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Geometric Structures

What do we mean by a geometric structure?

Let (Mn, g) be an n-dimensional smooth Riemannian manifold  for all

p ∈ M, we have an n-dimensional real vector space TpM equipped with a

positive-definite inner product gp, and these “vary smoothly” with p ∈ M.

Credit:Wikipedia

Figure 1: Tangent space at a point in S2
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Geometric structures

An important question is the following:

What other “natural structures” can we put on Riemannian manifolds?

i.e., we would like to attach such a “natural structure” to each tangent space

TpM, for all p ∈ M, in a “smoothly varying” way.

Some examples:

1) Orientation on a vector space (manifold)  0 6= µ ∈ Γ(Λn(T ∗M)),

SO(n) ≤ O(n) preserves µ.

2) Hermitian structure on a vector space (manifold)

n = 2m, J ∈ Γ(End(TM)), J2 = −Id, J compatible with g ,

U(m) = SO(2m) ∩GL(m,C) preserves J.
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Berger’s list of possible holonomy groups

In 1955, Berger classified all possible holonomy groups.
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n SO(n) Generic Riemannian manifold
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What is a geometric flow?

Let M be a manifold. Given a geometric object u associated with M, we can

ask for the ”best” such object.

Examples:

• Riemannian metric g : ”Best” could mean Ricci-flat: Ric(g) = 0.

• Immersion i : L→ (M, g): ”Best” could mean minimal: H(i) = 0.

The notion of ”best” is usually described by the object u satisfying some

geometric nonlinear PDE (often elliptic) of the form P(u) = 0. Usually, the

PDE is (tried to be) modeled on the heat equation.

If we start with some u0 that doesn’t satisfy our ”best” condition, we can try

to evolve it in time as u(t) in some geometric fashion, to hopefully improve it

to be ”closer to best”. This is a geometric flow:

∂

∂t
u(t) = P(u(t)), u(0) = u0.

Ricci Flow: ∂
∂t
g(t) = −2Ric(g(t)),

Mean Curvature Flow: ∂
∂t
i(t) = −H(i(t)).
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Analysis of Geometric Flows

Given a geometric flow ∂tu(t) = P(u(t)) with u(0) = u0, we ask:

Q 1. Does it have short time existence and uniqueness? That is, does there

exist an ε > 0 and a unique solution on [0, ε)?

Q 2. Does it have long time existence? That is, can we take ε =∞?

Usually not. Geometric flows develop singularities in finite-time. Something

bad happens at the ”singular time” τ .

Q 3. If it has LTE, does it converge? That is, does limt→∞ u(t) exist?

Some flows exhibit stability: If we start ”close enough” to a fixed point, then

we have LTE/convergence to the fixed point modulo diffeomorhisms.
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Ricci flow of metrics

Ricci flow of a family of metrics g(t), ∂tg(t) = −2 Ric(g(t))  most

successful and well-studied.

Introduced by Richard Hamilton in 1982 as a way to tackle the Poincaré

conjecture

Figure 2: Hamilton

Poincaré conjecture (1903)

Every three-dimensional topological manifold which is closed, connected,

and has trivial fundamental group is homeomorphic to the three-dimensional

sphere.
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RF-contd.

Figure 3: Shrinking S2 under Ricci flow

Figure 4: Static flat T2 under Ricci flow

Figure 5: Expanding T2#T2 under Ricci flow
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RF-contd.

Figure 6: Product S2 × R under Ricci flow

Figure 7: S3

1

1credit: Prof. Peter Topping
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Figure 8: Neck pinch

credit:Prof .PeterTopping
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Analysis for the RF

Recall the questions which we asked for any geometric flow. What is the

situation for the Ricci flow?

• Short time existence and uniqueness of solutions - deep work of Hamilton,

1982 and later by DeTurck, 1984.

long time existence and/or singularities - vary case by case by pretty well

understood in dimensions 2, 3.

Convergence and if yes, to what?- very complex.

Theorem (Perelman, 2003)

The Poincaré conjecture is true and the Ricci flow (with surgery!) on any

connected, compact, simply connected 3-manifold converges to the round

sphere S3.
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Spin(7)-case

Definition

A Spin(7)-structure on an 8-manifold is a special 4-form Φ which induces a

Riemannian metric, orientation and also gives a spin structure.

Definition

Let (M8,Φ) be a manifold with a Spin(7)-structure Φ and let ∇ be the Levi-

Civita connection of gΦ. We call (M,Φ) a Spin(7)-manifold if ∇Φ = 0. This

is a nonlinear equation on Φ. ∇Φ is interpreted as the torsion T of the

Spin(7)-structure

Spin(7)-manifolds, i.e., those having torsion-free Spin(7)-structure Φ are

always Ricci-flat and have special holonomy contained in the Lie group

Spin(7)⊂ SO(8). Also admit parallel spinors  important in physics.
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Spin(7)-flows

We introduced a flow of Spin(7)-structures which is like the Ricci flow but

incorporates the torsion T ∼= ∇Φ as well.

It is the negative gradient flow of the functional Φ 7→ 1
2

∫
M
|∇Φ|2gΦ

volΦ.

Theorem (D., ’24)

The flow of Spin(7)-structures mentioned above has short-time existence

and uniqueness of solutions on any compact (M8,Φ0).

Thus, we answer Q 1. in the affirmative and the study of other problems

related to the flow is work in progress.
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Thank you for your attention.
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