Topics for the workshop

Melissa Almanza, C. Blanch, S. Huang, <u>A. Irles,</u> Carlos Orero,

*AITANA group at IFIC – CSIC/UV

Potential talks

Adrian (or Melissa): talk on the tests done during the last year on the gluing front

- For ECALp and ECALe
- Last tests being done this week: we are gluing few fake sensors to CF to be brought to Krakow
- We are still waiting for the newest CFs. Samples ... to be expected in 1-2 weeks (hopefully on time for Krakow)
- \triangleright Carlos: talk on the optimization of the design of the CSIS integration
 - CSIS: Compact Silicon Sandwich = CF+ glue or tape +kapton + glue dots + silicon + kapton (glue or tape) – 900um to 1000um thick
 - New set of jigs has been designed and are to be produced. The strategy has been revisited and improved.

▷Talk on TB2022 analysis ? We haven't produce more results since last study by Melissa.

▷New topic: using the LUXE ECALS for NPOD ? → next slide

- The ECALe is not used during the e-laser mode... what about using it for NPOD?
- Idea first proposed during the Rehovot meeting in Nicolo's talk Q&A
 - First very raw draft of the idea done during the wine tasting that evening...
- The topic has been studied by KIT and they started optimizing the geometry. The goal is to include it in a LUXE-NPOD paper
 - More detailed studies on basic detector performance are needed
 - Hence: we (IFIC) started working on the topic this summer, together with KIT

Simulation + code

▷ Study based on ILCSoft – LCIO tools (and DD4SIM)

- à la CALICE (which is what I know best... so we can have quick results)
- Code wip https://github.com/airqui/ECALe-Icio
 - Generation of gun particle events
 - Pixelization
 - MIP calibration + Digitization (not completely dummy)
 - Tools for clustering, merging of single particle events, etc...

Generation – based on a realistic ECALe

▷ECALe_LUXE_v1.xml

- ▷15 layers 36x18cm^2 surface
- \triangleright 4.2mm W + CF + readout module with Si.
 - Initially we simulate a single Silicon surface (no pads) → these are created in a second step (Pixelization).
- ▷W distribution is not fixed yet by the SiWECAL group.
 - Note: the single-unit- of W thickness was 2.1mm because these were the plates available during last beam test.

<layer< th=""><th><pre>repeat="15" vis="EcalVis"></pre></th><th></th><th></th></layer<>	<pre>repeat="15" vis="EcalVis"></pre>		
</th <th></th> <th></th> <th>red! , so we remove it here></th>			red! , so we remove it here>
</th <th></th> <th></th> <th>sible"/><!-- Do we need air in front of the detector? how much? for the moment, we ignore it--> 🦷</th>			sible"/> Do we need air in front of the detector? how much? for the moment, we ignore it 🦷
<511	<pre>ce material = "TungstenDens</pre>	1910" thickness = "2*Ecal_WThickness"	vis="TungstenVis" /> 3x2.1mm of tungsten in each layer
<51	<pre>ce material = "CarbonFiber"</pre>	<pre>thickness = "Ecal_CFThickness"</pre>	vis="CFVis"/>
<51	<pre>material = "Cu"</pre>	<pre>thickness = "Ecal_KaptonThickness"</pre>	vis="CuVis" />
<51	😋 material = "Air"	<pre>thickness = "Ecal_GlueThickness_kap"</pre>	vis="AirVis"/>
<51	<pre>ce material = "Si"</pre>	<pre>thickness = "Ecal_WaferThickness500"</pre>	vis="SiVis" sensitive = "yes" />
<\$11	😋 material = "Air"	<pre>thickness = "Ecal_GlueThickness_pcb"</pre>	vis="AirVis"/>
</th <th></th> <th></th> <th>vis="CuVis" /><!-- this part is not existing--></th>			vis="CuVis" /> this part is not existing
<51	<pre>ce material = "PCB"</pre>	<pre>thickness = "Ecal_PcbThickness"</pre>	"vis="PCBVis" />
<51	<pre>ce material = "PCB"</pre>	<pre>thickness = "Ecal_ChipThickness"</pre>	vis="AirVis" />
<\$1	<pre>ce material = "Air"</pre>	<pre>thickness = "Ecal_w_slab_gap500_4p2mm</pre>	W" vis="AirVis"/>
<th>(></th> <th></th> <th></th>	(>		

Energy Resolution / Linearity

 \triangleright Calculated with gun electrons.

Calculated with gun electrons.

Different "classical" (no ML) clustering techniques being used and optimized:

- ARBOR (ParticleFlow) Not trivial to optimize

- NNC – Near Neighbour Clustering

7

Clustering of two photons – reconstruction of ALP decay vertex

- Useless when reconstructing 2 photons (ALPS → Gamma Gamma)
- We still don't know how to optimize it.

>We optimized the NNC and it looks very promising for the two photon reconstruction (direction and core of the shower). For the energy resolution it may need some optimization...

8

Particle Identification studies

▷ For the NPOD, it is required an effective neutron (bkg) – gamma separation

With help of Jesús P. Márquez (ILC PhD candidate)

▷J. is writing his thesis. It has a code that performs training and PID for ECAL+AHCAL at high energies (CALICE studies).

- "Straightforward" translation to our case.
- Samples with NPOD energies and species have been produced. Melissa is producing histograms for the BDT to be run.

9

Plans for the workshop and later

▷This is being discussed and coordinated with KIT → for a paper which is to be submitted this year (preliminary title "Layout optimization for beam dump experiments")

▷Krakow: one presentation with quantitative results – Shan (and/or Melissa?)

▷To be presented too in the SAS meeting (October)

▷ Optimization of detector layout ?

- More layers?
- What about the performance of a more compact calo "ECALp-like"?

