To the Higgs and beyond

Quantum Universe Days 17 – 19 February 2025

Outline

> Part 1: The vacuum is not empty

- The Higgs boson in the Standard Model
- Characterization of the Higgs boson since its discovery

> Part 2: What is the fingerprint of the vacuum?

- Unravelling the Higgs potential
- Higgs boson pair production
- Extra: Triple Higgs production
- Outlook: the future of the LHC and beyond

> Part 3: Is there even more to the vacuum?

- Extended Higgs sectors
- Extra: news from the ttbar threshold
- Long-lived particles and the Higgs

h

h

Η

Α

h

 H^+

H-

Outline

> Part 1: The vacuum is not empty

- The Higgs boson in the Standard Model
- Characterization of the Higgs boson since its discovery

> Part 2: What is the fingerprint of the vacuum?

- Unravelling the Higgs potential
- Higgs boson pair production
- Extra: Triple Higgs production
- Outlook: the future of the LHC and beyond
- > Part 3: Is there even more to the vacuum?
 - Extended Higgs sectors
 - Extra: news from the ttbar threshold
 - Long-lived particles and the Higgs

h

h

Η

Α

h

 H^+

H-

Why look for more Higgs bosons?

- > Supersymmetry: predicts a second Higgs doublet
- > Axion DM models: require at least one more Higgs doublet or Higgs triplet
- > Additional sources of CP violation in the Higgs sector: possible with another Higgs doublet

Constraints from existing measurements (1)

- > Higgs sector cannot be extended arbitrarily...
- > ... need to ensure that BSM theory predictions do not contradict existing measurements
- > ρ parameter constraints
 - ρ depends on structure of Higgs sector
 - $\rho = 1$ in SM
 - Value confirmed in measurements
 - BSM model with multiple Higgs doublets:
 - For example: SU(2) doublets with Y = ± 1
 - Yields ρ = 1!

$$\rho = \frac{M_W^2}{M_Z^2 \cos^2 \theta_W}$$

$$\rho = \frac{\sum_{i=1}^{n} \left[I_i (I_i + 1) - \frac{1}{4} Y_i^2 \right] v_i}{\sum_{i=1}^{n} \frac{1}{2} Y_i^2 v_i}$$

$$I(I+1) = \frac{3}{4}Y^2$$

Constraints from existing measurements (2)

- > Higgs sector cannot be extended arbitrarily...
- > ... need to ensure that BSM theory predictions do not contradict existing measurements
- > ρ parameter constraints
- > Constraints flavour changing neutral currents
 - FCNCs are absent in the SM at tree-level
 - Never observed in precision measurements
 - Extended Higgs sectors must not introduce (significant) FCNCs

Constraints from existing measurements (3)

- > Higgs sector cannot be extended arbitrarily...
- > ... need to ensure that BSM theory predictions do not contradict existing measurements
- > ρ parameter constraints
- > Constraints flavour changing neutral currents
- > Unitarity constraints
 - Amplitudes for self-scattering of longitudinal vector bosons must not violate unitarity
 - SM Higgs sector regularises these scattering amplitudes

$$V_L V_L \rightarrow V_L V_L$$

Two-Higgs-Doublet Models (2HDMs)

- > Two complex scalar SU(2) doublets with Y = +1
- > Focus on CP conserving case with softly broken Z² symmetry
- > Most general scalar potential

More details in this nice lecture by M. Muhlleitner [link]

$$V = m_{11}^{2} \Phi_{1}^{\dagger} \Phi_{1} + m_{22}^{2} \Phi_{2}^{\dagger} \Phi_{2} - m_{12}^{2} \left(\Phi_{1}^{\dagger} \Phi_{2} + \Phi_{2}^{\dagger} \Phi_{1} \right) + \frac{\lambda_{1}}{2} \left(\Phi_{1}^{\dagger} \Phi_{1} \right)^{2} + \frac{\lambda_{2}}{2} \left(\Phi_{2}^{\dagger} \Phi_{2} \right)^{2} + \lambda_{3} \Phi_{1}^{\dagger} \Phi_{1} \Phi_{2}^{\dagger} \Phi_{2} + \lambda_{4} \Phi_{1}^{\dagger} \Phi_{2} \Phi_{2}^{\dagger} \Phi_{1} + \frac{\lambda_{5}}{2} \left[\left(\Phi_{1}^{\dagger} \Phi_{2} \right)^{2} + \left(\Phi_{2}^{\dagger} \Phi_{1} \right)^{2} \right] ,$$

Two-Higgs-Doublet Models (2HDMs)

- > Two complex scalar SU(2) doublets with Y = +1
- > Focus on CP conserving case with softly broken Z² symmetry
- > Most general scalar potential

More details in this nice lecture by M. Muhlleitner [link]

$$V = m_{11}^{2} \Phi_{1}^{\dagger} \Phi_{1} + m_{22}^{2} \Phi_{2}^{\dagger} \Phi_{2} - m_{12}^{2} \left(\Phi_{1}^{\dagger} \Phi_{2} + \Phi_{2}^{\dagger} \Phi_{1} \right) + \frac{\lambda_{1}}{2} \left(\Phi_{1}^{\dagger} \Phi_{1} \right)^{2} + \frac{\lambda_{2}}{2} \left(\Phi_{2}^{\dagger} \Phi_{2} \right)^{2} + \lambda_{3} \Phi_{1}^{\dagger} \Phi_{1} \Phi_{2}^{\dagger} \Phi_{2} + \lambda_{4} \Phi_{1}^{\dagger} \Phi_{2} \Phi_{2}^{\dagger} \Phi_{1} + \frac{\lambda_{5}}{2} \left[\left(\Phi_{1}^{\dagger} \Phi_{2} \right)^{2} + \left(\Phi_{2}^{\dagger} \Phi_{1} \right)^{2} \right] ,$$

- > 8 real parameters: m_{11} , m_{22} , m_{12} , λ_1 , λ_2 , λ_3 , λ_4 , λ_5
- > 2 VEVs:

$$\langle \Phi_1 \rangle = \begin{pmatrix} 0 \\ \frac{v_1}{\sqrt{2}} \end{pmatrix}$$
 and $\langle \Phi_2 \rangle = \begin{pmatrix} 0 \\ \frac{v_2}{\sqrt{2}} \end{pmatrix}$

2HDM: particle content

- > 8 real fields
- > 3 fields provide longitudinal degrees of freedom for W, Z
- > 5 Higgs fields after EWSB:

2 scalars, 1 pseudoscalar, 2 charged

$$\Phi_a = \begin{pmatrix} \phi_a^+ \\ \frac{v_a + \rho_a + i\eta_a}{\sqrt{2}} \end{pmatrix}, \qquad a = 1, 2$$

2HDM: parameters

- > 8 real parameters: m_{11} , m_{22} , m_{12} , λ_1 , λ_2 , λ_3 , λ_4 , λ_5
- > Re-parameterise potential in terms of 8 "physical" parameters:

2HDM: parameters

- Constraints from precision measurements of 125 GeV boson
 - Couplings to fermions and limits on invisible decays
 - See Monday's lecture
- > Alignment limit $\cos(\beta \alpha) = 0$ favoured
 - Assume lighter scalar h is the 125 GeV boson couplings

h = HSM

2HDM: Yukawa structure

- > No FCNC \rightarrow each type of fermion couples to only one of the doublets (Z² symmetry)
- > Four Yukawa coupling scenarios:

Model	Up quarks	Down quarks	Leptons	
Type I	Φ_2	Φ_2	Φ_2	SUSY models
Type II	Φ_2	Φ_1	Φ_1	
Lepton-specific	Φ_2	Φ_2	Φ_1	
Flipped	Φ_2	Φ_1	Φ_2	

- > Type-II 2HDM:
 - Up quark coupling ~ $1/\tan\beta$
 - Down quark / lepton coupling: tanβ

Searching for extra neutral Higgs bosons

> Dominant production: loop induced gluon fusion

Searching for extra neutral Higgs bosons

- > Dominant production: loop induced gluon fusion
- > Decay modes depend on: m_{A/H}, tanβ

Searching for extra neutral Higgs bosons

- Dominant production: loop induced gluon fusion
- Decay modes depend on: $m_{A/H}$, tan β

 $BR(H \rightarrow XX)$

Example: hMSSM

- > Minimal supersymmetric model
 - Higgs-sector: type-II 2HDM
 - SUSY particles assumed to be heavy
- > Only 2 free parameters: m_A , tan β

Main uncovered region at high m_A , low tan β :

Preferential A/H coupling to ttbar!

- > Why is the search in the high-mass, low-tan β region so complicated?
- > Signal: loop induced resonant production of heavy scalar H or pseudoscalar A from gluons
 - Similar to SM Higgs production but $m_{A/H} > 2*m_{top}$

- > Why is the search in the high-mass, low-tan β region so complicated?
- > Signal: loop induced resonant production of heavy scalar H or pseudoscalar A from gluons
 - Similar to SM Higgs production but $m_{A/H} > 2*m_{top}$
- > Main, irreducible background: top quark pair production via the strong force

80% gg-initiated 20% qq-initiated

- > Why is the search in the high-mass, low-tan β region so complicated?
- > Signal: loop induced resonant production of heavy scalar H or pseudoscalar A from gluons
 - Similar to SM Higgs production but $m_{A/H} > 2*m_{top}$
- > Main, irreducible background: top quark pair production via the strong force (mostly from gluons)

- > Many challenges compared to bump hunts
 - Interference pattern highly model dependent \rightarrow many simulations needed!

- > Many challenges compared to bump hunts
 - Interference pattern highly model dependent \rightarrow many simulations needed!
 - Very complex patterns, especially if there is more than one new particle

- > Many challenges compared to bump hunts
 - Interference pattern highly model dependent \rightarrow many simulations needed!
 - Very complex patterns, especially if there is more than one new particle
 - Detector effects "wash out" details of pattern

- > Many challenges compared to bump hunts
 - Interference pattern highly model dependent \rightarrow many simulations needed!
 - Very complex patterns, especially if there is more than one new particle
 - Detector effects "wash out" details of pattern
 - Risk to miss narrow patterns
 - Peak and dip in the same bin cancel out
 - Statistical interpretation

. . .

The advantage: interference

- > Strong model dependence of interference pattern allows to characterise potential new particle(s)
 - \rightarrow Fingerprint that carries information about particle properties

ATLAS result: JHEP 08 (2024) 013

> Two orthogonal sets of regions: 1L (e or μ) + 2L (e⁺e⁻, e μ , $\mu^+\mu^-$)

JHEP 08 (2024) 013

b-jet close to e/µ Neutrino 2L

- Two orthogonal sets of regions: 1L (e or μ) + 2L (e⁺e⁻, e μ , $\mu^+\mu^-$) >
- **2L channel**: m_{llbb} as proxy for m_{ttbar} >

JHEP 08 (2024) 013

- > Two orthogonal sets of regions: 1L (e or μ) + 2L (e⁺e⁻, e μ , $\mu^+\mu^-$)
- > **2L channel**: m_{llbb} as proxy for m_{ttbar}
- > **1L channel**: reconstruct full ttbar system, m_{ttbar}
 - Resolved: small-*R* jets assigned via χ^2 algorithm, ==1 or $\geq 2 b$ -tagged

JHEP 08 (2024) 013

- > Two orthogonal sets of regions: 1L (e or μ) + 2L (e⁺e⁻, e μ , $\mu^+\mu^-$)
- > **2L channel**: m_{llbb} as proxy for m_{ttbar}
- > 1L channel: reconstruct full ttbar system, m_{ttbar}
 - Resolved: small-*R* jets assigned via χ^2 algorithm, ==1 or $\geq 2 b$ -tagged
 - Merged: large-*R* jet to reconstruct hadronic top-quark decay

JHEP 08 (2024) 013

 $t \rightarrow Wb$

It's all about spins!

- > Signal: s-channel production in pure spin-singlet state (isotropy!)
- > Background: a mixture of production modes and spin states
- > Angular variables to distinguish between signal and background

It's all about spins!

- > Signal: s-channel production in pure spin-singlet state (isotropy!)
- > Background: a mixture of production modes and spin states
- > Angular variables to distinguish between signal and background

JHEP 08 (2024) 013

Page 34

It's all about spins!

DESY.

- Signal: s-channel production in pure spin-singlet state (isotropy!) >
- Background: a mixture of production modes and spin states >
- Angular variables to distinguish between signal and background >

JHEP 08 (2024) 013

Azimuthal angle between leptons from tops \rightarrow additional discrimination between A and H!

Background processes

> Dominant and irreducible background from SM ttbar production

16 signal regions after angular binning

(regions shown here not split into angular bins for simplicity)

Background processes

- > Dominant and irreducible background from SM ttbar production
 - Correct NLO Powheg+Pythia MC to NNLO-QCD+NLO-EW
 - Via iterative reweighting in m(ttbar), $p_T(t)$, $p_T(tbar)$

16 signal regions after angular binning

(regions shown here not split into angular bins for simplicity)

Statistical analysis without interference

> Simple likelihood parameterisation in terms of signal strength

 $\mu \cdot S + B$

- > Linear dependence on POI = μ
- > Standard LHC profile likelihood test statistic

 $\lambda(\mu) = \frac{L(\mu, \hat{\hat{\boldsymbol{\theta}}}(\mu))}{L(\hat{\mu}, \hat{\boldsymbol{\theta}})}$

> p-value scan to determine upper limits on μ

Statistical analysis with interference

> Extend likelihood to include interference term

$$\mu \cdot S + \sqrt{\mu} \cdot I + B = (\mu - \sqrt{\mu}) \cdot S + \sqrt{\mu} \cdot (S + I) + B$$

- > Quadratic dependence on POI = $\sqrt{\mu}$
 - Interference shape changes with POI

JHEP 08 (2024) 013

Statistical analysis with interference

> Extend likelihood to include interference term

$$\mu \cdot S + \sqrt{\mu} \cdot I + B = (\mu - \sqrt{\mu}) \cdot S + \sqrt{\mu} \cdot (S + I) + B$$

- > Quadratic dependence on POI = $\sqrt{\mu}$
 - Interference shape changes with POI
 - Local minima can appear in CLs scan
 - Upper limits not well defined!

JHEP 08 (2024) 013

Page 40

Search stage

JHEP 08 (2024) 013

2L

- Tested agreement between data and S+I+B hypotheses with masses [400,1400] GeV and widths [1,40]% >
- Most significant deviation from SM-only (2.3 σ local): $m_A = 800$ GeV, $\Gamma_A/m_A = 10\%$ and $\sqrt{\mu} = 4.0$ >

Events / 50 GeV

1L Resolved 2b

Constraints on relevant benchmark models: hMSSM

> Strongest constraints on m_A at lowest value of $tan\beta = 1.0$

Coupling constraints for a single (pseudo)scalar

- > Upper limit on coupling to top quarks for a fixed width
- > "Island" due to local minima in likelihood scan

Extra: ALPs coupling to top quarks

- > Interference searches sensitive to axion-like particles (ALPs) at the GeV scale
- > Key difference compared to heavy Higgs bosons: direct gluon coupling!
 - Different interference pattern!

Unique for ALPs!

Related work: Jeppe et al: DESY-24-059 Carra et al: PRD 104 (2021) 9, 092005

Extra: ALPs coupling to top quarks

- > Assume $c_G = 0$
- > Constraints from heavy-Higgs search directly translate to constraints on c_t

Width depends on m_a and c_t Fixed pseudoscalar width Axion-Top coupling constraints |^{#9}6 10° ATLAS ndirect Z^{\cdot} $\sqrt{s} = 13 \text{ TeV}, 140 \text{ fb}^{-1}$ 10^{-} 2.0 TLASH $A \rightarrow t\bar{t}, \Gamma/M = 5\%$ Indirect hhZ MS tī non resonan -1 10^{-2} $\frac{1}{10^{-3}}$ $\frac{10^{-3}}{10^{-4}}$ $\frac{10^{-3}}{10^{-5}}$ 1.5 ATLAS t*īa* searcl 1.0 $g_{Att}/v = c_t/f_a$ Observed 95% CL exclusion 0.5 B decays Expected 95% CL exclusion $(\pm 1\sigma \text{ and } \pm 2\sigma)$ 10^{-6} $\Gamma_{tt} > \Gamma_{total}$ (unphysical) Esser et al, JHEP 10 (2024) 164 0.0 10^{-7} 500 600 700 800 900 1000 1100 1200 1300 1400 400 10^{-1} 10^{-2} 10^{0} 10^{2} 10^{3} 10^{1} 10^{4} M_A [GeV] m_a [GeV]

CMS preliminary result: CMS-PAS-HIG-22-013

In a nutshell

- > Observe > 5σ deviation of the data from the prediction in the ttbar threshold region (m_{tt} < 400 GeV)
 - Consistent with presence of ttbar quasi-bound state ("toponium")
 - Consistent also with narrow pseudoscalar state with $m_A = 365 \text{ GeV}$

Toponium – a ttbar quasi-bound state

- > Formation of ttbar quasi-bound state below ttbar threshold
 - Plane wave packet propagating until the QCD potential barrier
 - Scale: the Bohr radius a_0
 - Oscillation between the barrier until the system decay
 - Scale: Γ_t^{-1}
 - Possible gluon exchange before decay
 - Off-shell top or anti-top at decay
- > Described by non-relativistic QCD (NR-QCD)
- > Approximated as pure-S pseudoscalar resonance η_t
 - m = 343 GeV and Γ/m = 7 GeV

Key differences with ATLAS

> Two orthogonal sets of regions: 1L (e or μ) + 2L (e⁺e⁻, e μ , $\mu^+\mu^-$)

> 2L channel

- Analytic reconstruct of m_{ttbar}
- > 1L channel
 - Resolved topology: ≥4 small-*R* jets, ==2 *b*-tags
 - "Merged" topology: ==3 jets, ==2 *b*-tags
 - Reconstruct m_{ttbar} : via χ^2 algorithm

Key differences with ATLAS

- > Spin correlation variables sensitive to degree of entanglement in 2L channel
 - 1L: cosθ*
 - 2L: Chel, Chan

$$c_{\text{hel}} = -(\hat{\ell}^+)_k (\hat{\ell}^-)_k - (\hat{\ell}^+)_r (\hat{\ell}^-)_r - (\hat{\ell}^+)_n (\hat{\ell}^-)_n$$

$$c_{\text{han}} = +(\hat{\ell}^+)_k (\hat{\ell}^-)_k - (\hat{\ell}^+)_r (\hat{\ell}^-)_r - (\hat{\ell}^+)_n (\hat{\ell}^-)_n$$

CMS-PAS-HIG-22-013

Enhances sensitivity to pseudoscalar

Enhances sensitivity to scalar

Katharina Behr

Page 50

CMS 2L signal regions

Prefit

BSM pseudoscalar: A+I+B

Toponium: η+B

Sensitivity comparison

- > Same expected sensitivity at low mass
 - Despite differences in region definition, background modelling, systematic uncertainties, ...
- > Observed results differ notably
 - Investigations on-going...

What if extra bosons are light?

- > New (pseudo)scalar states with mass < 125 GeV constrained but not excluded by LEP etc.
- > Motivation especially for light pseudoscalars:
 - Extended Higgs sector models
 - ALPs
- > Exotic Higgs decays: $h_{125} \rightarrow aa$
- > Detector signatures depend on
 - Mass m_a (\rightarrow Yukawa coupling to SM fermions)
 - $h_{125} \rightarrow aa \rightarrow 4b$
 - $h_{125} \rightarrow aa \rightarrow 4\mu$

- ...

• Couplings to BSM particles, e.g. DM

 $h_{125} \rightarrow aa \rightarrow 4b$

• Lifetime of *a*

• ...

Long-lived particles

- > Exotic decay products (a, S, ...) of the Higgs could be long-lived
- > Proper lifetime ct of order mm to $m \rightarrow$ decay not at interaction point but inside detector volume
- > Wealth of possible detector signatures: displaced tracks, trackless jets, displaced muons, ...
 - Not captured by standard particle identification algorithms!

Long-lived particles

- > Exotic decay products (a, S, ...) of the Higgs could be long-lived
- > Proper lifetime $c\tau$ of order mm to m \rightarrow decay not at interaction point but inside detector volume
- > Wealth of possible detector signatures: displaced tracks, trackless jets, displaced muons, ...
 - Not captured by standard particle identification algorithms!

Long-lived particles

- > Exotic decay products (a, S, ...) of the Higgs could be long-lived
- > Proper lifetime $c\tau$ of order mm to m \rightarrow decay not at interaction point but inside detector volume
- > Wealth of possible detector signatures: displaced tracks, trackless jets, displaced muons, ...
 - Not captured by standard particle identification algorithms!

Example: displaced muon pairs

- > Exotic Higgs decay to a pair of long-lived dark photons: $h \rightarrow Z_D Z_D \rightarrow \mu \mu \mu \mu$
- > Implemented novel triggers targeting displaced muon pairs + other offline analysis techniques
- > Significant sensitivity boost across lifetime range

Impressive lifetime coverage

> Probing lifetimes/decay lengths from $O(\mu m)$ to O(10m)

Overview of CMS long-lived particle searches

Selection of observed exclusion limits at 95% C.L. (theory uncertainties are not included). The y-axis tick labels indicate the studied long-lived particle.

Higgs Part 3: Summary

- > Extended Higgs sectors part of many well-motivated extensions of the SM
- > Broad experimental programme to search for extra Higgs bosons
 - Different production modes (gg-fusion, exotic Higgs decays)
 - Different decay modes
- > Decays to top quarks particularly challenging due to interference
 - Excess seen by CMS Collaboration at ttbar threshold ... under investigation

Overall summary

> Part 1: The vacuum is not empty

- Significant progress in characterising the Higgs boson
- Measurements in agreement with SM within current uncertainties \rightarrow much room for BSM physics

> Part 2: What is the fingerprint of the vacuum?

- Unprecedented constraints on self-couplings from hh searches on LHC Run-2 data
- Algorithm improvements via AI crucial

> Part 3: Is there even more to the vacuum?

- Broad search programme for new states
- Exciting news from ttbar threshold
- Plethora of little explored unusual signatures

Α

h

h

h

Overall summary

> Part 1: The vacuum is not empty

- Significant progress in characterising the Higgs boson
- Measurements in agreement with SM within current uncertainties \rightarrow much room for BSM physics

> Part 2: What is the fingerprint of the vacuum?

- Unprecedented constraints on self-couplings from hh searches on LHC Run-2 data
- Algorithm improvements via AI crucial
- Part 3: Is there even more to the vacuum?
 - Broad search programme for new states
 - Exciting news from ttbar threshold
 - Plethora of little explored unusual signatures

YOUR contributions could be crucial to our understanding of the vacuum!

BONUS SLIDES

> Search stage:

- Should we reject SM in favour of (any) BSM hypothesis?
- Test agreement of data with range of interference patterns
- Consider all possible values of POI

$$q_0 = -2\ln \frac{\mathcal{L}(0, \hat{\hat{\theta}}_0)}{\mathcal{L}(\hat{\sqrt{\mu}}, \hat{\theta}_{\hat{\sqrt{\mu}}})}$$

> Exclusion stage:

- Should we reject the BSM hypothesis (μ =1) under consideration?
- Test (dis)agreement of data with specific interference pattern of tested signal hypothesis

$$q_{1,0} = -2\ln\frac{\mathcal{L}(1,\hat{\hat{\theta}}_1)}{\mathcal{L}(0,\hat{\hat{\theta}}_0)}$$

$\lambda(\boldsymbol{\mu}) = \frac{L(\boldsymbol{\mu}, \hat{\hat{\boldsymbol{\theta}}}(\boldsymbol{\mu}))}{L(\hat{\boldsymbol{\mu}}, \hat{\boldsymbol{\theta}})}$

$\sqrt{\mu}$ equivalent to g_{Att}

Systematic uncertainties (ATLAS)

Largest sources of uncertainty: SM ttbar modelling

> tt NNLO includes:

- Uncertainties in reweighting
- Scale and PDF uncertainties on calculation
- Uncertainty on EW component from comparison of NN vs LUX PDFs

Katharina Behr

- > tt lineshape: comparison with MadSpin
- > tt PS: Pythia vs Herwig
- > m_{top:} ± 0.76 GeV

Uncertainty component	Fractional contribution [%]	
	$m_A = 800 \text{ GeV}$	$m_A = m_H = 500 \text{ GeV}$
	$\tan\beta = 0.4$	$\tan\beta = 2.0$
Experimental	30	42
Small- <i>R</i> jets (JER, JES)	22	29
Large-VR jets	11	20
Flavour tagging	13	17
Leptons	4	5
Other ($E_{\rm T}^{\rm miss}$, luminosity, pile-up, JVT)	10	14
Modelling: SM $t\bar{t}$ and signal	91	79
<i>tī</i> NNLO	49	28
$t\bar{t}$ lineshape	27	29
$t\bar{t}$ ME-PS $(p_{\rm T}^{\rm hard})$	36	30
$t\bar{t}$ ME-PS (h_{damp})	41	25
<i>tī</i> ISR& FSR	9	13
tī PS	29	41
$t\bar{t}$ cross-section	21	31
$t\bar{t}$ Scales & PDF	21	16
m_t	6	4
Signal	19	9
Modelling: other	41	16
W+jets	11	8
Z+jets	1	2
Multijet	27	10
Fakes	<1	1
Other bkg.	29	10
MC statistics	18	26
Total systematic uncertainty	±100	±100
Total statistical uncertainty	< 1	< 1

Statistical analysis with interference

> Extend likelihood to include interference term

$$\mu \cdot S + \sqrt{\mu} \cdot I + B = (\mu - \sqrt{\mu}) \cdot S + \sqrt{\mu} \cdot (S + I) + B$$

- > Quadratic dependence on POI = $\sqrt{\mu}$
 - Interference shape changes with POI
 - Local minima can appear in CLs scan
 - Upper limits not well defined!
- > Requires going beyond common statistical approaches
 - Choice of appropriate test statistic
 - Interpolation between signal hypotheses
 - Correct limit band calculation
 - New baseline in ATLAS StatAnalysis (on cvmfs)
 - Treatment of histograms with negative yields

1L Resolved

- > Require \geq 4 jets, \geq 1 b-jet
- > Reconstruct full ttbar system:
 - Neutrino 4-vector from W-mass constraint
 - Assignment of jets based on χ^2 minimisation

$$\chi^{2} = \left[\frac{m_{jj} - m_{W}}{\sigma_{W}}\right]^{2} + \left[\frac{(m_{jjb} - m_{jj}) - m_{t_{h} - W}}{\sigma_{t_{h} - W}}\right]^{2} + \left[\frac{m_{jl\nu} - m_{t_{l}}}{\sigma_{t_{l}}}\right]^{2} + \left[\frac{(p_{T,jjb} - p_{T,jl\nu}) - (p_{T,t_{h}} - p_{T,t_{l}})}{\sigma_{diff}p_{T}}\right]^{2}$$

1L Merged

- > Top candidate jet:
 - Variable-*R* jet ($R_{max} = 1.5$) optimised for intermediate top boosts ($m_{ttbar} \sim 1 \text{ TeV}$)
 - Jet radius shrinks with jet p_T
 - Jet size automatically adapts to boost of top quark
- > Leptonic top b-candidate jet: \geq 1 small-R jet well separated from top candidate jet
- > Reconstruct full ttbar system:
 - Neutrino 4-vector from W-mass constraint
 - Selected lepton
 - Leptonic top b-candidate
 - Top candidate jet

$$R_{\mathrm{eff,i}}(p_T) = rac{
ho}{p_{T,i}}$$
 (ho = 600 GeV)

Differences in background modelling

> Reweighting from NLO Powheg+Pythia to NNLO-QCD+NLO-EW

> CMS:

- Double differential reweighting in m_{tt} and $cos\theta_{t}^{*}$
- Calculated with HATHOR and MATRIX
- m_t = 172.5 GeV
- > ATLAS: m_t = 173.3 GeV

Anuar et al, arxiv:2404.19014
Differences in treatment of systematic uncertainties

> Top Yukawa coupling

- Not included in ATLAS model, not provided by Mitov et al.
- Leading for CMS

> Top mass uncertainty

- Heavily constrained and high ranking for CMS
- Not the case for ATLAS
- > Parton shower (Pythia8 vs Herwig7)
 - Major uncertainty for ATLAS: high-ranking, pulled, and constrained
 - Small impact for CMS (internal studies)
 - Impact reduced by use of c_{hel} and c_{han} ?

Dark matter interpretations: 2HDM+a

- Minimal, UV-complete extension of simplified models >
- First DM interpretation of an interference search >
- First search considering interference patterns due to mixing of two pseudo-scalars >

JHEP 08 (2024) 013

DM

Dark matter interpretations: 2HDM+a

- > Benchmark scenario 3a in LHC DM WG recommendations
- > Leading expected exclusion at high mediator mass
- > Observed exclusion slightly weaker than H⁺(tb) result due to downward fluctuation

Science Bulletin 69 (2024) 3005

The LHC today

- > LHC Page 1: https://op-webtools.web.cern.ch/vistar/vistars.php
- > Collisions at new record energy of 13.6 TeV started on 5th July!

Matter-antimatter imbalance

- > Equal amounts of matter and antimatter created in the Big Bang (B=0)
- > Observable universe completely dominated by matter (B>0)
- > What caused this imbalance?

Sakharov conditions

- 1. Baryon number violating processes
- 2. C and CP violation
- 3. Processes out of thermal equilibrium

- Possible in the SM and BSM models
 - E.g. supersymmetry
- Not observed yet
 - Proton decay would be the smoking gun

Matter-antimatter imbalance

- > Equal amounts of matter and antimatter created in the Big Bang (B=0)
- > Observable universe completely dominated by matter (B>0)
- > What caused this imbalance?

Sakharov conditions

- 1. Baryon number violating processes
- 2. C and CP violation
- 3. Processes out of thermal equilibrium

Conditions met in SM e.g. during EWSB

The strong CP problem (1)

- > QCD can in principle violate CP (assuming all quarks are massive)
- > Example of a Yang-Mills theory with a single massive quark

$$\mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \theta \frac{g^2}{32\pi^2} F_{\mu\nu} \tilde{F}^{\mu\nu} + \bar{\psi} (i\gamma^{\mu} D_{\mu} - me^{i\theta'\gamma_5}) \psi.$$
Potentially CP violating, unless $\theta = -\theta'$
 \rightarrow fine-tuning!

- > Strong CP violation in SM QCD (6 massive quarks) via equivalent phase θ^*
- > Would imply non-zero neutron electric dipole moment: $d_N = (5.2 \ 10^{-16} e \ cm) \theta^*$
- > Measurements constrain dipole moment to $|d_N| < 10^{-26} e \text{ cm} \rightarrow \theta^* < 10^{-10} \rightarrow \text{fine-tuning!}$

Cut-and-count method

- > Select (**cut**) events that you expect to be consistent with signal (signal region)
- > **Count** data events in signal region and compare with number of expected SM events
- > Calculate significance of deviation from SM prediction (accounting for uncertainties)

Cut-and-count method

- > Select (**cut**) events that you expect to be consistent with signal (signal region)
- > **Count** data events in signal region and compare with number of expected SM events
- > Calculate significance of deviation from SM prediction (accounting for uncertainties)

- > Advantage: suited for low-stat regions, model agnostic
- > **Disadvantage**: single bin \rightarrow vulnerable to fluctuations \rightarrow less sensitive

Monte Carlo event generators in a nutshell

- > Quantum nature of elementary particle interactions: non-deterministic
 - Given initial state can lead to different final states with different probabilities
- > Idea:
 - Calculate probability distribution for a given process (or sub-processes)
 - Random sampling to generate events with particle kinematics according to these distributions

Experimental Techniques

Experimental analysis step by step

- > Pick and study a signal of interest
- > Select subset of events enriched in signal (signal region)
- > Estimate backgrounds and systematic uncertainties
- > Test agreement between SM prediction and data

How to search for BSM signals?

Isolate small signal from huge dataset

T.G. McCarthy

>

How to search for BSM signals?

Page 86

Select signal-like events

- > Define criteria that characterise chosen signal in detector
- > Apply selection criteria to reduce background
- > Signal-enriched region (signal region)

Exercise

> Define a signal region for semi-leptonic ttbar decay

> For simplicity assume that charged lepton is an electron or muon

Exercise

> Define a signal region for semi-leptonic ttbar decay

- > Exactly 1 electron or muon
- > Missing energy (from the neutrino)
- > At least 4 jets
- > Bonus 1: 2 jets identified as b-jets
- > Bonus 2:
 - Combined mass of 2 jets = W mass
 - Combined mass of 3 jets = top mass

Exercise: Solution

- > Apply selection criteria (cuts) to reduce background
- > Signal-enriched region (signal region)
- > Additional cuts based on differences in kinematic distributions

- > Apply selection criteria (cuts) to reduce background
- > Signal-enriched region (signal region)
- > Additional cuts based on differences in kinematic distributions

3-jet mass (GeV/c2)

- > Apply selection criteria (cuts) to reduce background
- > Signal-enriched region (signal region)
- > Additional cuts based on differences in kinematic distributions

- > Apply selection criteria (cuts) to reduce background
- > Signal-enriched region (signal region)
- > Additional cuts based on differences in kinematic distributions

> Can refine signal regions using machine-learning algorithms

- Exploit small differences in various kinematic variables
- Exploit correlations

A final signal region

Event simulation

- > Simulate possible signals based on theoretical models
 - Optimise sensitivity of searches
- > Simulate background processes
 - Compare predictions to data and look for deviations
 - Some background processes can be simulated very accurately...
 - ... others not (see data-driven estimates later)
- > Estimate systematic uncertainties
 - Create different background predictions within experimental uncertainties
 - E.g. top mass known with ±1 GeV uncertainty
 - → Simulate top quark pair production for m_{top} (central) and m_{top} (central)±1 GeV

Simulation step by step

> Hard processes (large momentum transfers): perturbative QCD

- hard scattering
- (QED) initial/final state radiation

Simulation step by step

- hard scattering
- (QED) initial/final state radiation
- partonic decays, e.g. $t \rightarrow bW$
- parton shower evolution
- nonperturbative gluon splitting

Simulation step by step

> Hadronisation (soft, low energy): non-perturbative QCD eseee σ

- hard scattering
- (QED) initial/final state radiation
- partonic decays, e.g. $t \rightarrow bW$
- parton shower evolution
- nonperturbative gluon splitting
- colour singlets
- colourless clusters
- cluster fission
- cluster \rightarrow hadrons
- hadronic decays

Think outside the (black)box!

- > Many different event generators available for HEP/LHC
 - Choice depends on process, required precision, ...
 - E.g. matrix-element generators: MadGraph, Powheg
 - E.g. matrix-element + parton-shower generators: Pythia, Herwig
 - Important to understand differences and subtleties to not treat them as blackboxes!

"[...] remember that the programs **do not represent a dead collection of established truths**, but rather one of many possible approaches to the problem of multiparticle production in high-energy physics, at the frontline of current research. **Be critical!**"

From the manual of the Pythia5 MC generator

Further aspects

- > Simulate interactions of (collider) stable particle with detector material
 - Geant4, Delphes, ...

Further aspects

- > Simulate interactions of (collider) stable particle with detector material
 - Geant4, Delphes, ...
- > Specifically for hadron colliders (LHC, Tevatron, ...):
 - Underlying Event: simulate interactions of additional partons within same two protons

Further aspects

- > Simulate interactions of (collider) stable particle with detector material
 - Geant4, Delphes, ...
- > Specifically for hadron colliders (LHC, Tevatron, ...):
 - **Underlying Event**: simulate interactions of additional partons within same two protons
 - **Pile-up**: simulate interactions of additional protons in the same bunch crossing

> Further reading:

lecture by M. Seymour and M. Marx [link]

Estimating background processes from data

- > Simulation not always feasible for estimating background processes
 - Instrumental backgrounds (related to detector effects)
 - Jets with high EM component faking electrons
 - Backgrounds from detector noise
 - ...
 - Processes with large cross-section that would require large MC statistics
 - Mostly multijets at the LHC
 - Known modeling limitations
 - Missing higher-order processes
 - •
- > Use fully data-driven estimates or data-driven corrections
Sidebands

- > Assume known signal region (= location in the spectrum)
- > Fit background in sidebands (= adjoining parts of the spectrum, signal depleted)
- > Extrapolate to signal region

Control Regions

- > Same idea as with sidebands but using a modified selection to define a control region
 - Orthogonal to signal region, signal depleted

- > Must be carefully designed to
 - Be signal depleted

...

- Be enriched in background of interest
- Close enough to SR to avoid biases

A final signal region

- > Various different sources:
 - Modeling uncertainties, e.g. unknown higher-order corrections
 - Experimental uncertainties, e.g. uncertainties on electron energy measurement
- > Propagate to final spectrum
- > Uncertainties degrade sensitivity to signal

A final signal region

What are we looking for?

> Most generally put: we search for a significant deviation from the SM prediction

- > Different search strategies
 - Cut-and-count method
 - Bump hunt
 - Tail hunt

. .

> Each comes with its own set of advantages/disadvantages!

Bump Hunting

- > Search for a localised deviation in the distribution of a variable of interest
 - Typically: invariant mass

Bump Hunting

- > Search for a localised deviation in the distribution of a variable of interest
 - Typically: invariant mass
- > Most recent successful example:
 - Higgs boson discovery (2012, CERN)

Tail Hunting

- > Search for a tail enhancement in the distribution of a variable of interest
- > Typical examples:
 - Resonances beyond reach of the LHC

Tail Hunting

- Search for a tail enhancement in the distribution of a variable of interest
- Typical examples:
 - Resonances beyond reach of the LHC
 - Non-resonant production of new particles
 - E.g. dark matter or dark energy

ATLAS

 $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$

Signal Region

 $p_{\tau}(j) > 150 \text{ GeV}$

 10^{7}

10⁶

Data

Standard Model w. unc.

VBF Z(\rightarrow II / $\nu\nu$) + jets

 $Z(\rightarrow \nu\nu)$ + jets

 $W(\rightarrow lv) + jets$

Tail Hunting

Search for a tail enhancement in the distribution of a variable of interest

Typical examples: >

- Resonances beyond reach of the LHC
- Non-resonant production of new particles

Advantages: >

> Sensitive to processes that cannot be identified by bump hunts

Disadvantages: >

- Tails of distributions suffer from low statistics
- Often sizeable systematic uncertainties
- E.g. due to missing higher-order calculations

What if new particles are less obvious to spot?

> Bump hunt assumes "signal sitting on top of background": $S + B = |s|^2 + |b|^2$

What if new particles are less obvious to spot?

- > Bump hunt assumes "signal sitting on top of background": $S + B = |s|^2 + |b|^2$
- > Quantum mechanics: two processes with same initial and same final state will interfere!
 - $|s + b|^2 = |s|^2 + 2 \operatorname{Re}(s b) + |b|^2 = S + I + B → Interference!!$

What if new particles are less obvious to spot?

- > Bump hunt assumes "signal sitting on top of background": $S + B = |s|^2 + |b|^2$
- > Quantum mechanics: two processes with same initial and same final state will interfere!
 - $|s + b|^2 = |s|^2 + 2 \operatorname{Re}(s b) + |b|^2 = S + I + B → Interference!!$

Beyond Bump Hunts

- > Prominent example: decay of a heavy Higgs boson A/H to a top-antitop quark pair
- > Need cutting edge methods \rightarrow on-going research @ DESY

A final signal region

Statistical analysis

> Two statistical analysis stages in BSM searches:

- Quantify agreement between data and SM prediction ("Any interesting deviation?")
- Quantify (dis)agreement between data and BSM hypothesis (*"limit setting"*)

Step 1: quantify agreement with SM prediction

- > Null hypothesis H₀: SM only, no BSM
- > **p-value**: probability that H_0 produces deviation at least as extreme as the one observed
- > Simple example: cut-and-count

Step 1: quantify agreement with SM prediction

- > Null hypothesis H₀: SM only, no BSM
- > **p-value**: probability that H_0 produces deviation at least as extreme as the one observed
- > Or quote **significance** instead:

$$Z = \Phi^{-1}(1-p)$$

> where Φ^{-1} is inverse of cumulative Gaussian

- > If excess was found: test agreement with BSM ... and open the champagne ;)
- > If no excess was found: test degree to which H₁ is excluded by data (limit setting)

- > Usually, setup is more complicated: many bins, many signal regions
- > Construct a likelihood function that quantifies data/MC agreement in all bins

Further reading: Lecture by G. Cowan [link]

- > CL(s+b) probability to falsely reject signal because it is too similar to background
- > Confidence level
 - H_1 excluded at 95% CL if CL(s+b) < 0.05

> Problem:

- Danger to falsely reject H_1 even if separation between H_1 and H_0 is poor, i.e. sensitivity to H_1 is low
- > Solution:
 - CL(s) = CL(s+b)/[1-CL(b)]
- > Confidence level
 - H₁ excluded at 95% CL if CL(s) < 0.05

A final result

> The famous "Brazilian" plot, showing observed and expected exclusion limits with error bands

Where do we stand?

- > No significant (5 σ) deviation from the SM observed so far.
- > Results constrain BSM models...
- > ... and point to uncharted territory!

Muon g-2 (1)

> Anomalous magnetic moment of the muon in analogy to that of the electron

 $\vec{\mu} = g \, \frac{q}{2m} \, \vec{S}$

- > Loop quantum corrections: $g \neq 2$
- > Anomalous magnetic moment: a = (g-2)/2

> Sensitive to large range of possible quantum corrections, including possible BSM contributions

Muon g-2 (2)

- > Storage ring with polarised muons in magnetic field \rightarrow measure precession frequency
- > Measurements at BNL (2004) first revealed tension with SM of 2.6 σ significance
- > Confirmed by new Fermilab measurement (2021) at 4.2 σ combined significance
 - More data is being taken and analysed

