
Status report
Maysam Rahmanpour, Reza Salkhordeh, Frank Mass, André Brinkmann

Aachen– 30th September 2024

OVERVIEW

Current Work

▪ Integration of Lustre HSM and Gekkofs

▪ Providing caching by using ad-hoc file systems

▪ Compatibility of HPC applications and ad-hoc file systems

▪ Analysis of BESIII & LOFAR workloads on MOGON II and MOGON-
NHR

2

HPC APPLICATION ANALYSIS

▪ HPC I/O Analysis

▪ Released at : https://hpcioanalysis.zdv.uni-mainz.de/

▪ Capturing I/O behavior with DARSHAN

▪ Analyzing I/O behavior

▪ Ongoing applications:

BESIII

LOFAR

3

https://hpcioanalysis.zdv.uni-mainz.de/

AD-HOC FILE SYSTEMS

▪ Employing unused node-local storages like SSDs and NVMs

▪ Distributing data and metadata across node-local storage

▪ Parallel read/write on multiple nodes

▪ Hiding slow performance of backend storage

▪ Reducing I/O bottlenecks

4

AD-HOC FILESYSTEMS LIMITATIONS

▪ User responsibilities with ad-hoc file systems

▪ Transferring data to node-local storage

▪ Separated namespace with back-end storage

▪ Risk of data inconsistency

▪ Node-local storage integration into the storage hierarchy is still a
problem

▪ Requiring restart of the job when compute node is restarting

5

EXISTING SOLUTION - LPCC

▪ Offers client cache to user

▪ Employs HSM from Lustre to guarantee consistency

▪ RW mode
▪ Transfers files which accessed exclusively by one node

▪ Read mode
▪ Transfers a version of read-only data to each node

▪ No single namespace

6

LUSTRE HSM INTEGRATION WITH GEKKOFS

▪ Providing a single namespace

▪ Guarantee data consistency

▪ Providing a cache for HPC application with node local storage

▪ Integration of node local storage into the storage hierarchy

▪ Minimize user interaction with transparent design

▪ Automatic data transfer

7

INTEGRATION LUSTRE HSM AND GEKKOFS

8

DESIGN FEATURES

▪ User can define files and directories path for caching

▪ Using interception library to dispatch requests between Lustre and Gekkofs

▪ Using Cargo as a copy tool

▪ Using Lustre HSM to offer single namespace

▪ HSM is storing the status of a file (existing on Lustre, moved to Gekkofs)

▪ HSM triggers a file flush back from Gekkofs to Lustre in the case of conflicting
access

▪ Read-only mode

9

READ PERFORMANCE – HSM INTEGRATED

▪ IOR test

▪ Read each file 10 times

▪ One file per IOR

▪ IOR transfersize = 1 MB

▪ 32 processes per each node

▪ 4 GB per process

▪ Overhead: an extra read from
Lustre and an extra write on NVM

▪ LPCC can not cache shared data
between nodes

Lustre min bandwidth = 1071MiB/s
Lustre max bandwidth =3059 MiB/s
Lustre average bandwidth = 2620 MiB/s

10

WRITE PERFORMANCE- HSM INTEGRATED

▪ IOR test

▪ Read file 10 times

▪ One file per IOR

▪ IOR transfersize = 1 MB

▪ 32 processes per each
node

▪ 4 GB per process

▪ Creates file directly on
NVM

▪ No additional overhead

11

READ PERFORMANCE – HSM INTEGRATED

▪ IOR test

▪ Read file 10 times

▪ One file per process

▪ IOR transfersize = 1 MB

▪ 32 processes per each node

▪ 4 GB file per node

▪ Overhead: an extra read from
Lustre and an extra write on NVM

▪ LPCC can cache unique files per
node

12

WRITE PERFORMANCE- HSM INTEGRATED

▪ IOR test

▪ Read file 10 times

▪ One file per process

▪ IOR transfersize = 1 MB

▪ 32 processes per each node

▪ 4 GB file per node

▪ Creates file directly on NVM

▪ No additional overhead

13

NEK5000

▪ With 50 steps

▪ 16 processes per node

▪ Writes 10 output file

▪ Each file less than 700 MB

▪ Stage-in time less than 1
second

14

NEK5000

▪ Running two Nek5000
applications

▪ Shared stage-in dataset

▪ Each application stage-in a
copy of data to node-local
storage

▪ Writes 10 output file

▪ Reporting the worst runtime
between two applications

▪ Each application separately
working on their dataset

15

BESIII

Done:

▪ Adapting Darshan to trace BESIII

▪ Analyzing I/O behavior in small-scale configurations

Ongoing/todo:

▪ Adapting GekkoFS to run inside BESIII container

▪ Running BESIII with larger scale configurations

▪ Providing I/O analysis and possible improvements

▪ Optimizing performance of BESIII by using GekkoFS

16

LOFAR

Done:

▪ Analysed I/O performance in wsclean stage

▪ Evaluating performance improvement of using local scratch device
over parallel file systems

Ongoing:

▪ Adapting GekkoFS to run LOFAR

▪ Reducing LOFAR runtime by asynchronously staging data

17

FIDIUM 2.0?

▪ Intelligent data staging

▪ File system interference with applications and NVMe over Fabrics
(NVMe-oF)

18

SUMMARY

▪ Adding node-local SSDs to storage hierarchy

▪ Transparent solution for using ad-hoc storage

▪ Analyzing BESIII and LOFAR on MOGON II & MOGON-NHR

▪ Compatibility of HPC Application

▪ Analyzing HPC traces and applications

19

THANK YOU

20

JGU
Maysam Rahmanpour
Reza Salkhordeh
André Brinkmann

mrahmanp@uni@mainz.de
rsalkhor@uni-mainz.de
brinkman@uni-mainz.de

Gitlab-Repo: https://storage.bsc.es/gitlab/hpc/gekkofs/

mailto:mrahmanp@uni@mainz.de
mailto:rsalkhor@uni-mainz.de
mailto:brinkman@uni-mainz.de
https://storage.bsc.es/gitlab/hpc/gekkofs/

