, singlet, doublet, triplet)

per GPU thread;

• Data arrays compression to get rid of

empty elements (idle threads);

• Optimal for GPU, high overhead on CPU.

Setup an
d co

py in
put d

ata
 to

 GPU

<M
ake

Sin
gle

ts>

<M
ake

Doublets>

<C
om

pressD
oublets>

<Fi
tDoublets>

<M
ake

Tri
plets>

<C
om

pressT
rip

lets>

<Fi
tTr

iplets>

Allo
cat

e m
emory

 on
 GPU

Allo
cat

e m
emory

 on
 GPU

Allo
cat

e m
emory

 on
 GPU

• Hits
 (*f

irst
 ite

rat
ion

 on
ly)

• Grid

• Geom
etry

 in
fo*

• Mate
ria

l in
fo*

• Fie
ld in

fo*

GPU kernels:

Cop
y o

utput d
ata

 to
 HOST

• Tri
plets

CPU:

GPU:

of 129

First tests and efficiency measurements

10000 20000 30000 40000 50000 60000 70000
Number of hits

0

50

100

150

200

250

300

350

400

450
310×

N
um

be
r o

f t
rip

le
ts

GPU new

CPU new

CPU basic

Number of Triplets vs. Number of Hits

10000 20000 30000 40000 50000 60000 70000
Number of hits

0

500

1000

1500

2000

2500

N
um

be
r o

f t
ra

ck
s

GPU new

CPU new

CPU basic

Number of Tracks vs. Number of Hits

Testing:

• 1 iteration;

• test data: 1 time slice (1 to 5 central events);

• comparison: new algo on GPU vs new algo on CPU (XPU OpenMP fallback) vs basic algo on CPU;

• CPU: 2x Intel Xeon Gold 6130; GPU: AMD Radeon VII

The algorithm is still under development, all measurements provided are not final results and serve only
to evaluate intermediate status

of 1210

Runtime mesurements

10000 20000 30000 40000 50000 60000 70000
Number of hits

1

10

210

310

410

Ti
m

e
[m

s]

GPU new

CPU new

CPU basic

Total triplet finding time vs. Number of Hits

10000 20000 30000 40000 50000 60000 70000
Number of hits

1−10

1

10

210

Ti
m

e
[m

s]

GPU new

CPU new

MakeSinglets time vs. Number of Hits

10000 20000 30000 40000 50000 60000 70000
Number of hits

1

10

210

Ti
m

e
[m

s]

GPU new

CPU new

MakeDoublets time vs. Number of Hits

10000 20000 30000 40000 50000 60000 70000
Number of hits

2−10

1−10

1

10

210

310

Ti
m

e
[m

s]

GPU new

CPU new

FitDoublets time vs. Number of Hits

10000 20000 30000 40000 50000 60000 70000
Number of hits

1

10

210

310

410

Ti
m

e
[m

s]

GPU new

CPU new

MakeTriplets time vs. Number of Hits

10000 20000 30000 40000 50000 60000 70000
Number of hits

1

10

210

310

410

Ti
m

e
[m

s]

GPU new

CPU new

FitTriplets time vs. Number of Hits

x300 speed up x80 speed up

Speed up factor growing: 1.5 to 15

 - no fitting, just combinatorics

Speed up factor: 40 to 80

 - 10 times less combinatorics;

 - KF extrapolation

of 1211

Energy consumption study (preliminary)

E =
k
N

× t × (nc × Pc × uc + nm × Pm) × PUE × 0.001

1Loïc Lannelongue, Jason Grealey, and Michael Inouye “Green Algorithms: Quantifying the Carbon Footprint of Computation”

1

E — energy consumption (kWh)

t — task execution time (hours)

nc — number of computational cores

Pc — power consumed by one computational core (W)

uc — core utilization factor (from 0 to 1)

nm — amount of memory used (GB)

Pm — power consumed by one gigabyte of memory (W)

PUE — Power Usage Effectiveness of the data center

k — number of tracks for energy consumption evaluation

N — total number of tracks processed per unit of time

C = E × CI
C — total carbon footprint (gCO2)

CI — carbon intensity factor

Goethe NHR:

• CPU: 2x Intel Xeon Gold 6148

• GPU: AMD MI210

PUE: 1.076

CI (Germany): 380 gCO2/kWh

Test data:

CBM based

STS-like detector with 7 stations

Collision rate: 10 MHz

Ntracks/event: 1000

Memory usage:

• 106 tracks

• 240 byte per track

• ~230 MB

TDP:

CPU: 150 W / 20 cores = 7.5 W per core

 (preliminary)

GPU: measured with rocm-smi

The study of the Kalman Filter track fitter's energy consumption is not only valuable on
its own but also serves as a crucial step in developing and testing methodology for
similar studies planned within the FIDIUM framework for the next year.

of 1212

Conclusions

• Preparations for online data reconstruction, successful operations on GSI-VIRGO
computing farm.

• Running event building and reconstruction tasks in Docker/Apptainer containers
through Slurm, customization and building of containers by scripts.

• Translation CA tracking to GPU is in progress. The problem is technically solvable.
The first results look very promising.

• Development of methodology and first studies of energy efficiency of reconstruction
algorithms.

Next steps

• Continuing development of the GPU version of the CA track finder. Bug fixes,
memory usage optimization, translation of other tracking stages to the GPU.

• Integration of GPU calculations into the online reconstruction chain, testing within of
the next data challenges.

• Further work on containerization and automation of launching reconstruction tasks on
computing farms, writing documentation.

• Further research and evaluation of energy efficiency of reconstruction algorithms.

of 1213

Backup

of 1214

Triplets reconstruction on CPU

for loop by stations

for loop by hits on station

FindSinglets()

FindDoublets()

FitDoublets()

FindTriplets()

FitTriplets()

StoreTriplets()

End of for loop by hits on station

End of for loop by stations

Target Hit

• Creating initial track parameters
estimation. Fit a straight line through
the target and the (left) hit taking
into account magnetic field

Station N Station N+1

Station N

• Search for possible combinations of
hit pairs

• Fitting forward, adding a second
(middle) hit to the parameter
estimation

St N St N+1 St N+2

• Search for possible 3-hit segments

• Fitting forward and backward
several times to get a final
parameters estimation of the triplets

• Checking triplets, saving triplets
whose parameters satisfy specified
conditions

St N St N+1 St N+2

of 1215

Triplets reconstruction on GPU (under development)

Setup and copy input data to GPU

• Hits (*first iteration only)

• Grid

• Geometry info *

• Material info *

• Field info *

GPU kernels:
<MakeSinglets>

<MakeDoublets>

<CompressDoublets>

<FitDoublets>

<MakeTriplets>

<CompressTriplets>

<FitTriplets>

Copy output data to HOST

• Triplets

• Only grid and iteration settings changes from iteration to
iteration; other data could be copyed once

• Creating singlets: processing one hit per GPU thread

Allocate memory on GPU

Allocate memory on GPU

• Creating doublets: processing one singlet per GPU thread

Allocate memory on GPU
• Allocate memory on GPU for singlets and doublets;

maxDoubletsPerSinglet = 150

• Allocate memory on GPU for non empty doublets and
triplets; maxTripletsPerDoublet = 15

• Get rid of “empty” doublets

• Fit doublets, add middle hit to parameters estimation

• Creating triplets: processing one doubler per GPU thread

• Allocate memory on GPU for non empty triplets and triplets;
maxTripletsPerDoublet = 15

• Get rid of “empty” triplets

• Fit triplets forward and backward several times, check
parameters; processing one triplet per GPU thread

• Copy results to HOST for furter track calculations

of 1216

Runtime mesurements

10000 20000 30000 40000 50000 60000 70000
Number of hits

0

0.5

1

1.5

2

2.5

3
Ti

m
e

[m
s]

host to device copy

device to host copy

Data copying time vs. Number of Hits

