Mathias Pierre

Non-Gaussianities in ultra slow-roll inflation

CLUSTER OF EXCELLENCE

QUANTUM UNIVERSE

Non-Gaussianities in ultra slow-roll inflation

Mathias Pierre

Deutsches Elektronen-Synchrotron (DESY)

February 20th 2025 2nd edition of the Quantum Universe Research School – QU day

> Based on [arXiv:2406.02417 & 2412.14106] with G. Ballesteros, J. G. Egea, A. Pérez Rodríguez (IFT-UAM Madrid) & T. Konstandin, J. Rey (DESY - QU)

Fluctuations at CMB scales are Gaussian

Slow-roll inflation predicts inhomogeneities characterized by curvature perturbations $\mathcal{R}\leftrightarrow\zeta$

$$\mathcal{R}_{k}^{\prime\prime} + (3 + \epsilon - 2\eta)\mathcal{R}_{k}^{\prime} + \frac{k^{2}}{a^{2}H^{2}}\mathcal{R}_{k} = 0 \qquad \mathcal{P}_{\mathcal{R}} \equiv \frac{k^{3}}{2\pi^{2}}|\mathcal{R}_{k}|^{2} \sim 10^{-9} \qquad k_{\rm CMB} \simeq 0.05 \; \rm{Mpc}^{-1}$$

 \rightarrow Gaussian variable

$$\sigma^2 = \int \mathrm{d}\log k \,\mathcal{P}_{\mathcal{R}}(k)$$

Fluctuations at CMB scales are Gaussian

Slow-roll inflation predicts inhomogeneities characterized by curvature perturbations $\mathcal{R}\leftrightarrow\zeta$

$$\mathcal{R}_{k}^{\prime\prime} + (3 + \epsilon - 2\eta)\mathcal{R}_{k}^{\prime} + \frac{k^{2}}{a^{2}H^{2}}\mathcal{R}_{k} = 0 \qquad \mathcal{P}_{\mathcal{R}} \equiv \frac{k^{3}}{2\pi^{2}}|\mathcal{R}_{k}|^{2} \sim 10^{-9} \qquad k_{\rm CMB} \simeq 0.05 \ {\rm Mpc}^{-1}$$

 \rightarrow Gaussian variable

$$\sigma^2 = \int \mathrm{d} \log k \, \mathcal{P}_{\mathcal{R}}(k)$$

 \rightarrow Statistics fully determined by two-point function

$$\langle \mathcal{R}_k \rangle = 0 \langle \mathcal{R}_k \mathcal{R}_{k'} \rangle = (2\pi)^3 \delta^{(3)} (\vec{k} + \vec{k'}) |\mathcal{R}_k|^2 \langle \mathcal{R}_{k_1} \mathcal{R}_{k_2} \mathcal{R}_{k_3} \rangle = 0 \langle \mathcal{R}_{k_1} \mathcal{R}_{k_2} \mathcal{R}_{k_3} \mathcal{R}_{k_3} \rangle = \langle \mathcal{R}_{k_1} \mathcal{R}_{k_2} \rangle \langle \mathcal{R}_{k_3} \mathcal{R}_{k_4} \rangle + \text{perms.}$$

Fluctuations at CMB scales are Gaussian

Slow-roll inflation predicts inhomogeneities characterized by curvature perturbations $\mathcal{R}\leftrightarrow\zeta$

$$\mathcal{R}_{k}^{\prime\prime} + (3 + \epsilon - 2\eta)\mathcal{R}_{k}^{\prime} + \frac{k^{2}}{a^{2}H^{2}}\mathcal{R}_{k} = 0 \qquad \mathcal{P}_{\mathcal{R}} \equiv \frac{k^{3}}{2\pi^{2}}|\mathcal{R}_{k}|^{2} \sim 10^{-9} \qquad k_{\rm CMB} \simeq 0.05 \ {\rm Mpc}^{-1}$$

 \rightarrow Gaussian variable

$$\sigma^2 = \int \mathrm{d} \log k \, \mathcal{P}_{\mathcal{R}}(k)$$

 \rightarrow Statistics fully determined by two-point function

$$\langle \mathcal{R}_k \rangle = 0 \langle \mathcal{R}_k \mathcal{R}_{k'} \rangle = (2\pi)^3 \delta^{(3)} (\vec{k} + \vec{k'}) |\mathcal{R}_k|^2 \langle \mathcal{R}_{k_1} \mathcal{R}_{k_2} \mathcal{R}_{k_3} \rangle = 0 \langle \mathcal{R}_{k_1} \mathcal{R}_{k_2} \mathcal{R}_{k_3} \mathcal{R}_{k_3} \rangle = \langle \mathcal{R}_{k_1} \mathcal{R}_{k_2} \rangle \langle \mathcal{R}_{k_3} \mathcal{R}_{k_4} \rangle + \text{perms.}$$

 \rightarrow What about much smaller scales $k \gg k_{\rm CMB}$?

2

Non-Gaussianities in ultra slow-roll inflation

1 Hubble-size overdensities can form Primordial Black Holes (PBH) \rightarrow can explain 100% of dark matter

Challenge: PBH production is sensitive to the tail of the PDF

Goal: estimate the PDF of ζ induced by USR phase

Challenge: PBH production is sensitive to the tail of the PDF

Goal: estimate the PDF of ζ induced by USR phase

Spoiler: it might not be a Gaussian

Non-linearities & non-Gaussianities

Perturbations beyond leading order

 \rightarrow to go **beyond** linear order, consider **ADM** parametrization of the metric

$$\mathrm{d}s^2 = -\mathcal{N}^2 \,\mathrm{d}t^2 + h_{ij} \big(\,\mathrm{d}x^i + \mathcal{N}^i \,\mathrm{d}t\big) \big(\,\mathrm{d}x^j + \mathcal{N}^j \,\mathrm{d}t\big),$$

Express the field as $\Phi(t,oldsymbol{x})=\phi(t)+\delta\phi(t,oldsymbol{x})$

+ 2 gauges
$$\delta \phi(t, m{x}) = 0, \quad h_{ij} = a^2 e^{2\zeta} \delta_{ij}$$
 $\zeta(t, m{x}) = 0, \quad h_{ij} = a^2 \delta_{ij}$

Perform gradient expansion, on super-horizon scales one finds a non-linear relation [Lyth, Malik, Sasaki '05] $\zeta = \delta N = N [\{\phi(N_i) + \delta \phi, \pi(N_i) + \delta \pi\} \rightarrow \phi(N_{end})] - N [\{\phi(N_i), \pi(N_i)\} \rightarrow \phi(N_{end})] \qquad \pi \equiv \phi'$

 \rightarrow Compare **e-folds** of expansion between **perturbed** and **unpertubed** trajectories

 \rightarrow Can be computed by simply solving background EOM

Should be applied at N_i when relevant modes (at linear order) are frozen $\dot{\zeta} = 0$ \rightarrow Perturbed quantities reduce to a single DOF $\delta \pi = (\pi'/\pi)|_{N_i} \delta \phi$

Perturbations beyond leading order

 \rightarrow During CR, EOM for the field becomes a linear ODE $\phi(N) \sim e^{-\eta_{\rm CR}N}$

Perturbations beyond leading order

1 Take N_i (\bigstar) on the constant-roll (CR) attractor ${
m d}\pi/{
m d}\phi\simeq-\eta_{
m CR}$

 \rightarrow During CR, EOM for the field becomes a linear ODE $\phi(N) \sim e^{-\eta_{\rm CR}N}$

$$ightarrow$$
 Deduce $\delta \phi = \phi(N_i) \left(e^{\eta_{\rm CR} \delta N} - 1 \right)$

2 Extract full non-linear relation

$$\eta_{\rm CR}\zeta = \log\left(1 - \eta_{\rm CR}H\frac{\delta\phi}{\dot{\phi}}\right)$$

3

No information about **statistics of** $\delta \phi$!

$$\rightarrow$$
 If one assumes $\delta \phi$ Gaussian $\sigma_{\delta \phi}^2 = \int \mathcal{P}_{\delta \phi}(k) d\log k$

$$P(\zeta) = P(\delta\phi) \left| \frac{\mathrm{d}\delta\phi}{\mathrm{d}\zeta} \right| \xrightarrow{\text{tail}} P(\zeta) \sim e^{\eta_{\mathrm{CR}}\zeta}$$

The stochastic approach

- \rightarrow Gaussian white noise with variance $\operatorname{Var}[\xi_{\phi}(N)] = \mathcal{P}_{\delta\phi}(k = \sigma a(N)H(N))$
- \rightarrow Coarse graining parameter $\sigma \lesssim 0.1$: delay from horizon crossing $\dot{\zeta} \simeq 0$ classicalization $\rightarrow \xi_{\pi} = (\pi'/\pi)_N \xi_{\phi}$ [Ballesteros et al. '20]

2 Use the δN formalim with stochastic approach [Ezquiaga, Garcia-Bellido, Vennin '20]

- \rightarrow Solve stochastic EOMs, determine δN until end of inflation
- $\rightarrow~ {\rm Extract}~ {\rm PDF}$ for curvature perturbation $\zeta \leftrightarrow \delta N$

The classical vs stochastic approaches

 \rightarrow **Classical** kick along (late-time) **CR** attractor

 \rightarrow Stochastic kicks along local attractor

The classical vs stochastic approaches

- \rightarrow Both approaches agree to an **excellent** degree
- → Tails are non-Gaussian as a consequence of non-linearities

Intrinsic non-Gaussianities

The bispectrum

Expand
$$\zeta = \varphi - \frac{\eta_{\text{CR}}}{2} \varphi^2 + \frac{\eta_{\text{CR}}^2}{3} \varphi^3 + \cdots$$

$$\varphi \equiv -(H/\dot{\phi})\delta\phi$$

2 **Deviations** to Gaussianity appear in the **bispectrum**:

$$egin{aligned} &\hat{\zeta}_{m{q}}\hat{\zeta}_{m{k}}
angle_c &= B(m{p},m{q},m{k})(2\pi)^3\delta^{(3)}(m{p}+m{q}+m{k}) \ &= \left[\mathcal{I}(m{p},m{q},m{k}) + \mathcal{N}(m{p},m{q},m{k})
ight](2\pi)^3\delta^{(3)}(m{p}+m{q}+m{k}) \,. \end{aligned}$$

Intrinsic

 $\langle \hat{\varphi}_{p} \hat{\varphi}_{q} \hat{\varphi}_{k} \rangle_{c}$ \rightarrow vanishes in **absence** of interactions e.g. for Gaussian φ

 $\langle \zeta_1$

Non-linearities

$$-\frac{\eta_{\rm CR}}{2} \left(\int \frac{\mathrm{d}^3 \ell}{(2\pi)^3} \langle \hat{\varphi}_{\boldsymbol{k}-\boldsymbol{\ell}} \hat{\varphi}_{\boldsymbol{\ell}} \hat{\varphi}_{\boldsymbol{q}} \hat{\varphi}_{\boldsymbol{p}} \rangle_c + \mathrm{perm.} \right)$$

 \rightarrow gauge transformation, local type

 \rightarrow in absence of interactions, **non-vanishing** $\mathcal{N}(\boldsymbol{p}, \boldsymbol{q}, \boldsymbol{k}) = -\eta_{\mathrm{CR}} \left(|\varphi_q|^2 |\varphi_k|^2 + |\varphi_p|^2 |\varphi_k|^2 + |\varphi_q|^2 |\varphi_p|^2 \right)$

 \rightarrow decomposition **not so obvious** at higher order in interaction Hamiltonian

Computing intrinsic contribution to bispectrum

In cosmology we are interested in the time-evolution of correlation functions: the in-in formalism

$$\langle \hat{\mathcal{O}}(t) \rangle = \langle 0 | \hat{F}^{-1}(t, -\infty_{+}) \hat{\mathcal{O}}_{I}(t) \hat{F}(t, -\infty_{-}) | 0 \rangle \qquad \hat{F}(t, t_{0}) = T \exp\left(-i \int_{t_{0}}^{t} dt' \hat{H}_{I}(t')\right)$$

$$\langle \hat{\mathcal{O}}(t) \rangle = \langle 0 | \hat{\mathcal{O}}_{I}(t) | 0 \rangle + 2 \operatorname{Im} \left\{ \int_{-\infty_{-}}^{t} dt' \langle 0 | \hat{\mathcal{O}}_{I}(t) \hat{H}_{I}(t') | 0 \rangle \right\} + \mathcal{O}\left(\hat{H}_{I}^{2}\right) .$$

$$\textbf{To compute} \quad \langle \hat{\varphi}_{p} \hat{\varphi}_{q} \hat{\varphi}_{k} \rangle_{c} \text{, expand the action at cubic order in } \begin{bmatrix} \varphi \equiv -(H/\dot{\phi})\delta\phi \\ [Maldacena '02] \end{bmatrix}$$

$$\mathcal{L}_{I}^{(3)} = -c_{0} a^{3} H^{2} \varphi^{3} - c_{1} a^{3} \varphi \dot{\varphi}^{2} - c_{2} a^{3} \dot{\varphi} \partial_{i} \varphi \partial^{i} \left(\partial^{-2} \dot{\varphi}\right) - c_{3} a \varphi \left(\partial_{i} \varphi\right)^{2} - c_{4} a^{3} \varphi \left(\partial_{i} \partial_{j} \left(\partial^{-2} \dot{\varphi}\right)\right)^{2} + \frac{d}{dt} \left(c_{5} a^{3} H \varphi^{3}\right),$$

$$\textbf{Most relevant term is } \begin{array}{c} c_{0} = \frac{1}{3} \epsilon \eta \epsilon_{3} (\epsilon + 2\eta - \epsilon_{3} - \epsilon_{4} - 3) \sim \partial_{\phi}^{3} V \\ \textbf{Ballesteros, Gambin 2404.07196} \end{array} \quad \mathcal{L}(p, q, k) = 3! \int_{-\infty_{-}}^{t} dt' a(t')^{3} c_{0}(t') H(t')^{2} 2 \operatorname{Im} \left[\varphi_{p}(t) \varphi_{p}^{*}(t') \varphi_{q}(t) \varphi_{q}^{*}(t') \varphi_{k}(t) \varphi_{k}^{*}(t') \right],$$

$$\textbf{solution to the free mode-equation } \varphi_{k}^{\prime\prime} + (3 + \epsilon - 2\eta) \varphi_{k}^{\prime} + \left(\frac{k}{aH}\right)^{2} \varphi_{k} = 0,$$

Intrinsic and non-linear contributions to bispectrum

Non-Gaussianities in ultra slow-roll inflation

Intrinsic and non-linear contributions to bispectrum

 \rightarrow Intrinsic non-Gaussianities **comparable** to non-linear contribution except for $\delta \sim 0.4$

The lattice idea

 \rightarrow Goal: extract PDF of a stochastic variable, built on the lattice, that reproduce the statistical properties from *in-in* evaluated at the end of inflation

$$\langle \tilde{\varphi}_{\boldsymbol{k}_{1}} \tilde{\varphi}_{\boldsymbol{k}_{2}} \cdots \tilde{\varphi}_{\boldsymbol{k}_{n}} \rangle_{c} = \langle \hat{\varphi}_{\boldsymbol{k}_{1}} \hat{\varphi}_{\boldsymbol{k}_{2}} \cdots \hat{\varphi}_{\boldsymbol{k}_{n}} \rangle_{c}$$
stochastic variable on the lattice quantum field, input from *in-in*

$$Assume \quad \tilde{\varphi}_{\boldsymbol{k}} = \sum_{n} \tilde{\varphi}_{\boldsymbol{k}}^{(n)} : \text{ expansion in powers of } \tilde{\varphi}_{\boldsymbol{k}}^{(n)} \sim \mathcal{G}_{n} |\varphi_{\boldsymbol{k}}|^{-(n-1)} \sim (H/M_{P})^{n-1}$$

$$\tilde{\varphi}_{\boldsymbol{k}}^{(n)} \equiv \frac{1}{n!} \int \frac{\mathrm{d}^{3}k_{1}}{(2\pi)^{3}} \cdots \frac{\mathrm{d}^{3}k_{n-1}}{(2\pi)^{3}} \mathcal{G}_{n}(\boldsymbol{k}, -\boldsymbol{k}_{1}, \cdots, -\boldsymbol{k}_{n-1}) \underbrace{\tilde{\psi}_{\boldsymbol{k}_{1}} \cdots \tilde{\psi}_{\boldsymbol{k}_{n-1}}}_{|\varphi_{\boldsymbol{k}_{1}}|} (2\pi)^{3} \delta^{(3)}(-\boldsymbol{k} + \boldsymbol{k}_{1} + \cdots + \boldsymbol{k}_{n-1})$$

$$Determine \quad \mathcal{G}_{n} \text{ order by order} \qquad \textbf{3} \text{ Sample random variable } \tilde{\psi}(\boldsymbol{x}) \sim \mathcal{N}(0, 1)$$

4 Use non-linear relation $arphi
ightarrow \zeta$ 5 Extract PDF for $\tilde{\zeta}$

The lattice idea

- 1
- Generalize intrinsic correlators at higher orders

 $\langle \hat{\varphi}_{\boldsymbol{k}_1} \cdots \hat{\varphi}_{\boldsymbol{k}_n} \rangle_c \equiv \mathcal{I}_n(\boldsymbol{k}_1, \cdots, \boldsymbol{k}_n)(2\pi)^3 \delta^3(\boldsymbol{k}_1 + \cdots + \boldsymbol{k}_n).$

2 Use matching condition to get

•
$$\mathcal{G}_2(\boldsymbol{k},\boldsymbol{p}) = 2|\varphi_k||\varphi_p|$$
 • $\mathcal{G}_3(\boldsymbol{k},\boldsymbol{p},\boldsymbol{q}) = \mathcal{I}_3(\boldsymbol{k},\boldsymbol{p},\boldsymbol{q}), =$

•
$$\mathcal{G}_4(\boldsymbol{k}, \boldsymbol{p}, \boldsymbol{q}, \boldsymbol{\ell}) = \mathcal{I}_4(\boldsymbol{k}, \boldsymbol{p}, \boldsymbol{q}, \boldsymbol{\ell}) - \frac{4}{9} \left[\frac{\mathcal{I}_3(\boldsymbol{k}, -\boldsymbol{p} - \boldsymbol{k}, \boldsymbol{p}) \mathcal{I}_3(\boldsymbol{q}, -\boldsymbol{\ell} - \boldsymbol{q}, \boldsymbol{\ell})}{|\varphi_{|\boldsymbol{p} + \boldsymbol{k}|}|^2} + (\boldsymbol{p} \to \boldsymbol{q}, \boldsymbol{\ell}) \right].$$

$$= \underbrace{} + \underbrace{} + \underbrace{} + \underbrace{} + (t, u)$$

۶

 $\begin{array}{c} \mathbf{PDF} \\ P(\tilde{\zeta}) \end{array}$

The lattice results

- 1 Large perturbations generated during USR inflation are relevant for **PBH** and **GW**
- 2 Non-Gaussian tails in the PDF of curvature perturbations are a consequence of **non-linearities** and **intrinsic** inflaton-fluctuations non-Gaussianities

Thank you for your attention

Back up slides

Consistency check

Maldacena's consistency relation

Mathias Pierre

The reconstructed potential

Figure 2: Left panel: Potentials obtained by varying δ between 0.1 (green) and 0.9 (blue), for $\Delta N = 2$. Right panel: Potentials obtained by varying ΔN between 1.1 (green) and 2 (blue), for $\delta = 0.5$. We have set $\eta_{\text{USR}} = 4$ and $\eta_{\text{CR}} = -1$ for both panels.