Introduction to Computer Algebra

Sven-Olaf Moch

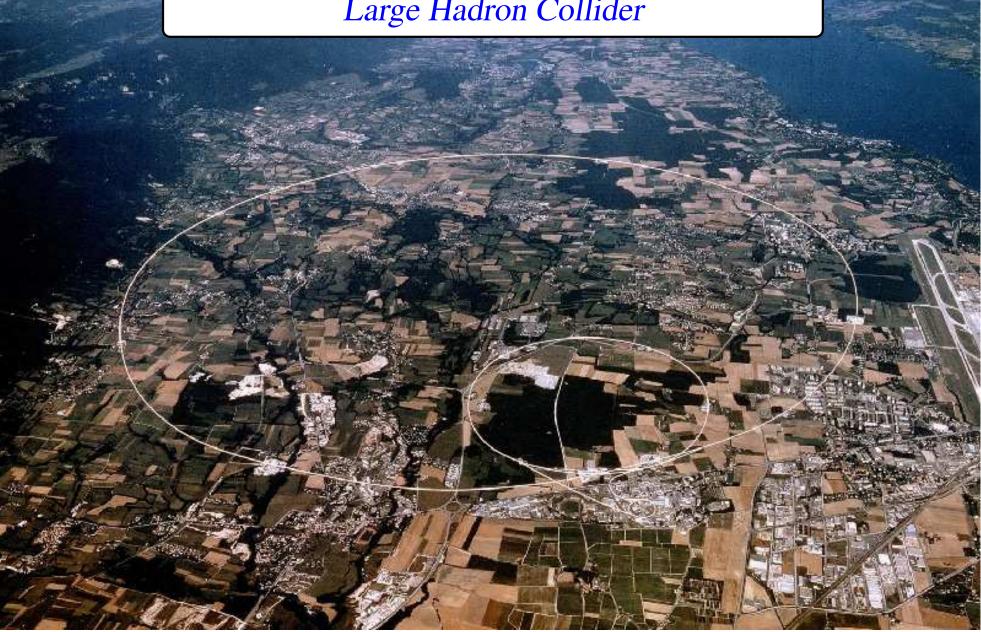
Universität Hamburg

- Computer Algebra and Particle Physics 2025, Hamburg, March 24, 2025 -

Sven-Olaf Moch

Introduction to Computer Algebra – p.1

Motivation



Challenges

The Big Questions

- What is the nature of dark matter?
- What are the properties of the Higgs boson?
- What is the quantum structure of the vacuum?
- ..

The challenge

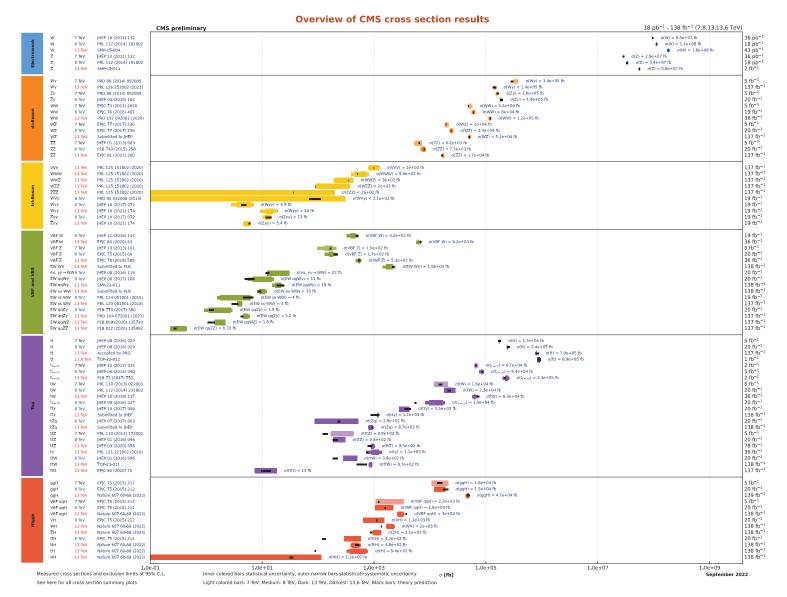
Solve master equation

new physics = data – Standard Model

- LHC experiments deliver high precision measurements
 - searches require understanding of SM background
 - theory has to match or exceed accuracy of LHC data

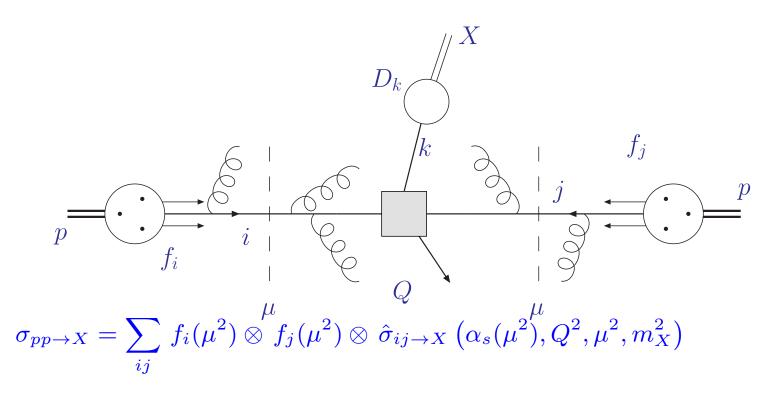
Standard Model cross sections

Standard Model cross sections and predictions at the LHC CMS coll. '22



QCD factorization

QCD factorization



- Factorization at scale μ
 - separation of sensitivity to dynamics from long and short distances
- Hard parton cross section $\hat{\sigma}_{ij \to X}$ calculable in perturbation theory
 - cross section $\hat{\sigma}_{ij \to k}$ for parton types i, j and hadronic final state X
- Non-perturbative parameters: parton distribution functions f_i , strong coupling α_s , particle masses m_X
 - known from global fits to exp. data, lattice computations, ...

Parton luminosity

Long distance dynamics due to proton structure

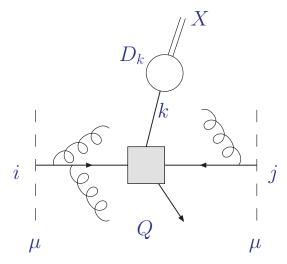
Cross section depends on parton distributions *f_i*

$$\sigma_{pp \to X} = \sum_{ij} f_i(\mu^2) \otimes f_j(\mu^2) \otimes \left[\dots \right]$$

- Parton distributions known from global fits to exp. data
 - available fits accurate to NNLO
 - information on proton structure depends on kinematic coverage

Hard scattering cross section

- Parton cross section $\hat{\sigma}_{ij \rightarrow k}$ calculable pertubatively in powers of α_s
 - known to NLO, NNLO, $\dots (\mathcal{O}(\text{few}\%)$ theory uncertainty)



- Accuracy of perturbative predictions
 - LO (leading order)
 - NLO (next-to-leading order)
 - NNLO (next-to-next-to-leading order)
 - N³LO (next-to-next-to-next-to-leading order)

 $(\mathcal{O}(50 - 100\%) \text{ unc.}) \ (\mathcal{O}(10 - 30\%) \text{ unc.}) \ (\lesssim \mathcal{O}(10\%) \text{ unc.})$

Perturbation theory at work

QCD Lagrangian

Classical part of QCD Lagrangian

$$\mathcal{L}_{\rm cl} = -\frac{1}{4} F^a_{\mu\nu} F^{\mu\nu}_a + \sum_{\rm flavors} \bar{\psi}_i \left(i D - m_q\right)_{ij} \psi_j$$

- Matter fields $\psi_i, \overline{\psi}_j$ with i, j = 1, ..., 3 (fundamental rep.)
 - covariant derivative $D_{\mu,ij} = \partial_{\mu} \delta_{ij} + ig_s (t_a)_{ij} A^a_{\mu}$
- Field strength tensor $F^a_{\mu\nu}$ with $a = 1, \ldots, 8$ (adjoint rep.)
 - covariant derivative $D_{\mu,ab} = \partial_{\mu}\delta_{ab} g_s f_{abc} A^c_{\mu}$
 - $F^a_{\mu\nu} = \partial_\mu A^a_\nu \partial_\nu A^a_\mu g_s f_{abc} A^b_\mu A^c_\nu$
- Formal parameters of the theory (no observables)
 - strong coupling $\alpha_s = g_s^2/(4\pi)$
 - quark masses m_q

Quantization

- Gauge fixing (Feynman gauge $\lambda = 1$) $\mathcal{L}_{
 m gauge-fix} = -rac{1}{2\lambda} \left(\partial^{\mu} A^{a}_{\mu} \right)^{2}$
- Ghosts (Grassmann fields η) $\mathcal{L}_{ghost} = \partial_{\mu} \eta^{a\dagger} \left(D^{\mu}_{ab} \eta^{b} \right)$ (removal of unphysical degrees of freedom for gauge fields) Fadeev, Popov

From Lagrangian to Feynman rules

- Consider action S $S = i \int d^4x \left(\mathcal{L}_{cl} + \mathcal{L}_{gauge-fix} + \mathcal{L}_{ghost} \right) = S_{free} + S_{int}$
- Decompose action into free $S_{\rm free}$ and interacting part $S_{\rm int}$
 - $S_{\rm free}$ contains bi-linear terms in fields
 - S_{int} contains interactions
- Derivation of Feynman rules
 - inverse propagators from $S_{
 m free}$
 - interacting parts from S_{int} (in perturbative expansion)

From Lagrangian to Feynman rules

- Consider action S $S = i \int d^4x \left(\mathcal{L}_{cl} + \mathcal{L}_{gauge-fix} + \mathcal{L}_{ghost} \right) = S_{free} + S_{int}$
- Decompose action into free $S_{
 m free}$ and interacting part $S_{
 m int}$
 - $S_{\rm free}$ contains bi-linear terms in fields
 - S_{int} contains interactions
- Derivation of Feynman rules
 - inverse propagators from $S_{\rm free}$
 - interacting parts from S_{int} (in perturbative expansion)

Examples (I)

- Fermion propagator in QCD from $\bar{\psi}_i \delta_{ij} \, \left(\mathrm{i} \partial \!\!\!/ m_q \right) \psi_j$
 - substitution $\partial_{\mu} = -ip_{\mu}$ (Fourier transformation)
- Inverse propagator (momentum space) $\Gamma^{ar{\psi}\psi}_{ij}(p) = -\mathrm{i}\,\delta_{ij}\,(p \!\!\!/ m_q)$
- Check: quark propagator $\Delta_{ij}(p) = +i \, \delta_{ij} \, \frac{1}{\not p m_a + i0}$
 - causality in Minkowski space: prescription +i0

Examples (II)

- Gluon propagator in QCD from bi-linear terms in $F^a_{\mu
 u}F^{\mu
 u}_a$ and $\mathcal{L}_{
 m gauge-fix}$
 - recall $F^a_{\mu\nu} = \partial_\mu A^a_
 u \partial_
 u A^a_\mu g_s f_{abc} A^b_\mu A^c_
 u$
 - recall $\mathcal{L}_{\text{gauge-fix}} = -\frac{1}{2\lambda} \left(\partial^{\mu} A^{a}_{\mu} \right)^{2}$
- Inverse propagator (momentum space) $\Gamma^{AA}_{ab;\mu\nu}(p) = +i \,\delta_{ab} \left[p^2 g_{\mu\nu} - \left(1 - \frac{1}{\lambda} \right) p_{\mu} p_{\nu} \right]$
- Gluon propagator $\Delta^{ab;\mu\nu}(p) = +i \delta_{ab} \left[\frac{-g_{\mu\nu}}{p^2} + (1-\lambda) \frac{p_{\mu}p_{\nu}}{p^4} \right]$

• Check:
$$\Gamma^{AA}_{ac;\mu\rho}(p) \Delta^{cb;\rho\nu}(p) = \delta^{\ b}_a g^{\ \nu}_{\mu}$$

Examples (II)

- Gluon propagator in QCD from bi-linear terms in $F^a_{\mu
 u}F^{\mu
 u}_a$ and $\mathcal{L}_{
 m gauge-fix}$
 - recall $F^a_{\mu\nu} = \partial_\mu A^a_
 u \partial_
 u A^a_\mu g_s f_{abc} A^b_\mu A^c_
 u$
 - recall $\mathcal{L}_{\text{gauge-fix}} = -\frac{1}{2\lambda} \left(\partial^{\mu} A^{a}_{\mu} \right)^{2}$

• Inverse propagator (momentum space) $\Gamma^{AA}_{ab;\mu\nu}(p) = +i \,\delta_{ab} \left[p^2 g_{\mu\nu} - \left(1 - \frac{1}{\lambda} \right) p_{\mu} p_{\nu} \right]$

• Gluon propagator
$$\Delta^{ab;\mu\nu}(p) = +i \delta_{ab} \left[\frac{-g_{\mu\nu}}{p^2} + (1-\lambda) \frac{p_{\mu}p_{\nu}}{p^4} \right]$$

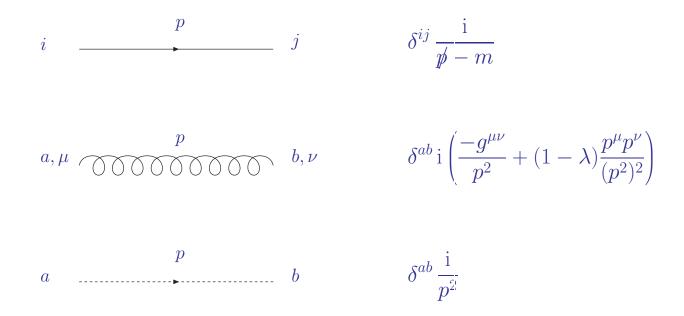
• Check:
$$\Gamma^{AA}_{ac;\mu\rho}(p) \Delta^{cb;\rho\nu}(p) = \delta^{\ b}_a g^{\ \nu}_{\mu}$$

Examples (III)

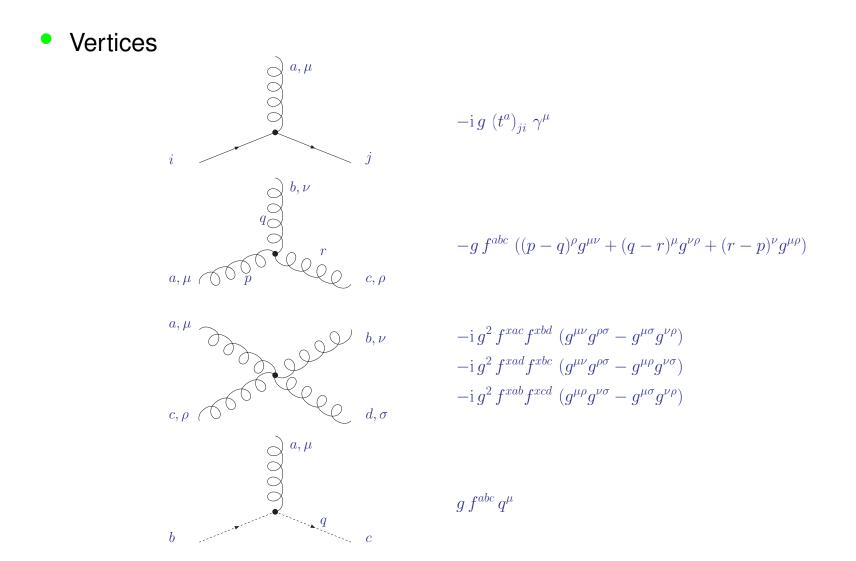
- Interactions derived from $S_{
 m int}$
 - fermion-gluon interaction from $\bar{\psi}_i i A_{ij} \psi_j \longrightarrow -i t^a_{ij} \gamma_\mu$
- General rule
 - replacement of all ∂_{μ} by momenta p_{μ} (tedious for 3- and 4-gluon interactions)

Feynman rules (I)

- Propagators
 - fermions, gluons, ghosts
 - covariant gauge



Feynman rules (II)



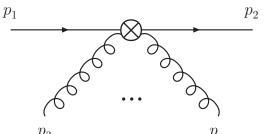
Perturbation theory at work

- Perturbative approach straightforward in principle
 - draw all Feynman diagrams
 - apply Feynman rules and evaluate expressions for matrix elements
 - use standard reduction techniques for loops and phase space integrals
- (Extremely) hard in practice
 - intermediate expressions more complicated than final results
- Known bottlenecks
 - many diagrams many diagrams are related by gauge invariance
 - many terms in each diagram nonabelian gauge boson self-interactions are complicated
 - many kinematic variables allowing the construction of very complicated expressions
- Computer algebra programs are a standard tool

Text book example (I)

Operator matrix elements

• Quark operator of spin-*N* and twist two $O_{\{\mu_1,...,\mu_N\}}^{\psi} = \overline{\psi} \gamma_{\{\mu_1} D_{\mu_2} \dots D_{\mu_N\}} \psi$



- N covariant derivatives $D_{\mu,ij} = \partial_{\mu}\delta_{ij} + ig_s (t_a)_{ij}$. between quark fields ψ , $\overline{\psi}$
- Feynman rules with new vertices for additional gluons coupling to operator
- Evaluation of operators in matrix elements $A^{\psi\psi}$ with external quark states

$$A_{\{\mu_1,\dots,\mu_N\}}^{\psi\psi} = \langle \psi(p_1) | O_{\{\mu_1,\dots,\mu_N\}}^{\psi}(-p_1-p_2) | \overline{\psi}(p_2) \rangle$$

 Zero-momentum transfer through operator reduces problem to computation of propagator-type diagrams

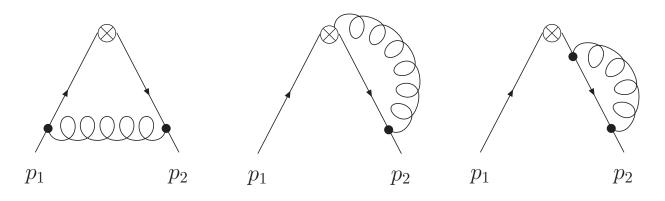
Real life

• Computation of quantum corrections to $A^{\psi\psi}$ up to four loops Sven-Olaf Moch

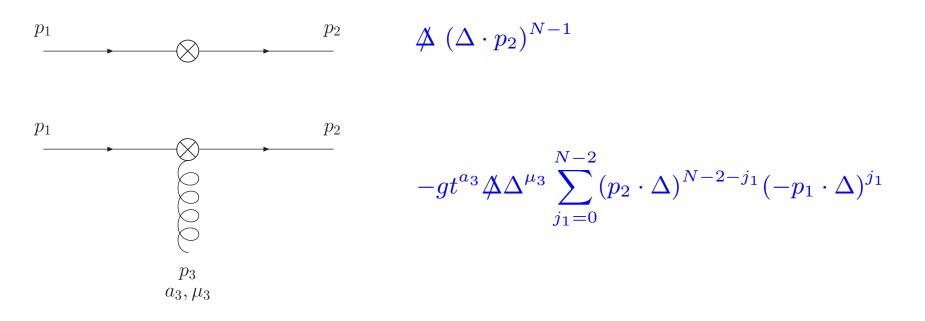
Text book example (II)

One-loop computation

Feynman diagrams



• New Feynman rules for vertices with light-like vector Δ , $\Delta^2 = 0$

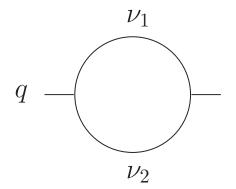


Text book example (III)

Two-point integrals

- Massless one-loop scalar two-point function L1
 - dimensional regularization with $D = 4 2\epsilon$

L1 =
$$\int d^D p_1 \frac{1}{(p_1^2)^{\nu_1} ((p_1 - q)^2)^{\nu_2}}$$

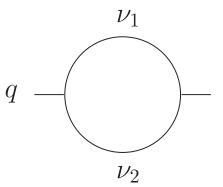


Text book example (III)

Two-point integrals

- Massless one-loop scalar two-point function L1
 - dimensional regularization with $D = 4 2\epsilon$

L1 =
$$\int d^D p_1 \frac{1}{(p_1^2)^{\nu_1} ((p_1 - q)^2)^{\nu_2}}$$



• Results for L1

L1 =
$$i(-1)^{\nu_1 + \nu_2} \pi^{-D/2} (-p^2)^{D/2 - \nu_1 - \nu_2} \times \frac{\Gamma(\nu_1 + \nu_2 - D/2)\Gamma(D/2 - \nu_1)\Gamma(D/2 - \nu_2)}{\Gamma(\nu_1)\Gamma(\nu_2)\Gamma(D - \nu_1 - \nu_2)}$$

• Laurent-expansion of Gamma-function in $\epsilon = 2 - \frac{D}{2}$ around positive integers values ($\nu_i \ge 0$)

• Riemann zeta values
$$\Gamma(1+\epsilon) = 1 - \epsilon \gamma_E + \frac{\epsilon^2}{2}(\zeta_2 + \gamma_E^2) + \dots$$

Text book example (IV)

One-loop result

• Computation of loop integral in $D = 4 - 2\epsilon$ dimensions and expansion in ϵ

$$\Delta^{\mu_1} \dots \Delta^{\mu_N} \langle \psi(p_1) | O^{\psi}_{\{\mu_1, \dots, \mu_N\}}(0) | \overline{\psi}(-p_1) \rangle =$$

= $1 + \frac{\alpha_s}{4\pi} C_F \frac{1}{\epsilon} \left\{ 4S_1(N) + \frac{2}{N+1} - \frac{2}{N} - 3 \right\} + \mathcal{O}(\alpha_s \epsilon^0) + \mathcal{O}(\alpha_s^2)$

 Details in chapt. 4.6 of The Theory of Quark and Gluon Interactions
 F.J. Yndurain

• One-loop result contains harmonic sum $S_1(N)$ (harmonic numbers)

$$S_1(N) = \sum_{i=1}^N \frac{1}{i} = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{N}$$
$$S_1(N+1) - S_1(N) = \frac{1}{N+1}$$

Symbolic Summation

Symbolic Summation

Polynomial summation

Examples

$$\sum_{i=0}^{n-1} i = \frac{1}{2}n(n-1)$$

$$\sum_{i=0}^{n-1} i^2 = \frac{1}{6}n(n-1)(2n-1)$$

$$\sum_{i=0}^{n-1} i^3 = \frac{1}{4}n^2(n-1)^2$$

$$\sum_{i=0}^{n-1} i^4 = \frac{1}{30}n(n-1)(2n-1)(3n^2-3n-1)$$

- Introduce operator Δ with $(\Delta f)(n) = f(n+1) f(n)$
- If $g = (\Delta f)$, then (for $a, b \in \mathbf{N}, a \leq b$)

$$\sum_{i=a}^{b-1} g(i) = \sum_{i=a}^{b-1} \left(f(i+1) - f(i) \right)$$

• Introduce operator Δ with $(\Delta f)(n) = f(n+1) - f(n)$

• If $g = (\Delta f)$, then (for $a, b \in \mathbf{N}, a \leq b$)

$$\sum_{i=a}^{b-1} g(i) = \sum_{i=a}^{b-1} \left(f(i+1) - f(i) \right) = \sum_{i=a}^{b-1} f(i+1) - \sum_{i=a}^{b-1} f(i)$$

• Introduce operator Δ with $(\Delta f)(n) = f(n+1) - f(n)$

• If $g = (\Delta f)$, then (for $a, b \in \mathbf{N}, a \leq b$)

$$\sum_{i=a}^{b-1} g(i) = \sum_{i=a}^{b-1} \left(f(i+1) - f(i) \right) = \sum_{i=a}^{b-1} f(i+1) - \sum_{i=a}^{b-1} f(i)$$
$$= \sum_{i=a+1}^{b} f(i) - \sum_{i=a}^{b-1} f(i)$$

• Introduce operator Δ with $(\Delta f)(n) = f(n+1) - f(n)$

• If $g = (\Delta f)$, then (for $a, b \in \mathbf{N}, a \leq b$)

$$\sum_{i=a}^{b-1} g(i) = \sum_{i=a}^{b-1} \left(f(i+1) - f(i) \right) = \sum_{i=a}^{b-1} f(i+1) - \sum_{i=a}^{b-1} f(i)$$
$$= \sum_{i=a+1}^{b} f(i) - \sum_{i=a}^{b-1} f(i) = f(b) - f(a)$$

- Introduce operator Δ with $(\Delta f)(n) = f(n+1) f(n)$
- If $g = (\Delta f)$, then (for $a, b \in \mathbf{N}, a \leq b$)

$$\sum_{i=a}^{b-1} g(i) = \sum_{i=a}^{b-1} \left(f(i+1) - f(i) \right) = \sum_{i=a}^{b-1} f(i+1) - \sum_{i=a}^{b-1} f(i)$$
$$= \sum_{i=a+1}^{b} f(i) - \sum_{i=a}^{b-1} f(i) = f(b) - f(a)$$

- Consecutive cancellation of summands: telescoping
- Symbolic summation problem $g = (\Delta f)$ with $f = (\sum g)$, operator Δ is left inverse $\Delta(\sum f) = f$
- Cf. symbolic integration (differential operator D)

$$g = Df = \frac{d}{dx}f \longrightarrow \int_{a}^{b} dxg(x) = f(b) - f(a)$$

• Differential operator *D* acts in continuum as $D(x^m) = mx^{m-1}$

- Differential operator D acts in continuum as $D(x^m) = mx^{m-1}$
- Action of discrete analog Δ on polynomials?

- Differential operator *D* acts in continuum as $D(x^m) = mx^{m-1}$
- Action of discrete analog Δ on polynomials?
 - Example: $\Delta(n^3) = 3n^2 + 3n 1$

- Differential operator D acts in continuum as $D(x^m) = mx^{m-1}$
- Action of discrete analog Δ on polynomials?
 - Example: $\Delta(n^3) = 3n^2 + 3n 1$

Rising and falling factorials

• Define rising factorials as $f^{\overline{m}} = f(x)f(x+1)\dots f(x+m-1)$ (also known as Pochhammer symbols $(x)_m$)

- Differential operator D acts in continuum as $D(x^m) = mx^{m-1}$
- Action of discrete analog Δ on polynomials?
 - Example: $\Delta(n^3) = 3n^2 + 3n 1$

Rising and falling factorials

• Define falling factorials as $f^{\underline{m}} = f(x)f(x-1)\dots f(x-m+1)$

- Differential operator D acts in continuum as $D(x^m) = mx^{m-1}$
- Action of discrete analog Δ on polynomials?
 - Example: $\Delta(n^3) = 3n^2 + 3n 1$

Rising and falling factorials

- Define falling factorials as $f^{\underline{m}} = f(x)f(x-1)\dots f(x-m+1)$
- Then, with falling factorials

$$\Delta(x^{\underline{m}}) = mx^{\underline{m-1}}$$

$$\sum_{i=0}^{n-1} i^{\underline{m}} = \frac{1}{m+1} n^{\underline{m+1}}$$

• Conversion of polynomial powers x^m (decomposition with Stirling numbers of second kind $\left\{\begin{array}{c}m\\i\end{array}\right\}$)

$$x^m = \sum_{i=0}^m \left\{ \begin{array}{c} m\\ i \end{array} \right\} x^{\underline{i}}$$

 Stirling numbers of second kind denote # of ways to partition n things in k non-empty sets

Examples

Polynomials

$$\sum_{i=0}^{n-1} i = \sum_{i=0}^{n-1} i^{\frac{1}{2}} = \frac{1}{2}n^{\frac{2}{2}} = \frac{1}{2}n(n-1)$$

$$\sum_{i=0}^{n-1} i^{2} = \sum_{i=0}^{n-1} (i^{\frac{2}{2}} + i^{\frac{1}{2}}) = \frac{1}{3}n^{\frac{3}{2}} + \frac{1}{2}n^{\frac{2}{2}} = \frac{1}{6}n(n+1)(2n+1)$$

$$\sum_{i=0}^{n-1} i^{3} = \sum_{i=0}^{n-1} (i^{\frac{3}{2}} + 3i^{\frac{2}{2}} + i^{\frac{1}{2}}) = \frac{1}{4}n^{\frac{4}{2}} + n^{\frac{3}{2}} + \frac{1}{2}n^{\frac{2}{2}} = \frac{1}{4}n^{2}(n+1)^{2}$$

Harmonic summation

• Harmonic numbers $S_1(N)$ Euler 1775

$$S_1(N) = \sum_{i=1}^N \frac{1}{i} = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{N}$$

• Harmonic sums $S_{m_1,...,m_k}(n)$ Gonzalez-Arroyo, Lopez, Ynduráin '79; Vermaseren '98; S.M., Uwer, Weinzierl '01

• recursive definition
$$S_{\pm m_1,\ldots,m_k}(n) = \sum_{i=1}^n \frac{(\pm 1)^i}{i^{m_1}} S_{m_2,\ldots,m_k}(i)$$

Harmonic summation

• Harmonic numbers $S_1(N)$ Euler 1775

$$S_1(N) = \sum_{i=1}^N \frac{1}{i} = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{N}$$

• Harmonic sums $S_{m_1,...,m_k}(n)$ Gonzalez-Arroyo, Lopez, Ynduráin '79; Vermaseren '98; S.M., Uwer, Weinzierl '01

• recursive definition
$$S_{\pm m_1,\ldots,m_k}(n) = \sum_{i=1}^n \frac{(\pm 1)^i}{i^{m_1}} S_{m_2,\ldots,m_k}(i)$$

• Expansion of Gamma-function in $\epsilon = 2 - \frac{D}{2}$ around positive integers values ($n \ge 0$)

$$\frac{\Gamma(n+1+\epsilon)}{\Gamma(1+\epsilon)} = \Gamma(n+1) \exp\left(-\sum_{k=1}^{\infty} \epsilon^k \frac{(-1)^k}{k} S_k(n)\right)$$

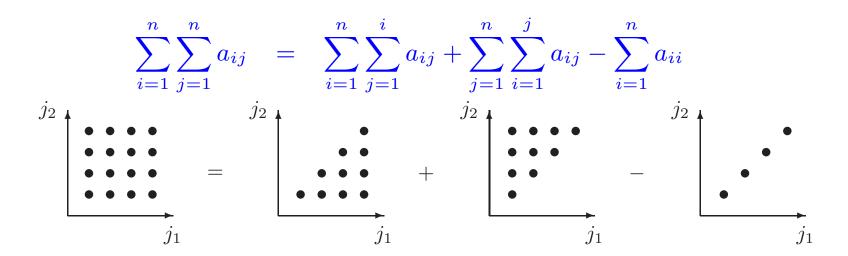
Algorithms for harmonic sums

- Multiplication (Hopf algebra)
 - basic formula (recursion)

 $S_{m_1,...,m_k}(n) \times S_{m'_1,...,m'_l}(n) =$

$$\sum_{j_{1}=1}^{n} \frac{1}{j_{1}^{m_{1}}} S_{m_{2},...,m_{k}}(j_{1}) S_{m_{1}',...,m_{l}'}(j_{1}) + \sum_{j_{2}=1}^{n} \frac{1}{j_{2}^{m_{1}'}} S_{m_{1},...,m_{k}}(j_{2}) S_{m_{2}',...,m_{l}'}(j_{2}) - \sum_{j=1}^{n} \frac{1}{j^{m_{1}+m_{1}'}} S_{m_{2},...,m_{k}}(j) S_{m_{2}',...,m_{l}'}(j)$$

Proof uses decomposition



Algorithms for harmonic sums (cont'd)

• Convolution (sum over n - j and j)

$$\sum_{j=1}^{n-1} \frac{1}{j^{m_1}} S_{m_2,\dots,m_k}(j) \frac{1}{(n-j)^{n_1}} S_{n_2,\dots,n_l}(n-j)$$

Conjugation

$$-\sum_{j=1}^{n} \binom{n}{j} (-1)^{j} \frac{1}{j^{m_{1}}} S_{m_{2},...,m_{k}}(j)$$

• Binomial convolution (sum over binomial, n - j and j)

$$-\sum_{j=1}^{n-1} \binom{n}{j} (-1)^{j} \frac{1}{j^{m_{1}}} S_{m_{2},...,m_{k}}(j) \frac{1}{(n-j)^{n_{1}}} S_{n_{2},...,n_{l}}(n-j)$$

Hypergeometric summation

Definition

• Hypergeometric function $_{m}F_{n}$

$${}_{m}F_{n}\left(\begin{array}{c|c}a_{1},\ldots,a_{m}\\b_{1},\ldots,b_{n}\end{array}\middle|z\right) = \sum_{i\geq0}\frac{a_{1}^{\overline{i}}\ldots a_{m}^{\overline{i}}}{b_{1}^{\overline{i}}\ldots b_{n}^{\overline{i}}}\frac{z^{i}}{i!}$$

Hypergeometric summation

Definition

• Hypergeometric function $_{m}F_{n}$

$${}_{m}F_{n}\left(\begin{array}{c|c}a_{1},\ldots,a_{m}\\b_{1},\ldots,b_{n}\end{array}\middle|z\right) = \sum_{i\geq0}\frac{a_{1}^{\overline{i}}\ldots a_{m}^{\overline{i}}}{b_{1}^{\overline{i}}\ldots b_{n}^{\overline{i}}}\frac{z^{i}}{i!}$$

Examples

$${}_{0}F_{0}\left(\begin{array}{c} \left|z\right) = \sum_{i\geq0} \frac{z^{i}}{i!} = \exp(z)$$

$${}_{2}F_{1}\left(\begin{array}{c}a,1\\1\end{array}\right|z\right) = \sum_{i\geq0}a^{\overline{i}}\frac{z^{i}}{i!} = \frac{1}{(1-z)^{a}}$$

$${}_{2}F_{1}\left(\begin{array}{c}1,1\\2\end{array}\right|z\right) = z\sum_{i\geq0}\frac{1^{\overline{i}}1^{\overline{i}}}{2^{\overline{i}}}\frac{z^{i}}{i!} = -\ln(1-z)$$

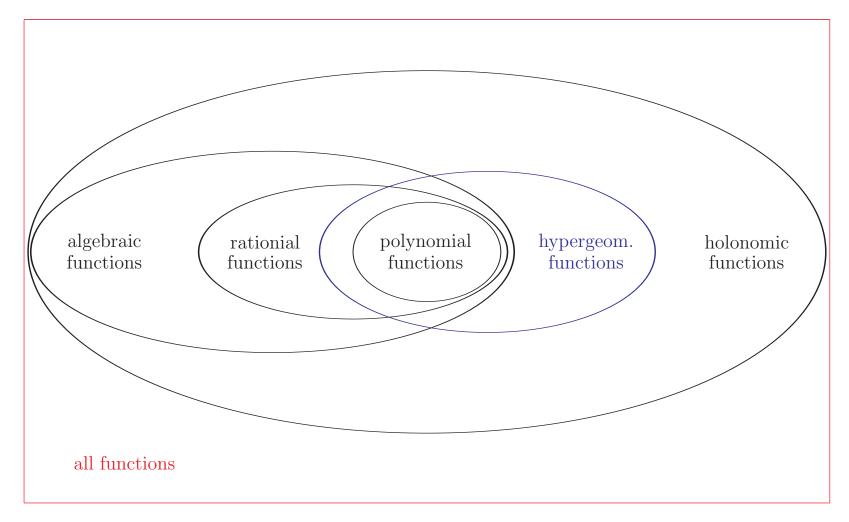
Higher transcendental functions

• Hypergeometric function

$$_{2}F_{1}(a,b;c,x_{0}) = \sum_{i=0}^{\infty} \frac{a^{\overline{i}}b^{\overline{i}}}{c^{\overline{i}}} \frac{x_{0}^{i}}{i!}$$

- First Appell function $F_1(a, b_1, b_2; c; x_1, x_2) = \sum_{m_1=0}^{\infty} \sum_{m_2=0}^{\infty} \frac{a^{\overline{m_1+m_2}} b_1^{\overline{m_1}} b_2^{\overline{m_2}}}{c^{\overline{m_1+m_2}}} \frac{x_1^{m_1}}{m_1!} \frac{x_2^{m_2}}{m_2!}$
- Second Appell function $F_2(a, b_1, b_2; c_1, c_2; x_1, x_2) = \sum_{m_1=0}^{\infty} \sum_{m_2=0}^{\infty} \frac{a^{\overline{m_1+m_2}} b_1^{\overline{m_1}} b_2^{\overline{m_2}}}{c_1^{\overline{m_1}} c_2^{\overline{m_2}}} \frac{x_1^{m_1}}{m_1!} \frac{x_2^{m_2}}{m_2!}$

Classes of functions



• Definition (continuous case of one variable): A function f is called holonomic if there exist polynomials p_0, \ldots, p_r not all zero, such that

$$p_0(x)f(x) + p_1(x)f'(x) + p_2(x)f''(x) + \dots + p_r(x)f^{(r)}(x) = 0$$

Examples:

- $\exp(x)$: f'(x) f(x) = 0
- $\ln(1-x)$: (x-1)f''(x) f'(x) = 0
- $\frac{1}{1+\sqrt{1-x^2}}$: $(x^3-x)f''(x) + (4x^2-3)f'(x) + 2xf(x) = 0$
- Bessel functions, Hankel functions, Struve functions, Airy functions, Polylogarithms, Elliptic integrals, the Error function, Kelvin functions, Mathieu functions, ...
- many functions which have no name and no closed form

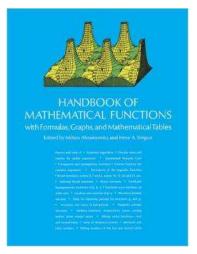
• Definition (continuous case of one variable): A function f is called holonomic if there exist polynomials p_0, \ldots, p_r not all zero, such that

 $p_0(x)f(x) + p_1(x)f'(x) + p_2(x)f''(x) + \dots + p_r(x)f^{(r)}(x) = 0$

- Not holonomic:
 - $\exp(\exp(x) 1)$
 - Riemann Zeta function
 - many functions which have no name and no closed form
- This means that these functions can (provably) not be viewed as solutions of a linear differential equation with polynomial coefficients.

 Approximately 60% of the functions in Abramowitz and Stegun's handbook fall into the category of holonomic functions in one variable.

Handbook of Mathematical Functions
 M. Abramowitz, I. Stegun



Differential equations

Theorem

 The solution set of a linear differential equation of order r is a vector space of dimension r.

Consequences

- A holonomic function *f* is uniquely determined by
 - the differential equation
 - a finite number of initial values f(0), f'(0), f''(0), ..., $f^{(k)}(0)$ (usually, k = r suffices.)
- A holonomic function can be represented exactly by a finite amount of data (assuming that the constants appearing in equation and initial values belong to a suitable subfield of C, e.g., to Q.)

Examples

- $f(x) = \exp(x)$ $\longleftrightarrow f'(x) - f(x) = 0$ with f(0) = 1
- $f(x) = \ln(1-x)$ $\longleftrightarrow (x-1)f''(x) - f'(x) = 0$ with f(0) = 0, f'(0) = -1
- $f(x) = \frac{1}{1+\sqrt{1-x^2}}$ $\longleftrightarrow (x^3 - x)f''(x) + (4x^2 - 3)f'(x) + 2xf(x) = 0$ with $f(0) = \frac{1}{2}, f'(0) = 0$
- $f(x) = I_5(x)$ (fifth modified Bessel function of the first kind) $\leftrightarrow x^2 f''(x) + x f'(x) - (x^2 + 25) f(x) = 0$ with $f(0) = f'(0) = \cdots = f^{(4)}(0) = 0, f^{(5)}(0) = \frac{1}{32}$

. . .

Holonomic sequences

• Definition (discrete case of one variable): A sequence $(a_n)_{n=0}^{\infty}$ is called holonomic if there exist polynomials p_0, \ldots, p_r not all zero, such that

$$p_0(n)a_n + p_1(n)a_{n+1} + p_2(n)a_{n+2} + \dots + p_r(n)a_{n+r} = 0$$

• Examples:

- 2^n : $a_{n+1} 2a_n = 0$
- n!: $a_{n+1} (n+1)a_n = 0$
- $\sum_{i=0}^{n} \frac{(-1)^{i}}{i!}$: $(n+2)a_{n+2} (n+1)a_{n+1} a_n = 0$
- Fibonacci numbers, Harmonic numbers, Perrin numbers, diagonal Delannoy numbers, Motzkin numbers, Catalan numbers, Apery numbers, Schröder numbers, ...
- many sequences which have no name and no closed form

Holonomic sequences

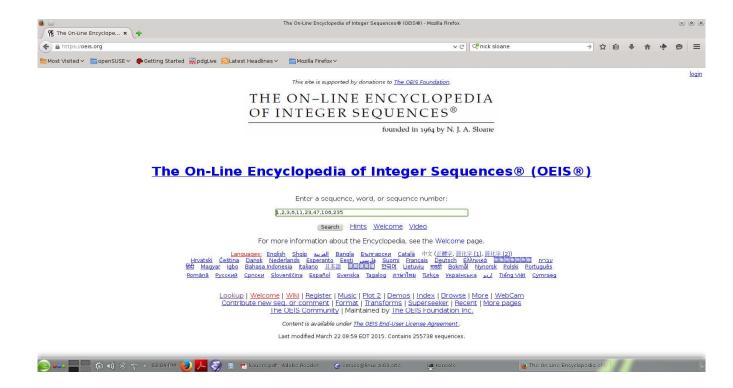
• Definition (discrete case of one variable): A sequence $(a_n)_{n=0}^{\infty}$ is called holonomic if there exist polynomials p_0, \ldots, p_r not all zero, such that

 $p_0(n)a_n + p_1(n)a_{n+1} + p_2(n)a_{n+2} + \dots + p_r(n)a_{n+r} = 0$

- Not holonomic:
 - 2^{2^n}
 - sequence of prime numbers
 - many sequences which have no name and no closed form
- This means that these sequences can (provably) not be viewed as solutions of a linear recurrence equation with polynomial coefficients.

Holonomic sequences

- Approximately 25% of the sequences in Sloane's Online Encyclopedia of Integer Sequences fall into the category of holonomic sequences in one variable.
 - Online Encyclopedia of Integer Sequences https://oeis.org/



Difference equations

Theorem

• The solution set of a linear recurrence equation of order r whose leading coefficient has s integer roots greater than r is a vector space of dimension s + r.

Consequences

- A holonomic sequence (a_n)_{n=0}[∞] is uniquely determined by a holonomic function *f* is uniquely determined by
 - the recurrence equation
 - a finite number of initial values $a_0, a_1, a_2, \ldots, a_k$ (usually, k = r suffices.)
- A holonomic sequence can be represented exactly by a finite amount of data. (assuming that the constants appearing in equation and initial values belong to a suitable subfield of C, e.g., to Q.)

Examples

- $a_n = 2^n$ $\longleftrightarrow a_{n+1} - 2a_n = 0$ with $a_0 = 1$
- $a_n = n!$ $\longleftrightarrow a_{n+1} - (n+1)a_n = 0$ with $a_0 = 1$
- $a_n = \sum_{i=0}^n \frac{(-1)^i}{i!}$ $\longleftrightarrow (n+2)a_{n+2} - (n+1)a_{n+1} - a_n = 0$ with $a_0 = 1, a_1 = 0$
- $a_n = I(n)$ (number of involutions of n letters) $\leftrightarrow a_{n+3} + na_{n+2} - (3n+6)a_{n+1} - (n+1)(n+2)a_n = 0$ with $a_0 = 1, a_1 = 1, a_2 = 2$

• . . .

Conversion

Theorem

• Conversion of difference to differential equations: Let $a(x) = \sum_{n=0}^{\infty} a_n x^n$, then a(x) is holonomic as function $\longleftrightarrow (a_n)_{n=0}^{\infty}$ is holonomic as sequence

Consequences

- Given a differential equation for a(x), one can compute a recurrence for $(a_n)_{n=0}^{\infty}$
- Given a recurrence for $(a_n)_{n=0}^{\infty}$, we can compute a differential equation for a(x)

Polynomials

Polynomials as sequences

Examples

$$\frac{1}{1-x} = \sum_{i=0}^{\infty} 1 x^{i}$$

$$D_{x} \frac{1}{1-x} = \frac{1}{(1-x)^{2}} = \sum_{i=0}^{\infty} i x^{i-1} = \sum_{i=0}^{\infty} (i+1) x^{i}$$

$$D_{x}^{2} \frac{1}{1-x} = \frac{2}{(1-x)^{3}} = \sum_{i=0}^{\infty} i (i-1) x^{i-2} = \sum_{i=0}^{\infty} (i+1) (i+2) x^{i}$$

$$D_{x}^{3} \frac{1}{1-x} = \frac{6}{(1-x)^{4}} = \sum_{i=0}^{\infty} i (i-1) (i-2) x^{i-3} = \sum_{i=0}^{\infty} (i+1) (i+2) (i+3) x^{i}$$

Harmonic polylogarithms

- Harmonic polylogarithms $H_{m_1,...,m_k}(x)$ Remiddi, Vermaseren '99
 - physical quantities in momentum (x)-space

Harmonic polylogarithms

- Harmonic polylogarithms $H_{m_1,...,m_k}(x)$ Remiddi, Vermaseren '99
 - physical quantities in momentum (x)-space
 - basic functions of lowest weight $H_0(x) = \ln x$, $H_1(x) = -\ln(1-x)$, $H_{-1}(x) = \ln(1+x)$
 - higher functions defined by recursion

$$H_{m_1,\dots,m_w}(x) = \int_0^x dz \ f_{m_1}(z) \ H_{m_2,\dots,m_w}(z)$$
$$f_0(x) = \frac{1}{x}, \qquad f_1(x) = \frac{1}{1-x}, \qquad f_{-1}(x) = \frac{1}{1+x}$$

Harmonic polylogarithms

- Harmonic polylogarithms $H_{m_1,...,m_k}(x)$ Remiddi, Vermaseren '99
 - physical quantities in momentum (x)-space
 - basic functions of lowest weight $H_0(x) = \ln x$, $H_1(x) = -\ln(1-x)$, $H_{-1}(x) = \ln(1+x)$
 - higher functions defined by recursion

$$H_{m_1,\dots,m_w}(x) = \int_0^x dz \ f_{m_1}(z) \ H_{m_2,\dots,m_w}(z)$$

$$f_0(x) = \frac{1}{x}, \qquad f_1(x) = \frac{1}{1-x}, \qquad f_{-1}(x) = \frac{1}{1+x}$$

- Algebra under multiplication $H_{m_1,...,m_r}(x)H_{n_1,...,n_s}(x) \longrightarrow H_{m_1,...,m_{r+s}}(x)$
- Integral transformation (Mellin transform to discrete N)

$$\tilde{f}(N) = \int_0^1 dx \ x^N f(x)$$

$$H_{(x)}(x)$$

• unique mapping
$$\frac{H_{m_1,...,m_w}(x)}{(1\pm x)} \longleftrightarrow S_{n_1,...,n_{w+1}}(N)$$

Algebra of words

- Consider alphabet alphabet of length l = 3
 - harmonic polylogarithms arise from iterated integrals over letters $x, 1 \pm x$

Iterated integrals

- Generalization:
 - hyperlogarithms (mathematics definition Poincaré)
 - generalized polylogarithms $Li_{m_k,...,m_1}(x_k,...,x_1)$ Goncharov '98; Borwein, Bradley, Broadhurst, Lisonek '99
- Words $w = m_{\sigma_1} \dots m_{\sigma_n}$ from letters $w = m_{\sigma_i}$ associated to generalized polylogarithms

$$\operatorname{Li}_{m_{k},...,m_{1}}(x_{k},...,x_{1}) = \int_{0}^{x_{1}x_{2}...x_{k}} \underbrace{\left(\frac{dt'}{t'}\circ\right)^{m_{1}-1}}_{0} \frac{dt_{k}}{x_{2}x_{3}...x_{k}-t_{k}} \cdots \int_{0}^{t_{2}} \left(\frac{dt'}{t'}\circ\right)^{m_{k}-1} \frac{dt_{1}}{1-t_{1}}}{\underbrace{\frac{dt'_{m_{1}-1}}{t'_{m_{1}-1}} \cdots \frac{dt'_{1}}{t'_{1}}}_{(m_{1}-1) \text{ times}}$$

Summary

Perturbation theory at work

Computer algebra is indispensable tool for computation of perturbative corrections

Symbolic sums

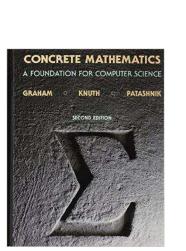
• Algorithms for symbolic summation and recurrence relations

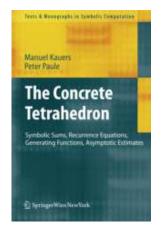
Polylogarithms

• Holonomic functions as solutions to set of a linear differential equations

Literature (I)

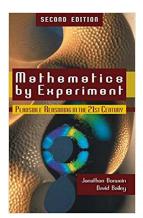
- Text books
 - Modern Computer Algebra
 J. von zur Gathen, J. Gerhard
 - Concrete Mathematics
 R. L Graham, D. E. Knuth, O. Pataschnik
 - Concrete Tetrahydron
 M. Kauers, P. Paule





- A=B
 M. Petkovsek, H. S. Wilf, D. Zeilberger
- Mathematics by Experiment
 J.M. Borwein, D. Bailey

www.math.upenn.edu/~wilf/AeqB.html



Literature (II)

- Selected research articles
 - Harmonic sums, Mellin transforms and integrals, J. Vermaseren; hep-ph/9806280
 - Nested sums, expansion of transcendental functions and multi-scale multi-loop integrals, S.M., P. Uwer, S. Weinzierl; hep-ph/0110083
 - Gauss hypergeometric function: Reduction, epsilon-expansion for integer/half-integer parameters and Feynman diagrams, M. Yu. Kalmykov; hep-th/0602028
 - HypExp 2, Expanding Hypergeometric Functions about Half-Integer Parameters, T. Huber, D. Maitre; 0708.2443
 - On the analytic computation of massless propagators in dimensional regularization, E. Panzer; 1305.2161

. . .

Software (I)

Requirements in particle physics

- Symbolic calculations characterized by need for basic operations
 - sorting, gcd, factorization, multiplication
 - symbolic integration/summation
 - solution of systems of equations
 - . . .
- Specialized code usually written by the user
 - largely dependent on the physics problem
 - add-on libraries

Software (II)

- Commercial programs: *Mathematica*, *Maple*, ...
- Freeware/Add-on packages
 - Mathematica, Maple
 - several packages for hypergeometric summation
 - [see for instance www.math.upenn.edu/~wilf/AeqB.html]
 - RISC software for symbolic summation and integration
 - www.risc.jku.at/research/combinat/software
 - expansion of hypergeometric functions HypExp, T. Huber, D. Maitre
 - reduction of hypergeometric functions HyperDire, V. Bytev
 - hyperlogarithmic integration HyperInt, E. Panzer

GINAC www.ginac.de

- nestedsums, S. Weinzierl

FORM www.nikhef.nl/~form

- Summer6, J. Vermaseren
- XSummer, S.M., P. Uwer