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Motivation

Motivation
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LHC
Large Hadron Collider
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Challenges

The Big Questions
• What is the nature of dark matter?

• What are the properties of the Higgs boson?

• What is the quantum structure of the vacuum?

• . . .

The challenge
• Solve master equation

new physics = data − Standard Model
• LHC experiments deliver high precision measurements

• searches require understanding of SM background

• theory has to match or exceed accuracy of LHC data
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Standard Model cross sections

• Standard Model cross sections and predictions at the LHC CMS coll. ‘22
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QCD factorization

QCD factorization
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QCD factorization

µ µ

p
fi

i

pj

fj

Q

X

Dk

k

σpp→X =
∑

ij

fi(µ
2)⊗ fj(µ

2)⊗ σ̂ij→X

(
αs(µ

2), Q2, µ2,m2
X

)

• Factorization at scale µ
• separation of sensitivity to dynamics from long and short distances

• Hard parton cross section σ̂ij→X calculable in perturbation theory

• cross section σ̂ij→k for parton types i, j and hadronic final state X

• Non-perturbative parameters: parton distribution functions fi,
strong coupling αs, particle masses mX

• known from global fits to exp. data, lattice computations, . . .
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Parton luminosity

• Long distance dynamics due to proton structure

µ µ

p
fi

i

pj

fj

• Cross section depends on parton distributions fi

σpp→X =
∑

ij

fi(µ
2)⊗ fj(µ

2)⊗
[

. . .

]

• Parton distributions known from global fits to exp. data

• available fits accurate to NNLO
• information on proton structure depends on kinematic coverage
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Hard scattering cross section

• Parton cross section σ̂ij→k calculable pertubatively in powers of αs
• known to NLO, NNLO, . . . (O(few%) theory uncertainty)

µ µ
Q

X

Dk

k

ji

• Accuracy of perturbative predictions

• LO (leading order) (O(50− 100%) unc.)

• NLO (next-to-leading order) (O(10− 30%) unc.)

• NNLO (next-to-next-to-leading order) ( <
∼ O(10%) unc.)

• N3LO (next-to-next-to-next-to-leading order)
• . . .
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Perturbation theory at work

Perturbation theory at work

Sven-Olaf Moch Introduction to Computer Algebra – p.10



QCD Lagrangian

• Classical part of QCD Lagrangian

Lcl = −1

4
F aµνF

µν
a +

∑

flavors

ψ̄i (i /D −mq)ij ψj

• Matter fields ψi, ψ̄j with i, j = 1, . . . , 3 (fundamental rep.)

• covariant derivative Dµ,ij = ∂µδij + igs (ta)ij A
a
µ

• Field strength tensor F aµν with a = 1, . . . , 8 (adjoint rep.)

• covariant derivative Dµ,ab = ∂µδab − gsfabcAcµ
• F aµν = ∂µA

a
ν − ∂νAaµ − gsfabcAbµAcν

• Formal parameters of the theory (no observables)

• strong coupling αs = g2s/(4π)
• quark masses mq

Quantization

• Gauge fixing (Feynman gauge λ = 1) Lgauge−fix = − 1
2λ

(
∂µAaµ

)2

• Ghosts (Grassmann fields η) Lghost = ∂µη
a†
(
Dµ
abη

b
)

(removal of unphysical degrees of freedom for gauge fields) Fadeev, Popov

Sven-Olaf Moch Introduction to Computer Algebra – p.11



Derivation of Feynman rules (I)
From Lagrangian to Feynman rules

• Consider action S

S = i

∫

d4x (Lcl + Lgauge−fix + Lghost) = Sfree + Sint

• Decompose action into free Sfree and interacting part Sint

• Sfree contains bi-linear terms in fields
• Sint contains interactions

• Derivation of Feynman rules

• inverse propagators from Sfree

• interacting parts from Sint (in perturbative expansion)
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Derivation of Feynman rules (I)
From Lagrangian to Feynman rules

• Consider action S

S = i

∫

d4x (Lcl + Lgauge−fix + Lghost) = Sfree + Sint

• Decompose action into free Sfree and interacting part Sint

• Sfree contains bi-linear terms in fields
• Sint contains interactions

• Derivation of Feynman rules

• inverse propagators from Sfree

• interacting parts from Sint (in perturbative expansion)

Examples (I)

• Fermion propagator in QCD from ψ̄iδij (i/∂ −mq)ψj
• substitution ∂µ = −ipµ (Fourier transformation)

• Inverse propagator (momentum space) Γψ̄ψij (p) = −i δij (/p−mq)

• Check: quark propagator ∆ij(p) = +i δij
1

/p−mq + i0
• causality in Minkowski space: prescription +i0
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Derivation of Feynman rules (II)
Examples (II)

• Gluon propagator in QCD from bi-linear terms in F aµνF
µν
a and Lgauge−fix

• recall F aµν = ∂µA
a
ν − ∂νAaµ − gsfabcAbµAcν

• recall Lgauge−fix = − 1

2λ

(
∂µAaµ

)2

• Inverse propagator (momentum space)

ΓAAab;µν(p) = +i δab

[

p2gµν −
(

1− 1

λ

)

pµpν

]

• Gluon propagator ∆ab;µν(p) = +i δab

[
−gµν
p2

+ (1− λ)pµpν
p4

]

• Check: ΓAAac;µρ(p)∆
cb;ρν(p) = δ ba g

ν
µ
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Derivation of Feynman rules (II)
Examples (II)

• Gluon propagator in QCD from bi-linear terms in F aµνF
µν
a and Lgauge−fix

• recall F aµν = ∂µA
a
ν − ∂νAaµ − gsfabcAbµAcν

• recall Lgauge−fix = − 1

2λ

(
∂µAaµ

)2

• Inverse propagator (momentum space)

ΓAAab;µν(p) = +i δab

[

p2gµν −
(

1− 1

λ

)

pµpν

]

• Gluon propagator ∆ab;µν(p) = +i δab

[
−gµν
p2

+ (1− λ)pµpν
p4

]

• Check: ΓAAac;µρ(p)∆
cb;ρν(p) = δ ba g

ν
µ

Examples (III)
• Interactions derived from Sint

• fermion-gluon interaction from ψ̄ii /Aijψj −→ −itaijγµ
• General rule

• replacement of all ∂µ by momenta pµ
(tedious for 3- and 4-gluon interactions)
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Feynman rules (I)

• Propagators

• fermions, gluons, ghosts
• covariant gauge

p

a
p

b

i

a, µ

j

b, ν

δij i

/p−m

δab i







−gµν

p2
+ (1− λ)

pµpν

(p2)2







δab i

p2

p
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Feynman rules (II)

• Vertices
a, µ

i j

−i g (ta)ji γµ

b, ν

q

b, ν

r

pa, µ c, ρ

−g fabc ((p− q)ρgµν + (q − r)µgνρ + (r − p)νgµρ)

a, µ

c, ρ d, σ

−i g2 fxadfxbc (gµνgρσ
− gµρgνσ)

a, µ

q

b c

g fabc qµ

−i g2 fxacfxbd (gµνgρσ
− gµσgνρ)

−i g2 fxabfxcd (gµρgνσ
− gµσgνρ)
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Perturbation theory at work

• Perturbative approach straightforward in principle
• draw all Feynman diagrams

• apply Feynman rules and evaluate expressions for matrix elements

• use standard reduction techniques for loops and phase space
integrals

• (Extremely) hard in practice

• intermediate expressions more complicated than final results

• Known bottlenecks
• many diagrams — many diagrams are related by gauge invariance
• many terms in each diagram — nonabelian gauge boson

self-interactions are complicated

• many kinematic variables — allowing the construction of very

complicated expressions

• Computer algebra programs are a standard tool
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Text book example (I)

Operator matrix elements
• Quark operator of spin-N and twist two

O ψ
{µ1,..., µN

} = ψ γ {µ1
Dµ2

. . .Dµ
N

} ψ

• N covariant derivatives Dµ,ij = ∂µδij + igs (ta)ij A
a
µ sandwiched

between quark fields ψ, ψ

• Feynman rules with new vertices for additional gluons coupling to
operator

⊗
p
1

p
2

p
3

p
n

• Evaluation of operators in matrix elements Aψψ with external quark states

Aψψ{µ1,..., µN
} = 〈ψ(p1)|O ψ

{µ1,..., µN
}(−p1 − p2)|ψ(p2)〉

• Zero-momentum transfer through operator reduces problem to

computation of propagator-type diagrams

Real life
• Computation of quantum corrections to Aψψ up to four loops
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Text book example (II)

One-loop computation
• Feynman diagrams

⊗

p1 p2

⊗

p1 p2

⊗

p1 p2

• New Feynman rules for vertices with light-like vector ∆, ∆2 = 0

⊗
p1 p2 /∆ (∆ · p2)N−1

⊗
p1 p2

p3
a3, µ3

−gta3 /∆∆µ3

N−2∑

j1=0

(p2 ·∆)N−2−j1(−p1 ·∆)j1
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Text book example (III)

Two-point integrals

• Massless one-loop scalar two-point function L1
• dimensional regularization with D = 4− 2ǫ

L1 =

∫

dDp1
1

(p21)
ν1 ((p1 − q)2)ν2 q

ν2

ν1
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Text book example (III)

Two-point integrals

• Massless one-loop scalar two-point function L1
• dimensional regularization with D = 4− 2ǫ

L1 =

∫

dDp1
1

(p21)
ν1 ((p1 − q)2)ν2 q

ν2

ν1

• Results for L1

L1 = i (−1)ν1+ν2 π−D/2 (−p2)D/2−ν1−ν2 ×

× Γ(ν1 + ν2 −D/2)Γ(D/2− ν1)Γ(D/2− ν2)
Γ(ν1)Γ(ν2)Γ(D − ν1 − ν2)

• Laurent-expansion of Gamma-function in ǫ = 2− D
2

around positive

integers values (νi ≥ 0)

• Riemann zeta values Γ(1 + ǫ) = 1− ǫγE +
ǫ2

2
(ζ2 + γ2

E) + . . .
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Text book example (IV)

One-loop result
• Computation of loop integral in D = 4− 2ǫ dimensions and expansion in ǫ

∆µ1 . . .∆µ
N 〈ψ(p1)|O ψ

{µ1,..., µN
}(0)|ψ(−p1)〉 =

= 1 +
αs

4π
CF

1

ǫ

{

4S1(N) +
2

N + 1
− 2

N
− 3

}

+O(αsǫ
0) +O(α2

s )

• Details in chapt. 4.6 of
The Theory of Quark and Gluon Interactions

F.J. Yndurain

• One-loop result contains harmonic sum S1(N) (harmonic numbers)

S1(N) =

N∑

i=1

1

i
= 1 +

1

2
+

1

3
+ · · ·+ 1

N

S1(N + 1)− S1(N) =
1

N + 1
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Symbolic Summation

Symbolic Summation
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Symbolic Summation

Polynomial summation

• Examples

n−1∑

i=0

i =
1

2
n(n− 1)

n−1∑

i=0

i2 =
1

6
n(n− 1)(2n− 1)

n−1∑

i=0

i3 =
1

4
n2(n− 1)2

n−1∑

i=0

i4 =
1

30
n(n− 1)(2n− 1)(3n2 − 3n− 1)
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Difference op 1
Difference operator

• Introduce operator ∆ with (∆f)(n) = f(n+ 1)− f(n)
• If g = (∆f), then (for a, b ∈ N, a ≤ b)

b−1∑

i=a

g(i) =

b−1∑

i=a

(
f(i+ 1)− f(i)

)
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Difference op 1
Difference operator

• Introduce operator ∆ with (∆f)(n) = f(n+ 1)− f(n)
• If g = (∆f), then (for a, b ∈ N, a ≤ b)

b−1∑

i=a

g(i) =

b−1∑

i=a

(
f(i+ 1)− f(i)

)
=

b−1∑

i=a

f(i+ 1)−
b−1∑

i=a

f(i)
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Difference op 1
Difference operator

• Introduce operator ∆ with (∆f)(n) = f(n+ 1)− f(n)
• If g = (∆f), then (for a, b ∈ N, a ≤ b)

b−1∑

i=a

g(i) =

b−1∑

i=a

(
f(i+ 1)− f(i)

)
=

b−1∑

i=a

f(i+ 1)−
b−1∑

i=a

f(i)

=

b∑

i=a+1

f(i)−
b−1∑

i=a

f(i)
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Difference op 1
Difference operator

• Introduce operator ∆ with (∆f)(n) = f(n+ 1)− f(n)
• If g = (∆f), then (for a, b ∈ N, a ≤ b)

b−1∑

i=a

g(i) =

b−1∑

i=a

(
f(i+ 1)− f(i)

)
=

b−1∑

i=a

f(i+ 1)−
b−1∑

i=a

f(i)

=

b∑

i=a+1

f(i)−
b−1∑

i=a

f(i) = f(b)− f(a)
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Difference op 1
Difference operator

• Introduce operator ∆ with (∆f)(n) = f(n+ 1)− f(n)
• If g = (∆f), then (for a, b ∈ N, a ≤ b)

b−1∑

i=a

g(i) =

b−1∑

i=a

(
f(i+ 1)− f(i)

)
=

b−1∑

i=a

f(i+ 1)−
b−1∑

i=a

f(i)

=

b∑

i=a+1

f(i)−
b−1∑

i=a

f(i) = f(b)− f(a)

• Consecutive cancellation of summands: telescoping

• Symbolic summation problem

g = (∆f) with f = (
∑
g), operator ∆ is left inverse ∆(

∑
f) = f

• Cf. symbolic integration (differential operator D)

g = Df =
d

dx
f −→

b∫

a

dxg(x) = f(b)− f(a)
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Difference op 2
Difference operator (cont’d)

• Differential operator D acts in continuum as D(xm) = mxm−1
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Difference op 2
Difference operator (cont’d)

• Differential operator D acts in continuum as D(xm) = mxm−1

• Action of discrete analog ∆ on polynomials?
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Difference op 2
Difference operator (cont’d)

• Differential operator D acts in continuum as D(xm) = mxm−1

• Action of discrete analog ∆ on polynomials?

• Example: ∆(n3) = 3n2 + 3n− 1
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Difference op 2
Difference operator (cont’d)

• Differential operator D acts in continuum as D(xm) = mxm−1

• Action of discrete analog ∆ on polynomials?

• Example: ∆(n3) = 3n2 + 3n− 1

Rising and falling factorials

• Define rising factorials as fm = f(x)f(x+ 1) . . . f(x+m− 1)

(also known as Pochhammer symbols (x)m )
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Difference op 2
Difference operator (cont’d)

• Differential operator D acts in continuum as D(xm) = mxm−1

• Action of discrete analog ∆ on polynomials?

• Example: ∆(n3) = 3n2 + 3n− 1

Rising and falling factorials
• Define falling factorials as fm = f(x)f(x− 1) . . . f(x−m+ 1)

Sven-Olaf Moch Introduction to Computer Algebra – p.24



Difference op 2
Difference operator (cont’d)

• Differential operator D acts in continuum as D(xm) = mxm−1

• Action of discrete analog ∆ on polynomials?

• Example: ∆(n3) = 3n2 + 3n− 1

Rising and falling factorials
• Define falling factorials as fm = f(x)f(x− 1) . . . f(x−m+ 1)

• Then, with falling factorials

∆(xm) = mxm−1
n−1∑

i=0

im =
1

m+ 1
nm+1

• Conversion of polynomial powers xm

(decomposition with Stirling numbers of second kind

{

m

i

}

)

xm =
m∑

i=0

{

m

i

}

xi

• Stirling numbers of second kind denote # of ways to partition n things

in k non-empty sets
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Examples
Examples

• Polynomials

n−1∑

i=0

i =

n−1∑

i=0

i1 =
1

2
n2 =

1

2
n(n− 1)

n−1∑

i=0

i2 =

n−1∑

i=0

(i2 + i1) =
1

3
n3 +

1

2
n2 =

1

6
n(n+ 1)(2n+ 1)

n−1∑

i=0

i3 =

n−1∑

i=0

(i3 + 3i2 + i1) =
1

4
n4 + n3 +

1

2
n2 =

1

4
n2(n+ 1)2
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Harmonic summation

• Harmonic numbers S1(N)
Euler 1775

S1(N) =

N∑

i=1

1

i
= 1 +

1

2
+

1

3
+ · · ·+ 1

N

• Harmonic sums Sm1,...,mk
(n)

Gonzalez-Arroyo, Lopez, Ynduráin ‘79; Vermaseren ‘98; S.M., Uwer, Weinzierl ‘01

• recursive definition S±m1,...,mk
(n) =

n∑

i=1

(±1)i
im1

Sm2,...,mk
(i)
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Harmonic summation

• Harmonic numbers S1(N)
Euler 1775

S1(N) =

N∑

i=1

1

i
= 1 +

1

2
+

1

3
+ · · ·+ 1

N

• Harmonic sums Sm1,...,mk
(n)

Gonzalez-Arroyo, Lopez, Ynduráin ‘79; Vermaseren ‘98; S.M., Uwer, Weinzierl ‘01

• recursive definition S±m1,...,mk
(n) =

n∑

i=1

(±1)i
im1

Sm2,...,mk
(i)

• Expansion of Gamma-function in ǫ = 2− D
2

around positive integers

values (n ≥ 0)

Γ(n+ 1 + ǫ)

Γ(1 + ǫ)
= Γ(n+ 1) exp

(

−
∞∑

k=1

ǫk
(−1)k
k

Sk(n)

)
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Algorithms 1
Algorithms for harmonic sums

• Multiplication (Hopf algebra)

• basic formula (recursion)

Sm1,...,mk
(n)× Sm′

1,...,m
′

l
(n) =

n∑

j1=1

1

jm1
1

Sm2,...,mk
(j1)Sm′

1,...,m
′

l
(j1)

+

n∑

j2=1

1

j
m′

1
2

Sm1,...,mk
(j2)Sm′

2,...,m
′

l
(j2)

−
n∑

j=1

1

jm1+m
′

1
Sm2,...,mk

(j)Sm′

2,...,m
′

l
(j)

• Proof uses decomposition

n∑

i=1

n∑

j=1

aij =

n∑

i=1

i∑

j=1

aij +

n∑

j=1

j∑

i=1

aij −
n∑

i=1

aii

✲

✻

j1

j2

=

✲

✻

j1

j2

+

✲

✻

j1

j2

−

✲

✻

j1

j2
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Algorithms 2
Algorithms for harmonic sums (cont’d)

• Convolution (sum over n− j and j)

n−1∑

j=1

1

jm1
Sm2,...,mk

(j)
1

(n− j)n1
Sn2,...,nl

(n− j)

• Conjugation

−
n∑

j=1

(

n

j

)

(−1)j 1

jm1
Sm2,...,mk

(j)

• Binomial convolution (sum over binomial, n− j and j)

−
n−1∑

j=1

(

n

j

)

(−1)j 1

jm1
Sm2,...,mk

(j)
1

(n− j)n1
Sn2,...,nl

(n− j)
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Hypergeometric summation

Definition

• Hypergeometric function mFn

mFn

(

a1, . . . , am

b1, . . . , bn

∣
∣
∣
∣
z

)

=
∑

i≥0

ai1 . . . a
i
m

bi1 . . . b
i
n

zi

i!
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Hypergeometric summation

Definition

• Hypergeometric function mFn

mFn

(

a1, . . . , am

b1, . . . , bn

∣
∣
∣
∣
z

)

=
∑

i≥0

ai1 . . . a
i
m

bi1 . . . b
i
n

zi

i!

Examples

0F0

( ∣
∣
∣
∣
z

)

=
∑

i≥0

zi

i!
= exp(z)

2F1

(

a, 1

1

∣
∣
∣
∣
z

)

=
∑

i≥0

ai
zi

i!
=

1

(1− z)a

2F1

(

1, 1

2

∣
∣
∣
∣
z

)

= z
∑

i≥0

1i1i

2i
zi

i!
= − ln(1− z)
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Higher transcendental functions
Higher transcendental functions

• Hypergeometric function

2F1(a, b; c, x0) =
∞∑

i=0

aibi

ci
xi0
i!

• First Appell function

F1(a, b1, b2; c;x1, x2) =
∞∑

m1=0

∞∑

m2=0

am1+m2bm1
1 bm2

2

cm1+m2

xm1
1

m1!

xm2
2

m2!

• Second Appell function

F2(a, b1, b2; c1, c2;x1, x2) =

∞∑

m1=0

∞∑

m2=0

am1+m2bm1
1 bm2

2

cm1
1 cm2

2

xm1
1

m1!

xm2
2

m2!
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Holonomic functions

Holonomic functions
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Classes of functions

• Some common classes of functions

algebraic

functions
rationial
functions

polynomial

functions

hypergeom.
functions

holonomic
functions

all functions
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Holonomic functions

• Definition (continuous case of one variable): A function f is called

holonomic if there exist polynomials p0, . . . , pr not all zero, such that

p0(x)f(x) + p1(x)f
′(x) + p2(x)f

′′(x) + · · ·+ pr(x)f
(r)(x) = 0

• Examples:

• exp(x) : f ′(x)− f(x) = 0

• ln(1− x) : (x− 1)f ′′(x)− f ′(x) = 0

• 1

1+
√

1−x2
: (x3 − x)f ′′(x) + (4x2 − 3)f ′(x) + 2xf(x) = 0

• Bessel functions, Hankel functions, Struve functions, Airy functions,

Polylogarithms, Elliptic integrals, the Error function, Kelvin functions,

Mathieu functions, . . .
• many functions which have no name and no closed form
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Holonomic functions

• Definition (continuous case of one variable): A function f is called

holonomic if there exist polynomials p0, . . . , pr not all zero, such that

p0(x)f(x) + p1(x)f
′(x) + p2(x)f

′′(x) + · · ·+ pr(x)f
(r)(x) = 0

• Not holonomic:
• exp(exp(x)− 1)
• Riemann Zeta function
• many functions which have no name and no closed form

• This means that these functions can (provably) not be viewed as

solutions of a linear differential equation with polynomial coefficients.
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Holonomic functions

• Approximately 60% of the functions in Abramowitz and Stegun’s

handbook fall into the category of holonomic functions in one variable.

• Handbook of Mathematical Functions

M. Abramowitz, I. Stegun
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Differential equations

Theorem
• The solution set of a linear differential equation of order r is a vector

space of dimension r.

Consequences
• A holonomic function f is uniquely determined by

• the differential equation

• a finite number of initial values f(0), f ′(0), f ′′(0), . . . , f (k)(0)

(usually, k = r suffices.)

• A holonomic function can be represented exactly by a finite amount of

data (assuming that the constants appearing in equation and initial

values belong to a suitable subfield of C, e.g., to Q.)
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Examples
Examples

• f(x) = exp(x)

←→ f ′(x)− f(x) = 0 with f(0) = 1

• f(x) = ln(1− x)
←→ (x− 1)f ′′(x)− f ′(x) = 0 with f(0) = 0, f ′(0) = −1

• f(x) = 1

1+
√

1−x2

←→ (x3 − x)f ′′(x) + (4x2 − 3)f ′(x) + 2xf(x) = 0 with

f(0) = 1
2
, f ′(0) = 0

• f(x) = I5(x) (fifth modified Bessel function of the first kind)

←→ x2f ′′(x) + xf ′(x)− (x2 + 25)f(x) = 0

with f(0) = f ′(0) = · · · = f (4)(0) = 0, f (5)(0) = 1
32

• . . .
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Holonomic sequences

• Definition (discrete case of one variable): A sequence (an)
∞
n=0 is called

holonomic if there exist polynomials p0, . . . , pr not all zero, such that

p0(n)an + p1(n)an+1 + p2(n)an+2 + · · ·+ pr(n)an+r = 0

• Examples:
• 2n : an+1 − 2an = 0
• n! : an+1 − (n+ 1)an = 0

•
n∑

i=0

(−1)i

i!
: (n+ 2)an+2 − (n+ 1)an+1 − an = 0

• Fibonacci numbers, Harmonic numbers, Perrin numbers, diagonal

Delannoy numbers, Motzkin numbers, Catalan numbers, Apery

numbers, Schröder numbers, . . .
• many sequences which have no name and no closed form
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Holonomic sequences

• Definition (discrete case of one variable): A sequence (an)
∞
n=0 is called

holonomic if there exist polynomials p0, . . . , pr not all zero, such that

p0(n)an + p1(n)an+1 + p2(n)an+2 + · · ·+ pr(n)an+r = 0

• Not holonomic:

• 22
n

• sequence of prime numbers

• many sequences which have no name and no closed form

• This means that these sequences can (provably) not be viewed as

solutions of a linear recurrence equation with polynomial coefficients.
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Holonomic sequences

• Approximately 25% of the sequences in Sloane’s Online Encyclopedia of

Integer Sequences fall into the category of holonomic sequences in one

variable.
• Online Encyclopedia of Integer Sequences https://oeis.org/
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Difference equations

Theorem
• The solution set of a linear recurrence equation of order r whose leading

coefficient has s integer roots greater than r is a vector space of

dimension s+ r.

Consequences
• A holonomic sequence (an)

∞
n=0 is uniquely determined by a holonomic

function f is uniquely determined by
• the recurrence equation

• a finite number of initial values a0, a1, a2, . . . , ak (usually, k = r
suffices.)

• A holonomic sequence can be represented exactly by a finite amount of

data. (assuming that the constants appearing in equation and initial

values belong to a suitable subfield of C, e.g., to Q.)
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Examples
Examples

• an = 2n

←→ an+1 − 2an = 0 with a0 = 1

• an = n!
←→ an+1 − (n+ 1)an = 0 with a0 = 1

• an =
n∑

i=0

(−1)i

i!

←→ (n+ 2)an+2 − (n+ 1)an+1 − an = 0 with a0 = 1, a1 = 0

• an = I(n) (number of involutions of n letters)

←→ an+3 + nan+2 − (3n+ 6)an+1 − (n+ 1)(n+ 2)an = 0 with
a0 = 1, a1 = 1, a2 = 2

• . . .
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Conversion

Theorem
• Conversion of difference to differential equations:

Let a(x) =
∑∞
n=0 an x

n, then a(x) is holonomic as function←→ (an)
∞
n=0

is holonomic as sequence

Consequences
• Given a differential equation for a(x), one can compute a recurrence for

(an)
∞
n=0

• Given a recurrence for (an)
∞
n=0, we can compute a differential equation

for a(x)
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Polynomials

Polynomials as sequences

• Examples

1

1− x =
∞∑

i=0

1xi

Dx
1

1− x =
1

(1− x)2 =

∞∑

i=0

i xi−1 =

∞∑

i=0

(i+ 1)xi

D2
x

1

1− x =
2

(1− x)3 =

∞∑

i=0

i (i− 1)xi−2 =

∞∑

i=0

(i+ 1) (i+ 2)xi

D3
x

1

1− x =
6

(1− x)4 =
∞∑

i=0

i (i− 1) (i− 2)xi−3 =
∞∑

i=0

(i+ 1) (i+ 2) (i+ 3)xi
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Harmonic polylogarithms

• Harmonic polylogarithms Hm1,...,mk
(x)

Remiddi, Vermaseren ‘99

• physical quantities in momentum (x)-space
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Harmonic polylogarithms

• Harmonic polylogarithms Hm1,...,mk
(x)

Remiddi, Vermaseren ‘99

• physical quantities in momentum (x)-space
• basic functions of lowest weight

H0(x) = ln x , H1(x) = − ln(1− x) , H−1(x) = ln(1 + x)
• higher functions defined by recursion

Hm1,...,mw
(x) =

∫ x

0

dz fm1(z) Hm2,...,mw
(z)

f0(x) =
1

x
, f1(x) =

1

1− x , f−1(x) =
1

1 + x
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Harmonic polylogarithms

• Harmonic polylogarithms Hm1,...,mk
(x)

Remiddi, Vermaseren ‘99

• physical quantities in momentum (x)-space
• basic functions of lowest weight

H0(x) = ln x , H1(x) = − ln(1− x) , H−1(x) = ln(1 + x)
• higher functions defined by recursion

Hm1,...,mw
(x) =

∫ x

0

dz fm1(z) Hm2,...,mw
(z)

f0(x) =
1

x
, f1(x) =

1

1− x , f−1(x) =
1

1 + x

• Algebra under multiplication

Hm1,...,mr
(x)Hn1,...,ns

(x) −→ Hm1,...,mr+s
(x)

• Integral transformation (Mellin transform to discrete N )

f̃(N) =

∫ 1

0

dx xN f(x)

• unique mapping
Hm1,...,mw

(x)

(1± x) ←→ Sn1,...,nw+1(N)
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Iterated integrals
Algebra of words

• Consider alphabet alphabet of length l = 3
• harmonic polylogarithms arise from iterated integrals over letters
x, 1± x

Iterated integrals
• Generalization:

• hyperlogarithms (mathematics definition Poincaré)

• generalized polylogarithms Limk,...,m1(xk, ..., x1) Goncharov ‘98; Borwein,

Bradley, Broadhurst, Lisonek ‘99

• Words w = mσ1 . . .mσn from letters w = mσi associated to generalized

polylogarithms

Limk,...,m1(xk, ..., x1) =

=

x1x2...xk∫

0

(
dt′

t′
◦
)m1−1

︸ ︷︷ ︸

dt′m1−1

t′m1−1

. . .
dt′1
t′1

︸ ︷︷ ︸

(m1−1) times

dtk
x2x3...xk − tk

· · ·
t2∫

0

(
dt′

t′
◦
)mk−1

dt1
1− t1

Sven-Olaf Moch Introduction to Computer Algebra – p.44



Summary

Perturbation theory at work
• Computer algebra is indispensable tool for computation of perturbative

corrections

Symbolic sums
• Algorithms for symbolic summation and recurrence relations

Polylogarithms
• Holonomic functions as solutions to set of a linear differential equations
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Literature (I)

• Text books
• Modern Computer Algebra

J. von zur Gathen, J. Gerhard

• Concrete Mathematics

R. L Graham, D. E. Knuth, O. Pataschnik

• Concrete Tetrahydron

M. Kauers, P. Paule

• A=B

M. Petkovsek, H. S. Wilf, D. Zeilberger www.math.upenn.edu/˜ wilf/AeqB.html

• Mathematics by Experiment

J.M. Borwein, D. Bailey
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Literature (II)

• Selected research articles
• Harmonic sums, Mellin transforms and integrals, J. Vermaseren; hep-ph/9806280

• Nested sums, expansion of transcendental functions and multi-scale multi-loop

integrals, S.M., P. Uwer, S. Weinzierl; hep-ph/0110083

• Gauss hypergeometric function: Reduction, epsilon-expansion for

integer/half-integer parameters and Feynman diagrams, M. Yu. Kalmykov;

hep-th/0602028

• HypExp 2, Expanding Hypergeometric Functions about Half-Integer Parameters,
T. Huber, D. Maitre; 0708.2443

• On the analytic computation of massless propagators in dimensional regularization,
E. Panzer; 1305.2161

• . . .
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Software (I)

Requirements in particle physics
• Symbolic calculations characterized by need for basic operations

• sorting, gcd, factorization, multiplication

• symbolic integration/summation

• solution of systems of equations
• . . .

• Specialized code usually written by the user
• largely dependent on the physics problem

• add-on libraries
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Software (II)

• Commercial programs: Mathematica, Maple, . . .

• Freeware/Add-on packages

• Mathematica, Maple
• several packages for hypergeometric summation

[see for instance www.math.upenn.edu/˜ wilf/AeqB.html]

• RISC software for symbolic summation and integration
www.risc.jku.at/research/combinat/software

• expansion of hypergeometric functions HypExp, T. Huber, D. Maitre

• reduction of hypergeometric functions HyperDire, V. Bytev

• hyperlogarithmic integration HyperInt, E. Panzer

• GINAC www.ginac.de

• nestedsums, S. Weinzierl

• FORM www.nikhef.nl/˜ form

• Summer6, J. Vermaseren

• XSummer, S.M., P. Uwer
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