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Introduction

Computing resources:


• GSI Green IT Cube

• ~54000 CPU cores;

• ~400 GPUs;

• PUE: < 1.07


• Goethe NHR

• ~30000 CPU cores;

• 864 GPUs;

• PUE: 1.067

•CBM — future fixed-target heavy-ion experiment at FAIR, 
Darmstadt, Germany.


•2.5A to 11A GeV Au+Au collisions.

• Interaction rate: 105-107 collisions per second.

•Up to 1000 charged particles/collision.

•Free streaming data, no hardware triggers. 

•Online time-based event reconstruction and 
selection is required in the first trigger level. Green IT Cube
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CPU vs GPU: previous studies

• CPUs are more flexible while running of 
complicated algorithms.


• GPUs are much faster while doing large 
amount of similar calculations.


• Previous studies demonstrate significant 
superiority of GPUs in solving tasks such 
as hit detection and track fitting.


• Reconstruction in the CBM experiment still 
tends to use CPU algorithms.


• More active utilization of GPUs is 
encouraged where it can be useful.
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2x Intel Xeon Gold 6130 AMD Radeon VII
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Track fitting:

4.5 times faster

STS hit finding:

13 times faster

CPU GPU

• Transferring massive computing tasks to the GPU will allow for fast processing of large 
amounts of data.


• CPU usage can be focused on tasks that are fundamentally impossible or unprofitable on 
the GPU, thus optimizing the use of computing resources.
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CBM data challenges using prototype mCBM setup

Concept for setup: 
• Emulate the actual online processing as closely as possible

• Replay recorded data (due to lack of synthetic data)

• mFLES nodes sending timeslice data to be processed by GSI-

VIRGO HPC nodes

Motivation:

• Ensure interoperability 

• Identify and address missing components

• Focus on actually employable software 

• Reasonable milestones and deadlines 

• Make developments visible 

• Execute data chain using recorded data

• Container operation: binaries built into 

Docker/Apptainer container

• 4 nodes sending recorded raw data (timeslice 

format)

• Parallel operation of 10+ processing nodes

• On node parallelization: multi process plus 

OpenMP
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CBM data challenges

DC 3

DC 4

Online event building

Integration of mCBM tracking

• Unpacking and event building 
with digi triggering of mCBM 
detector data;


• Unpackers for all detectors are 
included;


• All parts of the integrated 
processing chain work stably;


• Proper operation of container 
based solution on GSI VIRGO-
HPC cluster.

• Chain includes unpacking, local 
reconstruction, CA track finder 
and writing of the output data;


• Tracking is based on STS and 
TOF hits;


• CA tracking dominates the total 
runtime.
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Event reconstruction on GPU

Online event reconstruction:

• Algorithms:


• Hit finding - STS detector - CPU/GPU;

• Track reconstruction - CA tracker - CPU, GPU in progress;


• Running:

• Customizable scripts for building containers - Docker/Apptainer;

• Scripts for submitting SLURM jobs: container based on GSI-VIRGO (data 

challenge), benchmarks on Goethe NHR.

XPU - lightweight C++ library for GPU software development:

• Abstraction layer for specific GPU API/compiler.

• Compiles code as CUDA, HIP or regular C++ with OpenMP.

• Provides optimized GPU algorithms with CPU fallback.

• Collects timing data and manages memory allocation.

• Device code is compiled once for each available backend. Device selection 

occurs at runtime.

GPU tracking requirements: similar CPU/GPU implementations, high operating speed, 
proper utilization of CPUs and GPUs, flexibility.

https://github.com/fweig/xpu

https://github.com/fweig/xpu
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Track reconstruction on GPU (under development)

Grid initialization

Search for triplets and 
estimation of triplet 

parameters

Neighbours finding

Track-candidates 
construction

Track fitting

Used hits suppression

Hits

HitsGrid

Triplets

Triplets

Tracks

Tracks

TracksHits
• Ready for GPU calculations; will be 

translated to GPU

• Recursive function; not parallelizable; for 
parallelization on GPU it is necessary to 
rework the function from scratch

• Simple and fast

• Simple and fast

• The most resource- and time-consuming 
part. Combinatorial selection of hit 
combinations + segment fitting. Large 
volume of mutually independent 
calculations.


• CPU parallelization is not very effective.

• There are possibilities for parallel 

subtractions on the GPU (?)
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Track reconstruction: CPU and GPU

FindSinglets() FindDoublets() FitDoublets() FindTriplets() FitTriplets()

Target Hit

Station N St N St N+1 St N+2
St N St N+1 St N+2

Station N Station N+1

StoreTriplets()

CPU implementation:

• Sequential calculation of the entire chain 

for each hit within a single thread: hit - 
singlet - doublets - triplets;


• Low efficiency of intra-event parallelization 
due to data access overhead.

GPU implementation:

• Each step of the chain as a single kernel;

• One element (hit, singlet, doublet, triplet) 

per GPU thread;

• Data arrays compression to get rid of 

empty elements (idle threads);

• Optimal for GPU, high overhead on CPU.
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First tests and efficiency measurements
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Number of Triplets vs. Number of Hits
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Testing:

• 1 iteration;

• test data: 1 time slice (1 to 5 central events);

• comparison: new algo on GPU vs new algo on CPU (XPU OpenMP fallback) vs basic algo on CPU;

• CPU: 2x Intel Xeon Gold 6130; GPU: AMD Radeon VII

The algorithm is still under development, all measurements provided are not final results and serve only 
to evaluate intermediate status
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Runtime mesurements
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Total triplet finding time vs. Number of Hits
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FitDoublets time vs. Number of Hits
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MakeTriplets time vs. Number of Hits
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x300 speed up x80 speed up

Speed up factor growing: 1.5 to 15

 - no fitting, just combinatorics

Speed up factor: 40 to 80

 - 10 times less combinatorics;

 - KF extrapolation
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Energy consumption study (preliminary)

E =
k
N

× t × (nc × Pc × uc + nm × Pm) × PUE × 0.001

1Loïc Lannelongue, Jason Grealey, and Michael Inouye “Green Algorithms: Quantifying the Carbon Footprint of Computation”

1

E — energy consumption (kWh)

t — task execution time (hours)

nc — number of computational cores

Pc — power consumed by one computational core (W)

uc — core utilization factor (from 0 to 1)

nm — amount of memory used (GB)

Pm — power consumed by one gigabyte of memory (W)

PUE — Power Usage Effectiveness of the data center

k — number of tracks for energy consumption evaluation

N — total number of tracks processed per unit of time

C = E × CI
C — total carbon footprint (gCO2)

CI — carbon intensity factor

Goethe NHR:

• CPU: 2x Intel Xeon Gold 6148

• GPU: AMD MI210

PUE: 1.076

CI (Germany): 380 gCO2/kWh

Test data:

CBM based

STS-like detector with 7 stations

Collision rate: 10 MHz

Ntracks/event: 1000

Memory usage:

• 106 tracks

• 240 byte per track

• ~230 MB

TDP:

CPU: 150 W / 20 cores = 7.5 W per core

          (preliminary)

GPU: measured with rocm-smi

The study of the Kalman Filter track fitter's energy consumption is not only valuable on 
its own but also serves as a crucial step in developing and testing methodology for 
similar studies planned within the FIDIUM framework for the next year.
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Conclusions

• Preparations for online data reconstruction, successful operations on GSI-VIRGO 
computing farm.


• Running event building and reconstruction tasks in Docker/Apptainer containers 
through Slurm, customization and building of containers by scripts.


• Translation CA tracking to GPU is in progress. The problem is technically solvable. 
The first results look very promising.


• Development of methodology and first studies of energy efficiency of reconstruction 
algorithms.

Next steps

• Continuing development of the GPU version of the CA track finder. Bug fixes, 
memory usage optimization, translation of other tracking stages to the GPU.


• Integration of GPU calculations into the online reconstruction chain, testing within of 
the next data challenges.


• Further work on containerization and automation of launching reconstruction tasks on 
computing farms, writing documentation.


• Further research and evaluation of energy efficiency of reconstruction algorithms.
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Backup
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Triplets reconstruction on CPU

for loop by stations

for loop by hits on station

FindSinglets()

FindDoublets()

FitDoublets()

FindTriplets()

FitTriplets()

StoreTriplets()

End of for loop by hits on station

End of for loop by stations

Target Hit

• Creating initial track parameters 
estimation. Fit a straight line through 
the target and the (left) hit taking 
into account magnetic field

Station N Station N+1

Station N

• Search for possible combinations of 
hit pairs

• Fitting forward, adding a second 
(middle) hit to the parameter 
estimation

St N St N+1 St N+2

• Search for possible 3-hit segments

• Fitting forward and backward 
several times to get a final 
parameters estimation of the triplets

• Checking triplets, saving triplets 
whose parameters satisfy specified 
conditions

St N St N+1 St N+2
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Triplets reconstruction on GPU (under development)

Setup and copy input data to GPU

• Hits (*first iteration only)

• Grid

• Geometry info *

• Material info *

• Field info *

GPU kernels:
<MakeSinglets>

<MakeDoublets>

<CompressDoublets>

<FitDoublets>

<MakeTriplets>

<CompressTriplets>

<FitTriplets>

Copy output data to HOST

• Triplets

• Only grid and iteration settings changes from iteration to 
iteration; other data could be copyed once

• Creating singlets: processing one hit per GPU thread

Allocate memory on GPU

Allocate memory on GPU

• Creating doublets: processing one singlet per GPU thread

Allocate memory on GPU
• Allocate memory on GPU for singlets and doublets; 

maxDoubletsPerSinglet = 150

• Allocate memory on GPU for non empty doublets and 
triplets; maxTripletsPerDoublet = 15

• Get rid of “empty” doublets

• Fit doublets, add middle hit to parameters estimation

• Creating triplets: processing one doubler per GPU thread

• Allocate memory on GPU for non empty triplets and triplets; 
maxTripletsPerDoublet = 15

• Get rid of “empty” triplets

• Fit triplets forward and backward several times, check 
parameters; processing one triplet per GPU thread

• Copy results to HOST for furter track calculations
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Runtime mesurements
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