ATLAS Highlights and LHC Computing Status

98th PRC meeting

Oliver Majerský on behalf of the DESY ATLAS group Hamburg, November 5, 2024

HELMHOLTZ

LHC Computing at DESY

Overview of LHC computing at DESY

Available resources & recent major news

National Analysis Facility (NAF)

- HTCondor-based batch farm for small, low latency jobs
- 9k CPU cores
- Local DUST storage (~2.6 PB)

GRID computing — DESY is a Tier-2 WLCG site

- ~20k CPU cores in HH, 3k CPU cores in ZN
- Storage: dCache
 - 20PB of data in HH, ~3PB in ZN
 - Easily accessible on NAF
 - Important for efficient analysis of large datasets and simulations!

Migration to RHEL 9 linux (EL9)

 Previously deployed CentOS 7 (EL7) reached end-ofsupport in June'24

Sustainability efforts

- Why?
 - One of main issues: electricity consumption from nonrenewable energy sources
- DESY member in the Research Facility 2.0 effort (Horizon Europe)
 - Major topics: accelerators and data centers
 - In Germany, only DESY involved in data center topics
- Efforts to improve energy efficiency
 - Upgrade older machines to newer, new architectures (ARM)
 - Utilizing GPUs, FPGAs
 - Cluster shaping based on green energy availability
 - Dynamic power-off of worker nodes, CPU throttling
- Teach users good coding practices and best use of resources
 - Reduce energy overhead by reducing # of failed jobs and thanks to more efficient code
 - Sustainability workshop (<u>4th workshop</u> Oct 7-8) addressing this

RESEARCH FACILITY TOWARDS A MORE ENERGY-EFFICIENT AND SUSTAINABLE PATH

Hydropower

Wind offshore

Changes in German HEP computing landscape

Upcoming challenges for DESY

- Currently several universities operate Tier-2 (T2) sites
- Due to the federal funding → universities moving to National HPC Centers (NHRs) → incentive to retire the university T2s
 - Larger focus on computing power, less on storage
- Consequence: more network and storage load on DESY
 - Also more load on DESY IT person-power

DESY. | Oliver Majerský | ATLAS Highlights & LHC Computing Status | 98th PRC meeting, November 5, 2024

DESY ATLAS group activities

DESY ATLAS group-outing, July 11, 2024

ATLAS group activities

Strong involvement in many areas & several leadership roles

Data analysis

• From SM precision measurements to searches for new phenomena

Physics Objects performance & reconstruction

- Jets, b-jet identification
- Electrons + photons
- Forward protons
- Tracking for current and upgraded detector

Software and Computing

- Computing and software coordination
- Monte Carlo software and production

Detector operation, tools and software

- Semiconductor tracker (SCT) operation & monitoring
- Luminosity measurement

Detector upgrade - Inner Tracker (ITk)

• Design, test and assembly

Detector R&D

- CMOS sensor development (pixels and strips)
- SW development (Allpix Squared, Corryvreckan, Constellation)
- Medical applications

Leadership roles

- Physics (Deputy) coordinator
- ITk (Deputy) Strips project leader
- Computing coordinator
- and more...

ATLAS highlights

With strong involvement of DESY

Since May 1st 2024:

- 17 papers published
- 3 papers submitted
- 6 CONF&PUB notes
- 10 non-ATLAS papers

Legacy measurement of $t\bar{t}H(b\bar{b})$ production using full Run 2 dataset

Combination of searches for nonresonant *HH* production using full Run 2 dataset

arXiv:2407.10904

PRL 133 (2024) 101801

Measurement of the tTH(bb) production in pp collisions at $\sqrt{s} = 13$ TeV using the ATLAS detector at the LHC

arXiv:2407.10904

Measurement of the $t\bar{t}H(b\bar{b})$ production at \sqrt{s} = 13 TeV

- Top-Yukawa coupling $y_t \sim 1$
 - Important role in EW symmetry breaking
- $t\bar{t}H$ and tH only processes directly sensitive to y_t
 - $\sigma_{t\bar{t}H} \sim |y_t|^2$
- $H(b\bar{b})$ largest BR (~57%)
- Large irreducible $t\overline{t} + b\overline{b}$ background
 - Challenging to model different scales in the process
- Re-analysis of the Run 2 dataset with many improvements
- Using data with 1 or 2 leptons in final state
 - One or both tops decay semi-leptonically
- Single-lepton both resolved and boosted

Measurement of the $t\bar{t}H(b\bar{b})$ production at \sqrt{s} = 13 TeV

Improvements compared to previous analysis

- $t\bar{t} + b\bar{b}$ modelling
 - Re-tuned MC and improved set of modeling uncertainties
 - Data-driven corrections
- Improved object reconstruction:
 - Particle flow (PFlow) jets
 - DL1r b-tagging
- Improved signal reconstruction and background discrimination using ML
 - Attention-based transformer NNs

DESY ATLAS group involved in the analysis on multiple fronts
 tt + *bb* modeling studies
 ML reconstruction and classification

• b-tagging

Measurement of the $t\bar{t}H(b\bar{b})$ production at \sqrt{s} = 13 TeV Statistical analysis

- · Profile likelihood fit
 - NN discriminant per region
- 8 major $t\overline{t}$ + jets components fitted from dedicated CRs
 - Much improved control of the bkg
- Fit inclusive $\sigma_{t\bar{t}H}$ & differentially as a function of p_T^H

Measurement of the $t\bar{t}H(b\bar{b})$ production at \sqrt{s} = 13 TeV Results

Inclusive cross-section

 $\sigma_{t\bar{t}H} = 411^{+109}_{-92}$ fb = 411 ± 54(stat.)^{+85}_{-75}(syst.)fb

- Most-precise $\sigma_{t\bar{t}H}$ measurement in a single decay channel
- Massive improvement in observed (expected) significance compared to previous ATLAS result with the same Run 2 dataset!

Expected $2.7\sigma \rightarrow 5.4\sigma$ Observed $1.0\sigma \rightarrow 4.6\sigma$

$\sigma_{t\bar{t}H}$ vs p_T^H limited statistically

Combination of searches for Higgs boson pair production in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

PRL 133 (2024) 101801

Run: 329964 Event: 796155578 2017-07-17 23:58:15 CEST

ATLAS HH searches combination at $\sqrt{s} = 13$ TeV Motivation

- Large amount of research on Higgs boson properties
- Little experimental constraints on Higgs potential shape

$$V(\phi) = \frac{1}{2}\mu^2 \phi^2 + \frac{1}{4}\lambda \phi^4, \qquad \mu^2 < 0$$

- Need to measure $\kappa_{\lambda} = \lambda / \lambda_{SM}$
- At the LHC, HH produced dominantly via gg fusion: $\sigma^{SM}_{ggF} \sim 31 ~{
 m fb}$

DESY. | Oliver Majerský | ATLAS Highlights & LHC Computing Status | 98th PRC meeting, November 5, 2024

DESY. | Oliver Majerský | ATLAS Highlights & LHC Computing Status | 98th PRC meeting, November 5, 2024

ATLAS HH searches combination at $\sqrt{s} = 13$ TeV

Channels combined — covering > 50% of HH decays

- Sensitivity is a compromise between HH branching ratio and background contamination
 - $b\bar{b}\gamma\gamma$ low BR, excellent m_{HH} resolution
 - Possible to study $m_{\!H\!H}$ threshold
 - Best sensitivity to $\kappa_{\!\lambda}$
 - $b\bar{b}b\bar{b}$ highest BR, challenging multijet bkg
 - Best sensitivity to κ_{2V}
 - $b\bar{b}\tau^+\tau^-$ middle ground
 - $b\bar{b}$ + neutrinos (E_T^{miss}) (2.9%)
 - Multileptons (6.5%)

• DESY ATLAS group directly involved in $b\bar{b}b\bar{b}$ and $b\bar{b}\tau^+\tau^-$ channels and combination itself

- Important contributions to object reconstruction performance
 - Jet calibration and b-tagging
 - Electron and photon reconstruction

	bb	ww	ττ	ZZ	ΥY
bb	34%				
ww	25%	4.6%			
ττ	7.3%	2.7%	0.39%		
ZZ	3.1%	1.1%	0.33%	0.069%	
ΥY	0.26%	0.10%	0.028%	0.012%	0.0005%

HH branching ratio

ATLAS HH searches combination at $\sqrt{s} = 13$ TeV Results — HH production

- Most stringent constraints on HH production and κ_{λ}
- Limit on κ_{λ} driven by $b\bar{b}\gamma\gamma$ and $b\bar{b}\tau^{+}\tau^{-}$ channels

DESY. | Oliver Majerský | ATLAS Highlights & LHC Computing Status | 98th PRC meeting, November 5, 2024

ATLAS Detector Upgrade: Inner Tracker (ITk) end-cap

Overview of ITk-related activities

Tracker upgrade for the HL-LHC

- DESY building one full end-cap of the ITk strip
 - Sensor studies
 - Quality control of sensors & hybrids
 - Module development, building and testing
 - Petal core development, production and testing
 - Module loading onto petal cores
 - End of substructure (EoS) card
 - Endcap integration at DESY and CERN
 - CO₂ cooling
 - ITk Strip testbeam
 - and more...

Major technical challenges

- Sensor cracking due to thermal cycling \rightarrow Addition of interposer
- Newly found problems in readout electronics (IpGBT chip issues)

ITk Modules

Pre-production and production preparation

- Production start planned early 2025
 - Produced 63 hybrids & 41 modules as part of pre-production
- Mitigating module cracking
 - Discovered during pre-production
 - Cracking caused by differences in material thermal expansion
 - Addition of interposed layer reduces expansion-induced material stress
 - DESY building the interposed modules
 - First interposed modules finished and under extensive tests
 - Goal: Start interposing hybrids at DESY in Nov
- Module loading
 - Gluing and placement of silicon modules and EoS cards on the petal cores using gantry robot
 - DESY now qualified as a loading site beginning of Oct

Mitigate cracking by Interposing hybrid panel

End of Substructure (EoS) Card

Gateway between on- and off-detector systems – data, communication, power

- DESY is building EoS cards for ITk strips
- Designed at DESY around the CERN-based integrated circuit chips: IpGBT and VTRx+

Production on hold due to major issue with IpGBT chips

- Discovered at DESY
- Impacts every detector at HL-LHC
- Under investigation, waiting for radiation damage studies at CERN

90% of bare PCBs produced, $\frac{2}{3}$ populated, $\frac{1}{3}$ tested & packaged

DESY. | Oliver Majerský | ATLAS Highlights & LHC Computing Status | 98th PRC meeting, November 5, 2024

End-cap system tests and integration

Emulation of full system

- Goal: test up to 12 petals in a realistic detector setting
- Powering, cooling and readout tested
- · Currently one petal inserted and fully tested
- First cosmics data recorded
- Next steps:
 - Further petals ready on site, to be inserted
 - Goal: demonstrate readout of multiple petals and measure noise cross-talk

Petal installation

The skeleton for the DESY end-cap (EC1) is ready at Nikhef
Arrival ~ November 25th 2024

EC1 mounted on the super-frame C

CAD of fully-loaded EC

Summary

- DESY continues it's strong involvement in multiple areas in ATLAS operation and physics
 - Detector operations, performance, software & computing
 - Leading efforts and significant contributions to new physics results with significant impact
- Fully committed team to the delivery of an end-cap to the ITk detector
 - Strong dedication ensures steady progress despite the significant challenges

Backup

Measurement of the $t\bar{t}H(b\bar{b})$ production at \sqrt{s} = 13 TeV

Previous results

- Previous ATLAS & CMS measurements
 - Slight tension w.r.t. SM prediction in $H(b\bar{b})$
 - Good compatibility in other ${\cal H}$ decay channels
 - Good compatibility in other production modes

ATLAS Higgs cross-section measurements Nature 607, 52 (2022)

DESY. | Oliver Majerský | ATLAS Highlights & LHC Computing Status | 98th PRC meeting, November 5, 2024

Measurement of the $t\bar{t}H(b\bar{b})$ production at \sqrt{s} = 13 TeV

Event classification & reconstruction approach

Measurement of the $t\bar{t}H(b\bar{b})$ production at \sqrt{s} = 13 TeV Control regions

ATLAS HH searches combination at $\sqrt{s} = 13$ TeV

Limits on σ_{HH} vs κ_{λ} and κ_{2V}

ATLAS HH searches combination at $\sqrt{s} = 13$ TeV

Limits on κ_{2V}

Limit on κ_{2V} driven by $b\bar{b}b\bar{b}$ channel

DESY. | Oliver Majerský | ATLAS Highlights & LHC Computing Status | 98th PRC meeting, November 5, 2024

Role of DESY in the Shifting German WLCG Environment

Overview of the Changes

Change in future for the LHC computing

- Next to DESY&GSI several German universities operate Tier-2s
- Compute for universities moving to National HPC centers (NHR)
- Due to the federal funding \rightarrow incentive to retire the Uni Tier-2s
- Gradual replacement towards the HL-LHC

How will the new computing look like

Several large German HPC sites will take over the CPU share
Helmholtz sites DESY/KIT will take over the storage shares
Process will start in 2025

- •Annual ramp down of 20% of the University shares
- Increase of the storage pledges taken over by DESY&KIT

German LHC Compute Pledges 2024

Role of DESY in the Shifting German WLCG Environment

Risks and How DESY will Position Itself in the New Scheme

- Connecting between CPUs at HPC sites and storage at DESY not yet finalized → most likely caching at the NHR
- Remote read will put further strain on our limited network connection (2x50Gb/s) → network-limited during DC'24
- DESY willing to help develop and provide a caching solution taking a leading role in an upcoming project call
 - Utilize a dCache-based solution similar to Nordic Tier-1
 - ➔ treat the NHRs as satellite sites providing disk only, becoming a part of the hosting site, e.g. DESY
 - Goal is to make the deployment and configuration easier
 - Adapt existing tape workflows to 'warm-up' the caches at the NHR sites
 - Consider employing a similar idea to support Uni Tier-3s

