To the Higgs and beyond

Quantum Universe Days 17 – 19 February 2025

Katharina Behr

Outline

> Part 1: The vacuum is not empty

- The Higgs boson in the Standard Model
- Characterization of the Higgs boson since its discovery

> Part 2: What is the fingerprint of the vacuum?

- Unravelling the Higgs potential
- Higgs boson pair production
- Extra: Triple Higgs production

> Part 3: Is there even more to the vacuum?

- Extended Higgs sectors
- Extra: news from the ttbar threshold
- Outlook: the future of the LHC and beyond

h

Outline

> Part 1: The vacuum is not empty

- The Higgs boson in the Standard Model
- Characterization of the Higgs boson since its discovery

h

h

- > Part 2: What is the fingerprint of the vacuum?
 - Unravelling the Higgs potential
 - Higgs boson pair production
 - Extra: Triple Higgs production
 - Outlook: the future of the LHC and beyond
- > Part 3: Is there even more to the vacuum?
 - Extended Higgs sectors
 - Extra: news from the ttbar threshold

A key piece of missing information

- > Full shape of the Higgs potential
- > Current measurements in single Higgs bosons only probe potential around minimum

A key piece of missing information

- > Full shape of the Higgs potential
- > Current measurements in single Higgs bosons only probe potential around minimum
- SM prediction: Mexican hat potential

A key piece of missing information

- > BSM: many different shapes possible
- > E.g. extra scalar singlet

$$V(h,H) = V_{
m SM}(h) + rac{1}{2}m_{H}^{2}H^{2} + rac{1}{2}\mu_{hH}hH + rac{\lambda_{hH}}{2}h^{2}H^{2} + rac{\lambda_{3H}}{3!}H^{3} + rac{\lambda_{4H}}{4!}H^{4}$$

- > Smoking-gun hints of extended Higgs sectors:
 - Deviation of self-coupling from SM value
 → This lecture!
 - Presence of extra Higgs bosons
 - → Tomorrow's lecture

Why care about the full potential?

> Higgs potential may provide answers to many key open questions in particle physics

Higgs pair production at the LHC

- > Challenge: di-Higgs cross-section around 1800 times smaller than single Higgs cross-section
- > ggF production (90.2%): leading sensitivity to trilinear coupling λ_{hhh}

Katharina Behr

Higgs pair production at the LHC

- > Challenge: di-Higgs cross-section around 1800 times smaller than single Higgs cross-section
- > ggF production (90.2%): leading sensitivity to trilinear coupling λ_{hhh}

Softer spectrum away from SM value

 $\kappa_{\lambda} = \lambda_3 / \lambda^{SM}_{hhh}$

Higgs pair production at the LHC

- Challenge: di-Higgs cross-section around 1800 times smaller than single Higgs cross-section >
- ggF production (90.2%): leading sensitivity to trilinear coupling λ_{hhh} >
- > VBF production (5%): unique access to di-Higgs-di-vector-boson coupling λ_{hhvv}

How to find a needle in a haystack?

Isolate small signal from huge dataset

T.G. McCarthy

>

How to find a needle in a haystack?

How to find a needle in a haystack?

- > Define criteria that characterise chosen signal in detector
- > Apply selection criteria to reduce background
- > Signal-enriched region (signal region)

> Pick and study a signal of interest (MC simulation)

> Select subset of events enriched in signal (signal region)

> Estimate backgrounds and systematic uncertainties

Often via control regions enriched in background

> Test agreement between SM prediction and data (likelihood fits)

Signatures of di-Higgs production

	bb	ww	ττ	ZZ	ΥY
bb	34%				
ww	25%	4.6%			
ττ	7.3%	2.7%	0.39%		
ZZ	3.1%	1.1%	0.33%	0.069%	
ΥY	0.26%	0.10%	0.028%	0.012%	0.0005%

Signatures of di-Higgs production

- > Three most sensitive channels:
 - *bbbb*: largest BR (34%), large multi-*b*-jet background

	bb	ww	ττ	ZZ	ΥY
bb	34%				
ww	25%	4.6%			
ττ	7.3%	2.7%	0.39%		
ZZ	3.1%	1.1%	0.33%	0.069%	
ΥY	0.26%	0.10%	0.028%	0.012%	0.0005%

Event topologies in the bbbb channel

- > Three possible topologies depending on Lorentz boost of the two Higgs bosons
- > Identification of heavy flavour crucial:
 - *b*-tagging for resolved decays
 - $h \rightarrow bb$ tagging for merged decays

Resolved

[Intermediate]

Less relevant for hh events ($p_{T,h1} \sim p_{T,h2}$), more relevant for scalar+h searches

Merged

$\varepsilon_{sig} \sim \varepsilon_{Xbb}^2$

DESY.

b-tagging

- > Identification of jets initiated by *b*-quarks based on properties of resulting *B*-hadron
 - Secondary decay vertex
 - Significant decay length of O(mm cm)
 - Tracks not pointing back to primary vertex \rightarrow large impact parameter d₀

b-tagging (Run 2)

Combine all information in high-level deep neural net discriminator >

Higgs tagging (Run 2)

- Large calorimeter jet with fixed radius parameter R=1.0
- > Identify small-radius subjets and check if they are *b*-tagged using standard *b*-tagging algorithm
- > DNN classifier combining the following inputs:
 - DL1r scores of 2-3 sub-jets
 - Large-*R* jet kinematics

Next-generation taggers (Run 3) – transformers!

- > Inputs: low-level objects (tracks, particle-flow objects)
- > Significant performance improvements for analyses using *b* and $h \rightarrow bb$ jets
 - x 2 better top and multijet rejection for 70% signal efficiency
- > Need accurate tracks reconstruction!

Page 21

- > Focus on resolved topologies here: \geq 4 jets, \geq 4 *b*-jets (signal region)
- > Combinatorial problem: assign *b*-jets to the two Higgs decays
 - Different possible approaches, based on m_{bb} or $\Delta R(b,b)$
 - Focus on four leading *b*-jets \rightarrow three possible combinations
 - Choose configuration where Higgs candidate with the higher p_T has smallest $\Delta R(b,b)$
- > Reconstruct m_{hh}

Background processes

- Background dominated by real *b*-jets and jets mis-identified as *b*-jets
 - Difficult to model in simulation due to relevance of detector effects

- > Signal region: both Higgs candidates' masses close to 125 GeV
- > Control regions used to estimate background from multi-jet production from data

- > Background estimation:
 - Define same regions in 2b data (background dominated)
 - Baseline template from 2b "SR"
 - Derive corrections and uncertainties by comparing 2b and 4b control regions

- > Focus on resolved topologies here: \geq 4 jets, \geq 4 *b*-jets (signal region)
- > Combinatorial problem: assign *b*-jets to the two Higgs decays
 - Focus on four leading *b*-jets \rightarrow three possible combinations
 - Choose configuration where Higgs candidate with the higher p_T has smallest $\Delta R(b,b)$
- > Reconstruct m_{hh}
- > Likelihood fit of predicted m_{hh} distribution to that in data
 - Prediction allowed to float within uncertainties

- > Focus on resolved topologies here: \geq 4 jets, \geq 4 *b*-jets (signal region)
- > Combinatorial problem: assign *b*-jets to the two Higgs decays
 - Focus on four leading *b*-jets \rightarrow three possible combinations
 - Choose configuration where Higgs candidate with the higher p_T has smallest ΔR(b,b)
- > Reconstruct m_{hh}
- > Likelihood fit of predicted m_{hh} distribution to that in data
 - Prediction allowed to float within uncertainties

Constraining VVhh in vector-boson fusion

- > Topologies with boosted Higgs boson particularly sensitive to non-SM values of k_{2V} q
- > Select events with two forward jets and two merged Higgs boson decays
- > BDT trained on jet and event kinematics to separate signal and background
- > Data-driven estimate of multi-jet background

H

Constraining VVhh in vector-boson fusion

- > Search primarily statistics-limited but Xbb tagging uncertainties also have a notable impact
- > Interplay between boosted and resolved channels:
 - Resolved more sensitive to κ_{λ} , boosted more sensitive to κ_{2V}

Signatures of di-Higgs production

- > Three most sensitive channels:
 - *bbbb*: largest BR (34%), large multi-*b*-jet background
 - *bbπ*: medium BR (7.3%), good signal purity

		bb	ww	ττ	ZZ	ΥY
\backslash	bb	34%				
	ww	25%	4.6%			
	ττ	7.3%	2.7%	0.39%		
	ZZ	3.1%	1.1%	0.33%	0.069%	
	ΥY	0.26%	0.10%	0.028%	0.012%	0.0005%

Signature of the bbtt channel

- > τ -leptons decay before interacting with the detector
- > Leptonic decay: $\tau_{lep} \rightarrow e/\mu + 2\nu$
- > Hadronic decays:
 - $\tau_{had} \rightarrow 3\pi^{\pm} + X + \nu$ (3-prong)
 - $\tau_{had} \rightarrow \pi^{\pm} + X + \nu$ (1-prong)
- > τ -taggers to identify hadronic τ decays
 - Run-2: BDTs
 - Run-3: transformers (similar to *b*-taggers)
- > Two orthogonal channels:
 - LepHad: $\tau_{lep} \tau_{had}$
 - HadHad: τ_{had} τ_{had}

Quiz question: What SM processes can result in a $bb\tau\tau$ final state?

Quiz question: What SM processes can result in a $bb\tau\tau$ final state?

Background processes

> Z+bb

- With Z $\rightarrow \tau\tau$
- Also: Z \rightarrow ee, $\mu\mu$ with additional missing energy from mis-measurements
- > tt \rightarrow (Wb)(Wb)
 - With (Wb)(Wb) \rightarrow ($\tau\nu$)b($\tau\nu$)b
 - Also (Wb)(Wb) \rightarrow (evb)(µvb) ...

Complex analysis strategy for the *bbtt* **channel**

- > Loose pre-selection of events based on different triggers
 - Triggers requiring one or two τ_{had} candidates vs triggers requiring one or two e/µ

Katharina Behr

Complex analysis strategy for the bbtt channel

Control regions to estimate main backgrounds from Z+jets and ttbar production >

τlep τhad SLT SR Katharina Behr
Multivariate classifier in each to distinguish between ggF and VBF production >

- Multivariate classifier in each to distinguish between ggF and VBF production >
- Additional categorisation based on m_{hh} >

Multivariate classifier to distinguish signal from background in each sub-category >

- > Backgrounds estimated from simulation and corrected using data in control regions
- > Simultaneous fit of predictions to data: BDT scores in each signal region + distributions in control regions

> Simultaneous fit of predictions to data: BDT scores in each signal region + distributions in control regions

Signatures of di-Higgs production

- > Three most sensitive channels:
 - *bbbb*: largest BR (34%), large multi-*b*-jet background
 - $bb\pi$: medium BR (7.3%), good signal purity
 - *bbyy*: clean channel, but low BR (0.26%)

		bb	ww	ττ	ZZ	ΥY
	bb	34%				
	ww	25%	4.6%			
	ττ	7.3%	2.7%	0.39%		
	zz	3.1%	1.1%	0.33%	0.069%	
	ΥY	0.26%	0.10%	0.028%	0.012%	0.0005%

Signature of the bbyy channel

- > Photons can be efficiently and precisely with the electromagnetic calorimeters
- > Require events with two photons and at least two b-tagged jets
- > Straightforward reconstruction of two Higgs candidates

Analysis strategy of the bbyy channel

- > Mass resolution of Higgs candidate from *yy* much better than *bb*
 - Use m_{yy} as discriminating variable instead of m_{yybb}
- > Main backgrounds from real photons produced in association with jets \rightarrow taken from simulation

Analysis strategy of the bbyy channel

- > Multivariate methods to improve signal-background discrimination
 - Trained separately in different m_{bbyy} regions for better sensitivity
- > Fit analytic function for signal+background hypothesis to data in each signal region
 - Similar to Higgs-boson discovery and measurements in *yy* decay channel

Combination of hh searches (ATLAS, Run 2)

- Statistical combination of three leading channels
 + sub-dominant channels
- > Current best constraints on Higgs pair production

 μ_{hh} < 2.9 (2.4 exp.)

Page 47

> Significant improvement in expected sensitivity on κ_{λ}

Observed: $\kappa_{\lambda} \in [-1.2, 7.2]$ Expected: $\kappa_{\lambda} \in [-1.6, 7.2]$

> Significant improvement in expected sensitivity on κ_{λ}

Observed: $\kappa_{\lambda} \in [-1.2, 7.2]$ Expected: $\kappa_{\lambda} \in [-1.6, 7.2]$

Observed: $\kappa_{2V} \in [-0.6, 1.5]$ Expected: $\kappa_{2V} \in [-0.4, 1.6]$

Dominated by boosted VBF *bbbb* (boosted *bbbb* signatures powerful at high m_{hh})

Resonant Higgs pair production

- > BSM theories predict extra heavy states that can decay into a pair of Higgs bosons: $pp \rightarrow X \rightarrow hh$
 - More details tomorrow
- > Search for local "bump" in hh invariant mass spectrum (similar to 2012 Higgs discovery)

Resonant Higgs pair production

- > BSM theories predict extra heavy states that can decay into a pair of Higgs bosons: $pp \rightarrow X \rightarrow hh$
 - More details tomorrow
- > Search for local "bump" in hh invariant mass spectrum (similar to 2012 Higgs discovery)

Resonant Higgs pair production

- > BSM theories predict extra heavy states that can decay into a pair of Higgs bosons: $pp \rightarrow X \rightarrow hh$
 - More details tomorrow
- > Search for local "bump" in hh invariant mass spectrum (similar to 2012 Higgs discovery)
- bbyy: clean channel, most competitive in low m_x region where QCD multijet background dominates
- bbbb: dominates in high-mass region where sensitivity is limited by signal statistics
- > $bb\tau\tau$: dominant in medium region

Aside: Interference

- Current resonant $X \rightarrow hh$ searches do not consider interference with non-resonant production (or higher-order effects)
- > Reduced sensitivity for some benchmarks that may be falsely excluded by resonant searches

K. Rachenko, G. Weiglein et al. arXiv:2403.14776

Not twins ... but triplets!

- > Recent effort to search for triple Higgs production at the LHC
- > Most direct access to quartic Higgs coupling with modifier κ_4
- > Process ~400 times rare than Higgs pair production!
 - Expect around 10 events for *hhh* production in full LHC Run-2 dataset (across all decay modes)

Complementarity between *hh* **and** *hhh* **searches**

> Searches for Higgs triplets expected to provide better constraints on κ_4

> Current best constraints from theoretical considerations (unitarity)

P. Stylianou, G. Weiglein [Eur.Phys.J.C 84 (2024) 4, 366]

DESY.

Katharina Behr

HHH whitepaper

Relevance?

- > Constraints on κ_4 seem loose by comparison
- > Little explored probe of BSM physics
 - BSM effects could affect κ_4 much more than κ_3
 - Resonant enhancement in extended Higgs sectors

$$(\kappa_3 - 1) = \frac{C_6 v^2}{\lambda \Lambda^2},$$

$$(\kappa_4 - 1) = \frac{6C_6 v^2}{\lambda \Lambda^2} + \frac{4C_8 v^4}{\lambda \Lambda^4}$$

$$\simeq 6(\kappa_3 - 1) + \mathcal{O}\left(\frac{1}{\Lambda^4}\right)$$

First search for triple Higgs production

> Final states with six b-quarks: largest branching ratio, large background from multijet production

First search for triple Higgs production

- > Signal regions: events with at least 6 *b*-tagged jets
- Control & validation regions: events with ==5 and ==4 b-tagged jets
- > Higgs reconstruction: three *b*-jet pairs that minimises

 $|m_{h1} - 120 \text{ GeV}| + |m_{h2} - 115 \text{ GeV}| + |m_{h3} - 110 \text{ GeV}|$

where $p_{T,h1} > p_{T,h2} > p_{T,h3}$

> DNNs to discriminate between signal and background

Results

- > First experimental constraints on κ_4 , first constraints beyond unitarity constraints!
- > Limited by available data statistics and achievable signal-background ratio
- > Significant improvement expected at HL-LHC (studies on-going)

- > Searches in cleaner channels have started:
 - Most promising: 4b2τ

Last update: November 24

High-Luminosity LHC (2030 - 2041)

- Final dataset goal: 3000 fb⁻¹ >
- Compared to >300 fb⁻¹ for Run 2+3 >

Page 60

Challenges

> Significant increase in number of interactions per bunch crossing and particle flux

New ATLAS Inner Tracker

25 interactions (Run 1)

Challenges

> Significant increase in number of interactions per bunch crossing and particle flux

New ATLAS Inner Tracker

200 interactions

Major LHC detector upgrades

- > For example brand-new all-silicon tracking detector for ATLAS (Inner Tracker, ITk)
- > Up to 4 times higher granularity in innermost pixel layers

Partially constructed at DESY!

Major improvements in track reconstruction

> Example: reconstructing tracks in cores of high- p_T jets (dense environments)

Current detector

Major improvements in track reconstruction

- > Example: reconstructing tracks in cores of high- p_T jets (dense environments)
- > Tracking efficiency significantly improved in jet cores \rightarrow better inputs for *b*-tagging

Algorithmic improvements for the HL-LHC

- > Improvements in *b*-tagging crucial for (di-)Higgs analyses
 - Better inputs due to more efficient and accurate tracking and vertexing
 - More performant algorithms (e.g. transformers)

Discovery potential for Higgs pair production at HL-LHC

- > Example: projection in $bb\tau\tau$ channel
- > Largest leverage: experimental improvements
 - Especially *b*-tagging performance
 - Reduction of systematic uncertainties

Baseline: halve theory uncertainties, reduce

selected experimental uncertainties with lumi

Discovery potential for Higgs pair production at HL-LHC

- > Expect to see evidence ($\geq 3\sigma$) in *bbtt* alone before end of HL-LHC
- > Similar projections currently under way for European Strategy for Particle Physics Update
- > Good prospects for discovery by combining several channel
- Further experimental improvements can further boost sensitivity!

Future Collider Plans

- > Higgs factories for precision measurements
- > BSM searches also possible

Future Circular Collider

International Linear Collider

Linear vs circular – it depends on the energy!

- > Circular colliders more competitive at lower collision energies (higher instantaneous luminosity)
- > Linear colliders more competitive at higher collision energies (no losses from synchrotron radiation)

Linear vs circular – it depends on the energy!

> Direct access to trilinear coupling only for \sqrt{s} > 400 GeV \rightarrow linear collider!

Linear vs circular – it depends on the energy!

- > Direct access to trilinear coupling only for \sqrt{s} > 400 GeV \rightarrow linear collider!
- Indirect access via single-Higgs production at lower energies (model dependence!)

Trilinear coupling at the ILC

- > ILC (0.5 TeV): ~20% precision achievable on λ_3
- > ILC (1 TeV): ~10% precision (adding WW production)
- > CLIC (3 TeV): ~ 8% precision

Summary: Part 2

>

>

>

BONUS SLIDES

Triple Higgs 6b search

- > Use DNNs to discriminate between signal and background
- > Distribution of DNN score as discriminating variable
- > High-score region:
 - Signal enriched
 - Used to define signal region
- > Low-score region:
 - Signal depleted
 - Used to improve background estimate in signal region

Triple Higgs 6b search

- > Use DNNs to discriminate between signal and background
- > Separate DNNs for non-resonant (varying κ_3 and κ_4) and resonant (BSM) production
- > Trained on high-level variables describing the triple Higgs system

Data-driven background estimate

- > Key assumption 1: background kinematics do not change significantly with *b*-jet multiplicity
 - \rightarrow Background **shape** in signal region taken from 5*b* region
- > Key assumption 2: yield ratio N_{5b} / N_{4b} = yield ratio N_{6b} / N_{5b}
 - \rightarrow Background **normalisation** by extrapolating yields from 4b and 5b regions
- Validate assumptions in low-score regions and derive systematic uncertainties

Search for VBF production in boosted bbbb events

- > Main background from QCD multi-jet production estimated from data
 - Both multi-*b*-final states and events with mis-identified *b*-jets (10% ttbar events in total)
- Normalisation factor calculated as event ratio between 2Pass and 1Pass CR
 - $w = 0.0081 \pm 0.0010$
 - Signal contamination in 1Pass CR is <8% in highest BDT bin (below stats uncertainty)

Search for VBF production in boosted *bbb* **events**

- > Search primarily statistics-limited but Xbb tagging uncertainties also have a notable impact
- > Interplay between boosted and resolved channels:
 - Resolved more sensitive to κ_{λ} , boosted more sensitive to κ_{2V}

Cut-and-count method

- > Select (**cut**) events that you expect to be consistent with signal (signal region)
- > **Count** data events in signal region and compare with number of expected SM events
- > Calculate significance of deviation from SM prediction (accounting for uncertainties)

Cut-and-count method

- > Select (**cut**) events that you expect to be consistent with signal (signal region)
- > **Count** data events in signal region and compare with number of expected SM events
- > Calculate significance of deviation from SM prediction (accounting for uncertainties)

- > Advantage: suited for low-stat regions, model agnostic
- > **Disadvantage**: single bin \rightarrow vulnerable to fluctuations \rightarrow less sensitive

Monte Carlo event generators in a nutshell

- > Quantum nature of elementary particle interactions: non-deterministic
 - Given initial state can lead to different final states with different probabilities
- > Idea:
 - Calculate probability distribution for a given process (or sub-processes)
 - Random sampling to generate events with particle kinematics according to these distributions

Experimental Techniques

Exercise

> Define a signal region for semi-leptonic ttbar decay

> For simplicity assume that charged lepton is an electron or muon

Exercise

> Define a signal region for semi-leptonic ttbar decay

- > Exactly 1 electron or muon
- > Missing energy (from the neutrino)
- > At least 4 jets
- > Bonus 1: 2 jets identified as b-jets
- > Bonus 2:
 - Combined mass of 2 jets = W mass
 - Combined mass of 3 jets = top mass

Exercise: Solution

- > Apply selection criteria (cuts) to reduce background
- > Signal-enriched region (signal region)
- > Additional cuts based on differences in kinematic distributions

- > Apply selection criteria (cuts) to reduce background
- > Signal-enriched region (signal region)
- > Additional cuts based on differences in kinematic distributions

3-jet mass (GeV/c2)

- > Apply selection criteria (cuts) to reduce background
- > Signal-enriched region (signal region)
- > Additional cuts based on differences in kinematic distributions

- > Apply selection criteria (cuts) to reduce background
- > Signal-enriched region (signal region)
- > Additional cuts based on differences in kinematic distributions

> Can refine signal regions using machine-learning algorithms

- Exploit small differences in various kinematic variables
- Exploit correlations

A final signal region

Event simulation

- > Simulate possible signals based on theoretical models
 - Optimise sensitivity of searches
- > Simulate background processes
 - Compare predictions to data and look for deviations
 - Some background processes can be simulated very accurately...
 - ... others not (see data-driven estimates later)
- > Estimate systematic uncertainties
 - Create different background predictions within experimental uncertainties
 - E.g. top mass known with ±1 GeV uncertainty
 - → Simulate top quark pair production for m_{top} (central) and m_{top} (central)±1 GeV

Simulation step by step

> Hard processes (large momentum transfers): perturbative QCD

- hard scattering
- (QED) initial/final state radiation

Simulation step by step

- hard scattering
- (QED) initial/final state radiation
- partonic decays, e.g. $t \rightarrow bW$
- parton shower evolution
- nonperturbative gluon splitting

Simulation step by step

> Hadronisation (soft, low energy): non-perturbative QCD eseee σ

- hard scattering
- (QED) initial/final state radiation
- partonic decays, e.g. $t \rightarrow bW$
- parton shower evolution
- nonperturbative gluon splitting
- colour singlets
- colourless clusters
- cluster fission
- cluster \rightarrow hadrons
- hadronic decays

Think outside the (black)box!

- > Many different event generators available for HEP/LHC
 - Choice depends on process, required precision, ...
 - E.g. matrix-element generators: MadGraph, Powheg
 - E.g. matrix-element + parton-shower generators: Pythia, Herwig
 - Important to understand differences and subtleties to not treat them as blackboxes!

"[...] remember that the programs **do not represent a dead collection of established truths**, but rather one of many possible approaches to the problem of multiparticle production in high-energy physics, at the frontline of current research. **Be critical!**"

From the manual of the Pythia5 MC generator

Further aspects

- > Simulate interactions of (collider) stable particle with detector material
 - Geant4, Delphes, ...

Further aspects

- > Simulate interactions of (collider) stable particle with detector material
 - Geant4, Delphes, ...
- > Specifically for hadron colliders (LHC, Tevatron, ...):
 - Underlying Event: simulate interactions of additional partons within same two protons

Further aspects

- > Simulate interactions of (collider) stable particle with detector material
 - Geant4, Delphes, ...
- > Specifically for hadron colliders (LHC, Tevatron, ...):
 - **Underlying Event**: simulate interactions of additional partons within same two protons
 - **Pile-up**: simulate interactions of additional protons in the same bunch crossing

> Further reading:

lecture by M. Seymour and M. Marx [link]

Estimating background processes from data

- > Simulation not always feasible for estimating background processes
 - Instrumental backgrounds (related to detector effects)
 - Jets with high EM component faking electrons
 - Backgrounds from detector noise
 - ...
 - Processes with large cross-section that would require large MC statistics
 - Mostly multijets at the LHC
 - Known modeling limitations
 - Missing higher-order processes
 - ...
- > Use fully data-driven estimates or data-driven corrections

Sidebands

- > Assume known signal region (= location in the spectrum)
- > Fit background in sidebands (= adjoining parts of the spectrum, signal depleted)
- > Extrapolate to signal region

Control Regions

- > Same idea as with sidebands but using a modified selection to define a control region
 - Orthogonal to signal region, signal depleted

- > Must be carefully designed to
 - Be signal depleted

...

- Be enriched in background of interest
- Close enough to SR to avoid biases

A final signal region

- > Various different sources:
 - Modeling uncertainties, e.g. unknown higher-order corrections
 - Experimental uncertainties, e.g. uncertainties on electron energy measurement
- > Propagate to final spectrum
- > Uncertainties degrade sensitivity to signal

A final signal region

What are we looking for?

> Most generally put: we search for a significant deviation from the SM prediction

- > Different search strategies
 - Cut-and-count method
 - Bump hunt
 - Tail hunt

. .

> Each comes with its own set of advantages/disadvantages!

Bump Hunting

- > Search for a localised deviation in the distribution of a variable of interest
 - Typically: invariant mass

Bump Hunting

- > Search for a localised deviation in the distribution of a variable of interest
 - Typically: invariant mass
- > Most recent successful example:
 - Higgs boson discovery (2012, CERN)

Tail Hunting

- > Search for a tail enhancement in the distribution of a variable of interest
- > Typical examples:
 - Resonances beyond reach of the LHC

Tail Hunting

- Search for a tail enhancement in the distribution of a variable of interest
- Typical examples:
 - Resonances beyond reach of the LHC
 - Non-resonant production of new particles
 - E.g. dark matter or dark energy

ATLAS

 $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$

Signal Region

p_{_}(j_,) > 150 GeV

 10^{7}

10⁶

Data

Standard Model w. unc.

VBF Z(\rightarrow II / $\nu\nu$) + jets

 $Z(\rightarrow \nu\nu)$ + jets

 $W(\rightarrow lv) + jets$

Tail Hunting

Search for a tail enhancement in the distribution of a variable of interest

Typical examples: >

- Resonances beyond reach of the LHC
- Non-resonant production of new particles

Advantages: >

> Sensitive to processes that cannot be identified by bump hunts

Disadvantages: >

- Tails of distributions suffer from low statistics
- Often sizeable systematic uncertainties
- E.g. due to missing higher-order calculations

What if new particles are less obvious to spot?

> Bump hunt assumes "signal sitting on top of background": $S + B = |s|^2 + |b|^2$

What if new particles are less obvious to spot?

- > Bump hunt assumes "signal sitting on top of background": $S + B = |s|^2 + |b|^2$
- > Quantum mechanics: two processes with same initial and same final state will interfere!
 - $|s + b|^2 = |s|^2 + 2 \operatorname{Re}(s b) + |b|^2 = S + I + B → Interference!!$

What if new particles are less obvious to spot?

- > Bump hunt assumes "signal sitting on top of background": $S + B = |s|^2 + |b|^2$
- > Quantum mechanics: two processes with same initial and same final state will interfere!
 - $|s + b|^2 = |s|^2 + 2 \operatorname{Re}(s b) + |b|^2 = S + I + B → Interference!!$

Beyond Bump Hunts

- > Prominent example: decay of a heavy Higgs boson A/H to a top-antitop quark pair
- > Need cutting edge methods \rightarrow on-going research @ DESY

A final signal region

Statistical analysis

> Two statistical analysis stages in BSM searches:

- Quantify agreement between data and SM prediction (*"Any interesting deviation?"*)
- Quantify (dis)agreement between data and BSM hypothesis (*"limit setting"*)

Step 1: quantify agreement with SM prediction

- > Null hypothesis H₀: SM only, no BSM
- > **p-value**: probability that H_0 produces deviation at least as extreme as the one observed
- > Simple example: cut-and-count

Step 1: quantify agreement with SM prediction

- > Null hypothesis H₀: SM only, no BSM
- > **p-value**: probability that H_0 produces deviation at least as extreme as the one observed
- > Or quote **significance** instead:

$$Z = \Phi^{-1}(1-p)$$

> where Φ^{-1} is inverse of cumulative Gaussian

- > If excess was found: test agreement with BSM ... and open the champagne ;)
- > If no excess was found: test degree to which H₁ is excluded by data (limit setting)

- > Usually, setup is more complicated: many bins, many signal regions
- > Construct a likelihood function that quantifies data/MC agreement in all bins

Further reading: Lecture by G. Cowan [link]

- > CL(s+b) probability to falsely reject signal because it is too similar to background
- > Confidence level
 - H_1 excluded at 95% CL if CL(s+b) < 0.05

> Problem:

- Danger to falsely reject H_1 even if separation between H_1 and H_0 is poor, i.e. sensitivity to H_1 is low
- > Solution:
 - CL(s) = CL(s+b)/[1-CL(b)]
- > Confidence level
 - H₁ excluded at 95% CL if CL(s) < 0.05

A final result

> The famous "Brazilian" plot, showing observed and expected exclusion limits with error bands

Where do we stand?

- > No significant (5 σ) deviation from the SM observed so far.
- > Results constrain BSM models...
- > ... and point to uncharted territory!

Muon g-2 (1)

> Anomalous magnetic moment of the muon in analogy to that of the electron

 $\vec{\mu} = g \, \frac{q}{2m} \, \vec{S}$

- > Loop quantum corrections: $g \neq 2$
- > Anomalous magnetic moment: a = (g-2)/2

> Sensitive to large range of possible quantum corrections, including possible BSM contributions

Muon g-2 (2)

- > Storage ring with polarised muons in magnetic field \rightarrow measure precession frequency
- > Measurements at BNL (2004) first revealed tension with SM of 2.6 σ significance
- > Confirmed by new Fermilab measurement (2021) at 4.2 σ combined significance
 - More data is being taken and analysed

Future Collider Plans

- > Higgs factories for precision measurements
- > BSM searches also possible

International Linear Collider

Future Circular Collider