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Introduction

Introduction

Feynman integrals come in different shapes and colors
one loop ↔ many loops
many legs ↔ no legs
many scales ↔ no scales

for many types of diagrams many results are known
especially one-loop is solved
at three loops and more, massive tadpoles and massless
propagators have been studied in great detail
at two loops, much progress has been made for integrals relevant
for 2 → 2 scattering processes, but every new process requires a
new study of the integrals involved
lots of progress for 2 → 3 at two loops → pentagon functions
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Introduction

Introduction

many different methods have been invented over the years to
calculate the needed integrals
most methods work well for certain classes but fail for others
the ultimate method/tool is still missing
will present here only an overview of personal selection of
methods
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Mathematical prelude & basics

Gamma function

Defining property
zΓ(z) = Γ(z + 1) = z!

Integral representation

Γ(z) =
∫ ∞

0
tz−1e−tdt

We see immediately from the properties that Γ(−n) is singular for
n = 0,1,2, . . ..
The singularities are simple poles

Γ(−n + ϵ) =
(−1)n

n!
1
ϵ
+O(ϵ0)
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Mathematical prelude & basics

Series expansion of the Gamma function

In many applications one needs more than the pole of the Γ-function.
This is best done by using the derivative of log Γ(z) and defines the
digamma function Ψ(z)

Ψ(z) =
d log(Γ(z))

dz
=

Γ′(z)
Γ(z)

Therefore,

Γ(z − z0) = Γ(z0) + Γ(z0)Ψ(z0)(z − z0)

+
1
2

(
Γ(z0)Ψ

′(z0) + Γ(z0)Ψ
2(z0)

)
(z − z0)

2

for regular points z0.
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Mathematical prelude & basics

The Digamma-function Ψ(z)

The digamma function satisfies the relation

Ψ(z + 1) = Ψ(z) +
1
z

For positive integer values the digamma function evaluates to

Ψ(1) = −γE ,

Ψ(2) = 1 − γE

· · ·

Ψ(n + 1) =
n∑

k=1

1
k
− γE

with the Euler-Mascheroni constant γE = 0.577216 . . .
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Mathematical prelude & basics

The Digamma-function Ψ(z) cont’d

For non-positive integers the digamma functions evaluates again to
simple poles

Ψ(−n + ϵ) = −1
ϵ
+O(ϵ0)

Γ(z) Ψ(z)
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Mathematical prelude & basics

Schwinger Parametrization

From the definition of the Γ function

Γ(z) =
∫ ∞

0
tz−1e−tdt

follows immediately the Schwinger Parametrization

1
(−k2 + M2)z =

1
Γ(z)

∫ ∞

0
dt tz−1e−(M2−k2)t

by performing the substitution t → t ′ = (M2 − k2)t
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Mathematical prelude & basics

Simple example

Consider simplest diagram possible,
the one-loop tadpole (vacuum diagram)

I1 =

∫
d4k

1
−k2 + M2

Either introduce an explicit parametrization of the measure or use the
Schwinger parametrization for α = 1

I1 =

∫
d4k

∫ ∞

0
dt e−(M2−k2)t
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Mathematical prelude & basics

Simple example

perform Wick rotation
k0 → ik0

with the result that

k2 = k2
0 − k2

1 − k2
2 − k2

3 → −k2
0 − k2

1 − k2
2 − k2

3

and we get

I1 = i
∫ ∞

0
dt e−M2t

∫
d4k e−k2t
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Mathematical prelude & basics

Simple example

I1 = i
∫ ∞

0
dt e−M2t

∫
d4k e−k2t

doing the Gaussian integral we get

I1 = iπ2
∫ ∞

0
dt

e−M2t

t2

This integral does not converge for t → 0 .
⇒ first need a way to give meaning to these kind of integrals.
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Mathematical prelude & basics

Dimensional regularization

Most Feynman integrals are not convergent in four space time
dimensions.
Common way out is the use of dimensional regularization, where
the four-dimensional space time is extended to d dimensions.
Divergences of the integrals then become manifest as poles in
d − 4.
d dimensional integrals behave identical to their four-dimensional
counterparts
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Mathematical prelude & basics

d-dimensional integration

d-dimensional integrals have to fulfil these axioms
Linearity ∫

ddk (af (k) + bg(k)) = a
∫

ddk f (k) + b
∫

ddk g(k)

Scaling ∫
ddk f (s k) = s−d

∫
ddk f (k)

Translational invariance ∫
ddk f (k + p) =

∫
ddk f (k)
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Mathematical prelude & basics

d-dimensional integration – properties

Pro: dimensional regularization regularizes both UV and IR
singularities

Con: dimensional regularization regularizes both UV and IR
singularities in the same way

scaleless integrals vanish∫
ddk(λ2k2)α = λ2α

∫
ddk(k2)α = λ−d

∫
ddk(k2)α ∀λ

⇒
∫

ddk(k2)α = 0

integration by parts ∫
ddk

∂

∂kµ
f (k) = 0

Interchange of integrations∫
ddp

∫
ddk f (p, k) =

∫
ddk

∫
ddp f (p, k)
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Mathematical prelude & basics

Gaussian integrals in d dimensions

For many purposes the problem of d-dimensional integrations can be
reduced to one specific integral:
the Gaussian integral in d dimensions∫

ddk e−k2
= π

d
2

which is the most natural generalization of the integer dimension one.
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Mathematical prelude & basics

Gaussian integrals in d dimensions

For many purposes the problem of d-dimensional integrations can be
reduced to one specific integral:
the Gaussian integral in d dimensions∫

ddk e−Ak2
=
(π

A

) d
2

which is the most natural generalization of the integer dimension one.
The dependence on A follows by rescaling k → k√

A
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Mathematical prelude & basics

Simple example – Improved

I1 =

∫
ddk

1
−k2 + M2

I1 = i
∫ ∞

0
dt e−M2t

∫
ddke−k2t

I1 = iπd/2
∫ ∞

0
dt

e−M2t

td/2
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Mathematical prelude & basics

Simple example – Improved

I1 =

∫
ddk

1
−k2 + M2

I1 = i
∫

dt e−M2t
∫

ddk e−k2t

I1 = iπd/2
∫ ∞

0
dt t−d/2e−M2t
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Mathematical prelude & basics

Simple example – Improved

I1 =

∫
ddk

1
−k2 + M2

I1 = i
∫

dt e−M2t
∫

ddk e−k2t

I1 = iπd/2
∫ ∞

0
dt t−d/2e−M2t

I1 = iπd/2(M2)d/2−1
∫ ∞

0
dt t−d/2e−t

= iπd/2(M2)d/2−1Γ(−d/2 + 1)
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Mathematical prelude & basics

Simple example – Improved

I1 =

∫
ddk

1
−k2 + M2

= iπd/2(M2)d/2−1Γ(−d/2 + 1)

(M2)d/2−1 overall mass dimension of the integral, could be read off
from the original integral

Γ(−d/2 + 1) contains the real information
singular for d → 4

Γ(−d/2 + 1) = −1
ϵ
+ (γE − 1)

+
1

12

(
−6γ2

E + 12γE − π2 − 12
)
ϵ
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Mathematical prelude & basics

Simple example – Improved

Γ(−d/2 + 1) = −1
ϵ
+ (γE − 1)

+
1
12

(
−6γ2

E + 12γE − π2 − 12
)
ϵ

not a very compact result, better to choose a suitable normalization

Γ(−d/2 + 1)/Γ(1 + ϵ) = −1
ϵ
− 1 − ϵ

or

Γ(−d/2 + 1)/ exp(−γEϵ) = −1
ϵ
− 1 +

(
−1 − π2

12

)
ϵ
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Mathematical prelude & basics

Simple example – Extended

I1 =

∫
ddk

1
(−k2 + M2)α

I1 = i
1

Γ(α)

∫
dt tα−1e−M2t

∫
ddke−k2t

I1 = i
πd/2

Γ(α)

∫ ∞

0
dt tα−d/2−1e−M2t

I1 =
iπd/2

Γ(α)
(M2)d/2−α

∫ ∞

0
dt tα−d/2−1e−t

=
iπd/2

Γ(α)
(M2)d/2−αΓ(α− d/2)

Also the integral with α = 2 is divergent
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Mathematical prelude & basics

not that simple example: One-loop propagator

Consider the one-loop propagator

P1 =

∫
d4k

1
−k2(−(k + q)2)

introduce Feynman parameters

1

Dk1
1 · · ·Dkn

n
=

Γ(
∑

i ki)∏
i Γ(ki)

∫ 1

0
dx1 · · ·

∫ 1

0
dxn

δ(
∑

i xi − 1)
∏

i xki−1
i

(
∑

i xiDi)
∑

i ki

in their simplest form

1
D1D2

=

∫ 1

0
dx

1
[xD1 + (1 − x)D2]2
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Mathematical prelude & basics

not that simple example: One-loop propagator

P1 =

∫
d4k

1
−k2(−(k + q)2)

=

∫
d4k

∫ 1

0
dx

1
[−k2 − 2xk · q − xq2]2

complete the square

P1 =

∫
d4k

∫ 1

0
dx

1
[−(k + xq)2 + x2q2 − xq2]2

shift k = k + (1 − x)q

P1 =

∫
d4k

∫ 1

0
dx

1
[−k2 + x2q2 − xq2]2
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Mathematical prelude & basics

not that simple example: One-loop propagator

P1 =

∫
d4k

∫ 1

0
dx

1
[−k2 + x(x − 1)q2]2

doing the momentum integration gives

P1 = iπd/2Γ(2 − d/2)
∫ 1

0
dx
[
x(x − 1)q2

]d/2−2

let’s assume q2 < 0

P1 = iπd/2Γ(2 − d/2)(−q2)d/2−2
∫ 1

0
dx [x(1 − x)]d/2−2
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Mathematical prelude & basics

not that simple example: One-loop propagator

P1 = iπd/2Γ(2 − d/2)(−q2)d/2−2
∫ 1

0
dx [x(1 − x)]d/2−2

what is left is special case of the Beta-function

B(a,b) =
∫

dt ta−1(1 − t)b−1 =
Γ(a)Γ(b)
Γ(a + b)

P1 = iπd/2Γ(2 − d/2)(−q2)d/2−2Γ
2(d/2 − 1)
Γ(d + 2)
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Mathematical prelude & basics

Cuts

branch cuts appear in an Feynman integral when the particles in
the loop can be produced as real particles
in the propagator example before the factor

(−q2)d/2−2

could have again be predicted from mass dimension of the the
analytic properties of the diagram
the imaginary parts then corresponds to the total cross section
belonging to the respective cut
much information can be gained from studying cuts of Feynman
integrals
the full results can be obtained from the imaginary part by
dispersion integrals
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Mathematical prelude & basics

Tensor integrals

So far we have only dealt with scalar integrals, i.e. integrals with no
vectors with free indices in the numerator

Iµ1···µn =

∫
ddk

kµ1 · · · kµn

D1 · · ·DN

At one-loop it has long been worked out, how to reduce tensor
integrals to scalar integrals ⇒ Passarino Veltman reduction
Huge progress in automating one-loop calculations
keywords: unitary, integrand reduction, OPP
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Mathematical prelude & basics

Projectors

Most of the time it is more convenient not to have open Lorentz
indices from the very start
To avoid this the use of projectors is very convenient
As an example let us consider corrections to the photon
propagator Πµν(q)
from Lorentz covariance we know it can be written in the form

Πµν = (q2gµν − qµqν)ΠT (q2) + qµqνΠL

to calculate ΠT and ΠL we can use the projectors

PT = (q2gµν − qµqν)/(q.q)2/(d − 1), PL = qµqν/(q.q)2
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Mathematical prelude & basics

Polylogarithms

Function classes appearing in Feynman integral calculations are the
Polylogarithms

Lin(z) =
∞∑

k=1

zk

kn

which for z → 1 give the ζ values

ζn =
∞∑

k=1

1
kn

Lin(1) = ζn

ζ2 =
π2

6
, ζ3 = 1.2020 . . . , ζ4 =

π4

90
, · · · , ζ2n ∝ π2n
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Mathematical prelude & basics

Polylogarithms

They appear in the calculations of integrals over logarithms∫
dx log x/(1 − x) = Li2(1 − x)∫

dx Li2(x)/x = Li3(1 − x)∫
dx Li2(1 − x)/x = −2Li3(x) + Li2(1 − x) log(x)

+2Li2(x) log(x) + log(1 − x) log2(x)

The Polylogarithms are not very systematic and many relations
between them exist.
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Mathematical prelude & basics

Harmonic Polylogarithms

A more systematic approach are the harmonic polylogarithms (HPLs)
defined as iterated integrals over the alphabet

f−1 =
1

1 + x
, f0 =

1
x
, f1 =

1
1 − x∫ x

0
dx ′HPL(n⃗; x ′)fa(x ′) = HPL(a, n⃗; x)

HPL(1, x) = − log(1 − x), HPL(−1, x) = log(1 + x)

HPL(0, x) = log(x), HPL(0. . . . ,0, x) =
1
n!

logn(x)

Extensions to more complicated alphabets exist.
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Mathematical prelude & basics

Harmonic Polylogarithms analytic properties

all HPLs are well defined for

x ∈ [0,1] ∪ C\R

for the remainder of the real axis one has to be careful to specify
the correct imaginary part (δ = ±1, ϵ ≪ 1)

x = −t + δϵi , 0 < t < 1

H(−1; x) = −H(1; t), H(0; x) = H(0; t)+iδπ, H(1; x) = −H(−1; t)

x = 1/t + δϵi , x > 1, e.g.

H(1; x) = H(1; t) + H(0; t) + iδπ

37 / 117



Mathematical prelude & basics

Harmonic Polylogarithms properties

HPLs obey the shuffle relation

H(a⃗; x)H(b⃗; x) =
∑

c⃗∈shuffles of a⃗,⃗b

H(c⃗; x)

e.g.

H(a1,a2; x)H(b1,b2; x) = H(a1,a2,b1,b2; x) + H(a1,b1,a2,b2; x)
+H(a1,b1,b2,a2; x) + H(b1,a1,a2,b2; x)
+H(b1,a1,b2,a2; x) + H(b1,b2,a1,a2; x)

which can be proved by taking the derivative and using that they
result is correct for x = 0
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Mathematical prelude & basics

Harmonic Polylogarithms properties cont’d

∂

∂x
(H(a1,a2; x)H(b1,b2; x)) =

∂

∂x
(H(a1,a2,b1,b2; x) + H(a1,b1,a2,b2; x) + H(a1,b1,b2,a2; x))+

∂

∂x
(H(b1,a1,a2,b2; x) + H(b1,a1,b2,a2; x) + H(b1,b2,a1,a2; x))

fa1(x)H(a2; x)H(b1,b2; x) + fb1(x)H(a1,a2; x)H(b2; x) =
fa1(x)(H(a2,b1,b2; x) + H(b1,a2,b2; x) + H(b1,b2,a2; x))+
fb1(x)(H(a1,a2,b2; x) + H(a1,b2,a2; x) + H(b2,a1,a2; x))
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Mathematical prelude & basics

Harmonic Polylogarithms properties

We can use the shuffle relations to construct a basis for the HPLs.
Conventionally one replaces all HPLs with leading ”1”s (or ”-1”s) or
trailing ”0”s by products of simpler HPLs. E.g.

H(−1,0; x) = H(−1; x)H(0; x)− H(0,−1; x)
H(1,0,1; x) = H(1; x)H(0,1; x)− 2H(0,1,1; x)

Besides these HPLs several other HPLs can be chosen to be
eliminated.
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Mathematical prelude & basics

Hypergeometric functions

Since HPLs, and their extensions, are iterated integrals they
naturally appear when dealing first-order factorizing differential
equations.
In more complicated cases, or when a closed solution in d is
needed, higher functions come into play.

pFq(a1, . . . ,ap;b1, . . . ,bq; z) =
∑∏

i(ai)n∏
j(bj)n

zn

n!

with the Pochhammer symbol (a)n = Γ(a + n)/Γ(a)
The hypergeometric function 2F1 fulfils a second order differential
equation.

z(1 − z)
d2

dz2 F (z) + [c − (a + b + 1)z]
d
dz

F (z)− abF (z) = 0
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Mathematical prelude & basics

Hypergeometric functions

The 2F1 is given by the integral representation

2F1(a,b; c; z) =
Γ(c)

Γ(b)Γ(c − b)

∫
dx xb−1(1 − x)c−b−1(1 − zx)−a

expansions in z around z0 are rather simple, cp. series
representation, esp. z0 = 0
expansions in a,b, c can be obtained by expanding the
Pochhammer symbols in the series representation and
resumming the resulting expression.
HypExp, HypExp 2 [Huber,Maitre]
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Mathematical prelude & basics

Hypergeometric functions

Certain arguments result in simpler (?) functions, e.g.

2F1(1,1;2; x) = − log(1−x)
x

2F1(1/2,1/2;1; x) = 2
πK (x)

Here we have the elliptic integral of the first kind

K (x) =
∫ 1

0
dt

1√
(1 − t2)(1 − xt2)

If there is a first kind, there must be a second kind, too

E(x) =
∫ 1

0
dt

√
(1 − xt2)

(1 − t2)
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General representation of Feynman integrals

Generalized formula and why we need more tools

Consider a general L-loop integral with N internal lines with momenta
qi and masses mi and E external lines with momenta pe

GL =
1

(iπd/2)L

∫
ddk1 · · · ddkL

(q2
1 − m2

1)
νi · · · (q2

N − m2
N)

νN

The denominators are of the form

di =

(∑
ℓ

aiℓkℓ − Pi

)2

− m2
i =

(∑
ℓ

aiℓkℓ −
∑

e

βiepe

)2

− m2
i

introduce a Schwinger parameter for each factor∫
ddk

∏
dαi

ανi−1

Γ(νi)
exp(−T )
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General representation of Feynman integrals

Generalized formula and why we need more tools

T =
∑

i

αidi = kMk − 2kQ + J

Mℓℓ′ =
∑

i

αiaiℓαiℓ′

Qℓ =
∑

i

αiaiℓPi

J =
∑

i

αi(P2
i − m2

i )

Need to do the remaing integral of a quadratic form with a symmetric
matrix → linear algebra
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General representation of Feynman integrals

Generalized formula and why we need more tools

Momentum integration gives rise to

U(α) = detM

F (x) = −(detM)J + QM̃Q with M̃ = (detM)M−1

and we thus obtain the final Schwinger parameter representation

GL =
(−1)Nν∏

i Γ(νi)

∫
αi>0

∏
i

dαiα
νi−1
i [U(α)]−d/2 exp

(
−F (α)

U(α)

)
U(x) is homogeneous function of degree L
F (x) is homogeneous function of degree L + 1
U,F first,second Symanzik (graph) polynomial
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General representation of Feynman integrals

Feynman parameter representation

start from Schwinger representation and insert 1

1 =

∫ ∞

−∞
δ(t −

∑
αi)

and rescale xj = αj/t

GL =
(−1)NνΓ(Nν − d

2 L)∏
i Γ(νi)

∫ ∏
i

dxix
νi−1
i δ(1 −

∑
xi)

×U(x)Nν−d(L+1)/2

F (x)Nν−dL/2
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General representation of Feynman integrals

Cheng-Wu theorem

Cheng-Wu theorem: Can restrict the Feynman parameters in the delta
function to subset S

GL =
(−1)NνΓ(Nν − d

2 L)∏
i Γ(νi)

∫
xi>0

∏
i

dxix
νi−1
i δ(1 −

∑
i∈S

xi)

×U(x)Nν−d(L+1)/2

F (x)Nν−dL/2
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General representation of Feynman integrals

Lee-Pomeransky representation

GL =
Γ(d/2)

Γ((L + 1)d/2 − Nν)ΠiΓ(νi)

∫
uj>0

du Πju
νi−1
j (U(u) + F (u))−d/2

proof: work backwards to obtain Feynman parameter
representaion
advantage: only one polynomial
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General representation of Feynman integrals

Dimension shift

start with the Schwinger representation

I(ν1, · · · , νN ,d) =
(−1)Nν∏

i Γ(νi)

∫
αi>0

∏
i

dαiα
νi−1
i [U(α)]−d/2 exp

(
−F (α)

U(α)

)

=
(−1)Nν∏

i Γ(νi)

∫
αi>0

∏
i

dαiα
νi−1
i

U(α)

U(α)U(α)d/2 exp

(
−F (α)

U(α)

)

=
(−1)Nν∏

i Γ(νi)

∫
αi>0

∏
i

dαiα
νi−1
i

U(α)

U(α)(d+2)/2 exp

(
−F (α)

U(α)

)
= U(1+, . . . ,N+)D++I(ν1, · · · , νN ,d)

↪→ relation between integrals in d nd d + 2 dimensions
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General representation of Feynman integrals

Why is this useful?

Consider the family of one-loop two-point integrals

I(νi , ν2,d) =
∫

ddk
1

(k2)ν1((k + p)2)ν2

I(1,1,4) UV divergent, IR finite
I(2,1,4),I(1,2,4) UV finite, IR divergent
I(2,1,6),I(1,2,6) UV divergent, IR finite
I(2,2,6),I(2,2,6) UV finite, IR finite

↪→ potentially use only finite integrals?
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General representation of Feynman integrals

More loops

U = x1x2x3x4x5 + x1x3x4x6x5 + x2x3x4x6x5

+x1x2x4x7x5 + x2x3x4x7x5 + x1x4x6x7x5

+x2x4x6x7x5 + x3x4x6x7x5 + x1x2x3x8x5

+x1x2x4x8x5 + 214 terms

F = x2x3x4x5x1
2 + x3x4x5x6x1

2 + x2x3x4
2x5x1

+x2x3
2x4x5x1 + x2

2x3x4x5x1 + x3x4
2x5x6x1

+x3
2x4x5x6x1 + 2x2x3x4x5x6x1 + x2x3

2x4x5x6

+x2
2x3x4x5x6 + 929 terms
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Mellin Barnes

Generalized formula and why we need more tools

to proceed with the calculation in the next step the Feynman parameter
integral ∫ ∏

i

dxix
νi−1
i δ(1 −

∑
xi)×

U(x)Nν−d(L+1)/2

F (x)Nν−dL/2

has to be performed.
Problem: The polynomials in the Feynman parameters xi (one variable
per line of the integral) become too complicated to be integrated very
fast.
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Mellin Barnes

Where do we go from here?

Problem: we have a completely general representation for Feynman
integral properly regularized in d dimensions. It can not (easily)
evaluated any further.

Possible solutions?

expand in ϵ = (4 − d)/2

most of the time not possible, since Feynman integrals still do not
converge for ϵ → 0
integrate numerically
cannot do that in d dimensions
make the objects simpler again
can be done, but for a prize ...
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Mellin Barnes

Mellin-Barnes representation

One way to achieve this goal is the Mellin-Barnes representation
[Smirnov; Tausk]

1
(A + B)λ

=
B−λ

2πiΓ(λ)

∫ i∞

−i∞
dz
(

A
B

)z

Γ(−z)Γ(λ+ z)

the main idea being to chop the long polynomials in smaller pieces in
such a way that they can be integrated over the Feynman parameters
again.

Note: If this relation is applied finely enough the Feynman integration
is guaranteed to become doable
Note: This might not be the best idea ...
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Mellin Barnes

Mellin-Barnes representation

Very important is how the integration contour has to be chosen.

1
(A + B)λ

=
B−λ

2πiΓ(λ)

∫ i∞

−i∞
dzAzB−zΓ(−z)Γ(λ+ z)

There are left poles coming from

Γ(λ+ z)

and right poles coming from

Γ(−z)

The integration contour has to separate these poles
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Mellin Barnes

Mellin-Barnes representation

Γ(−z)Γ(λ+ z)
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Mellin Barnes

Mellin-Barnes representations: Singularities

In this approach singularities (in ϵ) arise, when for ϵ → 0 left and right
poles coincide such that no valid integration contour can be chosen.∫ I∞

−I∞
Γ(z + ϵ)Γ(−z) · · · dt

This problem can be solved by explicitly taking residues when
necessary.

in the example, instead of the complicated contour shown take a
straight line but explicitly include the residue of the first left pole
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Mellin Barnes

Mellin-Barnes representations: How to continue?

Once the optimal MB-representation has been found one can continue
with one or more of the following

further analytical manipulations: e.g. Barnes Lemmas

preparation of a series representation and application of
summation techniques
preparation for numerical integration, e.g. MB.m
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Mellin Barnes

Barnes Lemmas

First Barnes Lemma

1
2πi

∫ i∞

−i∞
Γ(a + z)Γ(b + z)Γ(c − z)Γ(d − z)dz

=
Γ(a + c)Γ(a + d)Γ(b + c)Γ(b + d)

Γ(a + b + c + d)

Second Barnes Lemma

1
2πi

∫ i∞

−i∞

Γ(a + z)Γ(b + z)Γ(c + z)Γ(1 − d − z)Γ(−z)
Γ(e + z)

dz

=
Γ(a)Γ(b)Γ(c)Γ(1 − d + a)Γ(1 − d + b)Γ(1 − d + c)

Γ(e − a)Γ(e − b)Γ(e − c)

with e = a + b + c − d + 1
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Mellin Barnes
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Mellin Barnes

Towards a series representation

If the integrand f (z) of the MB integral∫ i∞

−i∞
dzf (z)

is vanishing fast enough for |z| → ∞ we can close the integration
contour either to the right or to the left and use the residue theorem
and write

1
2πi

∫ i∞

−i∞
dz f (z) =

∑
Res(f (z))
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Mellin Barnes

AMBRE - Automatic Mellin-Barnes Representation

AMBRE written by I. Dubovyk, J. Gluza, K. Kajda, T. Riemann, which
can be obtained from the webpage
http://prac.us.edu.pl/˜gluza/ambre/
is a tool for the automatic construction of a good (best) MB
representation.
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Mellin Barnes

MB.m

MB.m Mathematica package by M. Czakon
can be used to extract poles from Mellin Barnes representations
prepare code for numerical integration
and run it

Caveats:
as provided on webpage written to use f77
uses the old Cuba API
needs parts of the CERNLIB
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Sector decomposition

Recap

We derived the Feynman parameter representation

GL =
(−1)NνΓ(Nν − d

2 L)∏
i Γ(νi)

∫ ∏
i

dxix
νi−1
i δ(1 −

∑
xi)

×U(x)Nν−d(L+1)/2

F (x)Nν−dL/2

where U(x) and F (x) are homogeneous functions of xi of degree L
and L + 1, respectively.

For euclidean kinematics F (x) is positive semi definite and we only
have to deal with end-point singularities.
The sector decomposition approach can be used to disentangle
overlapping singularities.
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Sector decomposition

Basic idea

Need to integrate functions like∫ 1

0
dx

f (x)
xn+ϵ

if n = 1,2, . . . and f (0) ̸= 0 we can not expand in ϵ first and then
integrate, but for e.g. n = 1∫ 1

0
dx

f (x)
x1+ϵ

=

∫ 1

0
dx

f (0)
x1+ϵ

+

∫ 1

0
dx

f (x)− f (0)
x1+ϵ

= − f (0)
ϵ

+

∫ 1

0
dx

f (x)− f (0)
x

+O(ϵ)
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Sector decomposition

Primary sectors

Let us set νi = 1∫ 1

0

∏
i

dxiδ(1 −
∑

xi)
U(x)Nν−d(L+1)/2

F (x)Nν−dL/2

First step is to integrate over the delta function

To do this split the integration into n parts to get the primary sectors Gℓ∫
dnx =

∫
dnx

∏
θ(xi ≥ 0) =

∑
ℓ

∫
dnx

∏
i ̸=ℓ

θ(xℓ ≥ xi ≥ 0)

explicit for 2 variables∫
dx1dx2 =

∫
dx1dx2θ(x1 ≥ x2 ≥ 0) +

∫
dx1dx2θ(x2 ≥ x1 ≥ 0)
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Sector decomposition

Primary sectors

In each primary sector Gℓ do the variable transformation

xj =


xℓtj j < ℓ
xℓ j = ℓ
xℓtj−1 j > ℓ

Then due to the homogeneity xℓ factors out and

Fℓ(x) → Fℓ(t)xL+1
ℓ , Uℓ(x) → Uℓ(t)xL

ℓ

doing the integration over xℓ to eliminate the δ-function gives for each
primary sector

Gℓ =

∫ 1

0

N−1∏
i=1

dti
Uℓ(t)Nν−d(L+1)/2

Fℓ(t)Nν−dL/2
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Sector decomposition

Iterated sector decomposition

There are many strategies to do the actual sector decomposition. I
follow here the original version by Binoth and Heinrich

1 Determine a minimal set of parameters, say S = {tα1,...,tαr
}, such

that Uℓ, respectively Fℓ, vanish if the parameters of S are set to
zero.

2 Decompose the corresponding r -cube into r subsectors.
r∏

j=1

θ(1 ≥ tαj ≥ 0) =
r∑

k=1

∏
j ̸=k

θ(1 ≥ tαk ≥ tαj ≥ 0)

3 remap to the unit cube in each subsector

tαj →
{

tαk tαj , j ̸= k
tαj , j = k

tαk factors from U(t) and/or F (t) and we get the form

Gℓk =

∫ 1

0

N−1∏
i=1

dti
(∏

tAj−Bjϵ

j

) Uℓk (t)Nν−d(L+1)/2

Fℓk (t)Nν−dL/2
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Sector decomposition

Extraction of poles

After the sector decomposition is complete we are left with expressions
of the form

Ij =
∫

dtj tAj−Bjϵ

j I(tj , ϵ)

if Aj ≥ 0 we do not get a pole in ϵ from the t integration
otherwise we expand I(tj , ϵ) around tj = 0

I(tj , ϵ) =
|Aj ]−1∑
p=0

I(p)
j (0, ϵ)

tp
j

p!
+ R(tj , ϵ)

and obtain for the integral

Ij =
|Aj ]−1∑
p=0

1
|Aj |+ p + 1 − Bjϵ

I(p)
j (0, ϵ)

p!
+

∫ 1

0
dtj t

Aj−Bjϵ

j R(tj , ϵ)

72 / 117



Sector decomposition

Example: one-loop triangle

Let us look at the one-loop triangle with propagators

{−k2, −(k + p1)
2 − M2, −(k + p2)

2 − M2}, p2
1 = p2

2 = 0

we have the U and F polynomials

U(x) = x1 + x2 + x3, F (x) = sx3x2 + x2
2 + x1x2 + 2x3x2 + x3

2 + x1x3
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Sector decomposition

Example: one-loop triangle

To obtain the first primary sector we use the rules

{x1 → x1, x2 → t1x1, x3 → t2x1}

integrate over the delta function and obtain the new polynomials

U1(t) = t1 + t2 + 1, F1(t) = st2t1 + t12 + 2t2t1 + t1 + t22 + t2

F (t) vanishes for t1, t2 → 0 ⇒ we get 2 subsectors
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Sector decomposition

Example: one-loop triangle

We get the 2 subsectors by the transformations t2 → t1t2 and t1 → t1t2,
respectively.

F1,1 = st1t2 + t1t22 + 2t1t2 + t2 + t1 + 1
F1,2 = st2t1 + t2t12 + 2t2t1 + t1 + t2 + 1

both are now positive and we can stop here

primary sectors 2 and 3 have no subsectors

all singularities in the Feynman parameter integration are now made
explicit ∫ 1

0

∏
j

tAj−Bjϵ

j

 f (t)

and f (t) is free of singularities
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Sector decomposition

Non-Euclidean kinematics

If we are not in the Euclidean region (sij < 0) the F -polynomial is
no longer positive semi definite, but changes sign inside the
domain of integration. Leading to (integrable) singularities.
A necessary condition are the Landau equations

xj(q2
j − m2

j ) = 0 ∀j
∂

∂kµ

∑
j

xj(q2
j (k ,p)− m2

j ) = 0

if there is a solution xi > 0 for the Landau equations, we have the
leading Laudau singularity, which is not integrable
To perform these integrations contour deformation [Borowka, Heinrich] can
be used.
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Sector decomposition

Contour deformation

Reparametrize the integration path∫ 1

0

N∏
j=1

dxjIx =

∫ 1

0

N∏
j=1

dxj

∣∣∣∣(∂zk (x)
∂xl

)∣∣∣∣ I(z(x))
a convenient choice is

z⃗(x⃗) = x⃗ − i τ⃗(x⃗)

τk = λxk (1 − xk )
∂F (x⃗)
∂xk

F expressed in the new variables

F (z⃗(x⃗)) = F (x⃗)− iλ
∑

j

xl(1 − xj)

(
∂F
∂xj

)2

+O(λ2)
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Sector decomposition

Tools

The method of sector decomposition has been implemented in several
tools

FIESTA (http://git.sander.su/fiesta) [Smirnov]

SecDec (https://secdec.hepforge.org/)
[ Borowka, Heinrich, Jones, Kerner, Schlenk, Zirke]

pySecDec (https://secdec.hepforge.org/)
[ Borowka, Heinrich, Jahn, Jones, Kerner, Schlenk, Zirke]

SectorDecomposition (http://wwwthep.physik.uni-
mainz.de/˜stefanw/sector decomposition/)

[Bogner, Weinzierl]
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Asymptotic expansions

Motivation

Quite often a problem is to complex at the start to be tackled directly.

In this case it is often possible to expand in some small or large
parameter to simplify the problem.

These expansions sometimes lead to more than a simple power series
and more work than taking a simple Taylor series has to be done.

In general, the procedure than goes by the name of asymptotic
expansion.

There are two procedures to perform an asymptotic expansion:
expansion by regions
expansion by subgraphs
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Asymptotic expansions

Expansion by regions: The idea

1 Divide the space of the loop momenta into various regions and, in
every region, expand the integrand in a Taylor series with respect
to the parameters that are considered small there.

2 Integrate the integrand, expanded in the appropriate way in every
region, over the whole integration domain of the loop momenta.

3 Set to zero any scaleless integral.
The peculiar thing here is the second step since naively this could lead
to double counting problems.
The problematic thing is how do we find all these regions
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Asymptotic expansions

Example I: large momentum expansion

p

m m

k k

k + p

F =

∫
ddk I

with the integrand I = I1I2 and the propagators

I1 =
1(

(k + p)2
)n1

=
1

(k2 + 2k · p + p2)n1
and I2 =

1
(k2 − m2)n2
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Asymptotic expansions

Example I: large momentum expansion

I1 =
1(

(k + p)2
)n1

=
1

(k2 + 2k · p + p2)n1
and I2 =

1
(k2 − m2)n2

We want to consider the case where

|p| ≫ m

What are the regions?

We find the following
hard region (h) k ∼ p
soft region (s) k ∼ m
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Asymptotic expansions

Example I: hard region

In the hard region we have k ∼ p so

m2 ≪ k2 ∼ k · p ∼ p2

so I1 remains untouched and in I2 we perform an expansion in m2/k2

I2 → T (h)I2 ≡
∑

j

T (h)
j I2 =

∞∑
j=0

(n2)j

j!
(m2)j

(k2)n2+j

and we obtain a massless propagator∫
ddk

1
(k + q)2(k2)n
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Asymptotic expansions

Example I: soft region

In the soft region we have k ∼ m so

|k2| ≪ |p2|, |2k · p| ≪ |p2|

now I2 is untouched and we have to expand I1

I1 → T (s)I1 ≡
∑

j

T (s)
j I1 ≡

∑
j1,j2

T (s)
j1,j2

I1 =
∞∑

j1,j2=0

(n1)j12

j1! j2!
(−k2)j1 (−2k · p)j2

(p2)n1+j12

In this region we end with massive tadpoles∫
ddk

k · pn

k2 − m2
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Asymptotic expansions

Example II: On-shell integrals

Consider the typical on-shell integral (q2 = M2)∫
dkd dld

1
(k2 + 2k · q)k4((k − l)2 − m2)(l2 − m2)

we get the regions
k2, l2 ≈ M2: expand in m2 → massless on-shell propagator
k2 ≈ M2, l2 ≈ m2: one-loop on-shell × massive tadpole
k2, l2 ≈ m2: expand in k2 → new class of diagrams∫

d2k dd l
1

(k · q)k4((k − l)2 − m2)(l2 − m2)
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Asymptotic expansions

Tools for asymptotic expansions

To help with finding the regions of a Feynman integrals the
Mathematica programs

asy.m [Pak, Smirnov]

asy2.m [Jantzen, Smirnov]

are useful.
Both programs are based on the program Qhull.
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Integration by parts

Integration by parts

state of the art calculations require the calculation of O(103) -
O(107) Feynman integrals
especially multi-loop or calculations involving expansions require
the calculation of many integrals
individual calculation of all these integrals is not feasible
the number of integrals can be greatly reduced by applying the
so-called integration-by-parts identities
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Integration by parts

Integration by parts

Integration-by-parts identities are based on the property

0 =

∫
ddk

∂

∂kµ
i

1

Dk1
1 · · ·Dkn

n

which being the integral of a total derivative evaluates to a surface
term and can be shown to vanish.
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Integration by parts

Integration by parts

To make them more manageable contract with either an external or a
loop momentum

0 =

∫
ddk

∂

∂kµ
i

{kµ,qµ
j }

Dk1
1 · · ·Dkn

n

which then yields

#loops × (#loops +#(indep ext momenta))

relations
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Integration by parts

Integration by parts

Integration-parts-relations can either be used by
constructing a set of symbolic relations reducing the number of
propagators
LiteRed [Lee]

explicitly applying the relations to a set of integrals and solving the
resulting system of linear equations
Air [Anastasiou, Lazopoulos]

FIRE [Smirnov]

Reduze [v. Manteuffel, (Studerus)]

KIRA [Maierhöfer,Usowitch,Uwer]
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Integration by parts

Simple example

Consider the class of integrals

J(n) =
∫

ddk
1

(k2 − M2)n

Applying the only IBP relation leads to

0 =

∫
ddk

∂

∂kµ

kµ

(k2 − M2)n

= dJ(n)− 2n
∫

ddk
k2

(k2 − M2)n+1
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Integration by parts

Simple example

Consider the class of integrals

J(n) =
∫

ddk
1

(k2 − M2)n

Applying the only IBP relation leads to

0 =

∫
ddk

∂

∂kµ

kµ

(k2 − M2)n

= dJ(n)− 2n
∫

ddk
(k2 − M2) + M2

(k2 − M2)n+1

= (d − 2n)J(n)− 2nM2J(n + 1)
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Integration by parts

Simple example cont’d

In this simple case the IBP identities can easily be solved leading to

J(n + 1) =
d − 2n
2nM2 J(n)

and explicitly to

J(2) =
d − 2
2M2 J(1)

J(3) =
d − 4
4M2 J(2) =

(d − 2)(d − 4)
8M4 J(1)
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Integration by parts

IBPs: Challenges

Either
huge system of equations O(100 · 106 − 109)
or
many invariants leading to very complicated rational functions
algorithm used for solving the system of equations:
Gauss elimination, scales like O(N3)
BUT only if the cost of every operation is constant
possible way out: map everything to finite fields,
use Chinese remainder theorem to reconstruct the full solution.
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Differential equations

Recap of IBP identities

IBP identities are very useful because they allow us to express any
integral Ij as linear combination of master integrals Mi

Ij =
∑

i

Cji(d ,mi , sij)Mi

The set of master integrals is obtain by exploiting all available IBP
identities (and possibly also symmetry relations). The number of
master integral is fixed but there is a freedom to choose the integrals.
The idea is of course to reduce more complicated integrals, i.e. more
lines, more dots, to simpler ones, i.e. fewer lines, fewer dots.
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Differential equations

Differential equations

Feynman integrals are functions of masses and kinematical variables

I(mi , sij)

As such one can try to find a differential equation for the integral, e.g.

∂

∂z
I(mi , sij) = f (mi , sij)I(mi , sij) + R(mi , sij), z ∈ {mi , sij}

and find a solution for it. [Kotikov; Remiddi]
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Differential equations

Construction of the differential equation

One way to construct the differential equation is by means of a master
formula

DI(mi , sij) = 2

(
m2

i
∂

∂m2
i
+ sij

∂

∂sij

)
I(mi , sij)

where D denotes the mass dimension of the integral. mi and
sij = (pi + pj)

2 denote internal masses and kinematical variables,
respectively.

In the simple case of one mass parameter m and one kinematic one
q2 this turns into

DI(m,q2) = 2
(

m2 ∂

∂m2 + q2 ∂

∂q2

)
I(m,q2)
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Differential equations

Construction of the differential equation

DI(m,q2) = 2
(

m2 ∂

∂m2 + q2 ∂

∂q2

)
I(m,q2)

the derivative with respect to m2 can be taken directly leading to
integrals with raised powers of propagators and we remain only with
the differential with respect to q2.

Now we can use IBP-relations to rewrite the new integrals in terms of
the original one.
Thus, we obtain a differential equation for the integral
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Differential equations

System of differential equation

In general, there is more than one master integral that we want to
calculate. Thus we get a system of coupled differential equations.

∂

∂z
Ij(z,d) = Cj(z,d)Ij +

∑
k ̸=j

Djk Ik (z,d)

The integrals in the inhomogeneity are by construction at most as
complicated as the integral we are looking at.
In the best case they are all simpler than the original one.
In the worst case we obtain a system of coupled differential equation
within a sector, i.e. involving integrals where the same lines have
positive powers.
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Differential equations

Solving the differential equation

A first-order differential equation can be solved by using the method
”variation of constants”.
Consider the first-order differential equation

∂

∂z
f (z) = a(z)f (z) + b(z)

then
f̃ (z) = CeA(z), with A(z) =

∫
dz a(z)

is a solution of the homogeneous equation and

f (z) = eA(z)
(∫ z

z0

b(z ′)e−A(z′)dz ′ + C
)

a solution of the inhomogeneous equation.
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Differential equations

Solving the system of differential equation

In practice, it is best to first perform the expansion in ϵ = (4 − d)/2 and
then to solve the differential equations order by order in ϵ. Make an
ansatz for the master integrals in the form

Ij(z) =
m∑

k=−n

Ijk (z)ϵk

This leads to a system of coupled differential equations for the
coefficients of the Laurent expansion of the master integrals.
The system of differential equations can then be solved in bottom up
approach.
This approach leads naturally to iterated integrals like HPLs.
In case there are several integrals in a sector one can try to decouple
them in ϵ be a suitable choice of the master integrals.
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Differential equations

Canonical basis

It was recently proposed [Henn] and demonstrated that in many cases a
canonical basis of master integrals can be found in which the
differential equations take the form

∂

∂x
I⃗(x , ϵ) = ϵA(x )⃗I(x , ϵ)

where A is a n × n matrix. This makes the solution of differential
equations trivial. In addition the alphabet of functions can be read off
from the entries of the matrix.
Furthermore, [Lee] recently proposed an algorithm how to obtain such a
representation. There are a few impletation of the algorithm and
several extensions available.
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Differential equations

Example: Massive one-loop propagator

use
q2

m2 = −(1 − x)2

x
and derive the differential equations for the two masters J1 and J2.

− x2J1
′(x)

(x − 1)(x + 1)
= 0

− x2J2
′(x)

(x − 1)(x + 1)
= − (d − 2)x2J1(x)

(x − 1)2(x + 1)2

−
x
(
dx2 − 2dx + d − 4x2 + 4x − 4

)
J2(x)

2(x − 1)2(x + 1)2

The first equation does not give much information since J1 does
not depend on x . J1 = C(m,d) = c1,−1/ϵ+ c1,0 + c1,1ϵ
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Differential equations

Example: Massive one-loop propagator

Inserting an ansatz in form of a Laurant series in ϵ we get

0 = 2c1,−1 −
(

x2 − 1
)

J ′
2,−1(x)− 2J2,−1(x)

0 = x
(
−2c1,0 + 2c1,−1 +

(
x2 − 1

)
J ′

2,0(x)
)

+2xJ2,0(x) + (x − 1)2J2,−1(x)

For the solutions one gets

J2,−1(x) =
kx + k + 2c1,−1

1 − x

There is no singularity for x → 1 thus (with c1,−1 = 1)

k = −1 ⇒ J2,−1(x) = 1
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Differential equations

Example: Massive one-loop propagator

0 = −2xJ2,0(x)− x
(

x2 − 1
)

J ′
2,0(x)− (x − 1)2

with the solution

J2,0(x) =
kx + k + x log(x) + log(x) + 4

1 − x

To get a regular solution at x = 1 we need k = −2 and get

J2,0(x) =
−2x + x log(x) + log(x) + 2

1 − x
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Factorial series

Factorial Series

The idea of the method goes back to Laporta who suggested the
to calculate Feynman integrals in form of of a factorial series.
Take an integral and raise the power of one propagator to the
power x e.g. I(1,1,1) → I(x) = I(x ,1,1)
Using IBP relations on can obtain a difference equation for the
integral

R∑
k+0

pk (x)I(x + k) =
∑

i

Ri∑
k=0

pik (x)Ji(x + k)

where Ji are integrals of simpler sectors
Make an ansatz for I(x) in terms of a factorial series
(N.B. not the most general one)

I(x) =
∞∑

s=0

Γ(x + 1)
Γ(x + d/2 + s + 1)

as
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Factorial series

Factorial Series cont’d

Inserting the ansatz into the difference equation results in a
recurrence relation for as

R′∑
k=0

gk (s)as+k =
∑

i

R′
i∑

k=0

gik (s)ai,s+k

given the initial values a0,a1, . . . are known, an arbitrary number of
values for an can be calculated.
using the obtained values for an I(x) can be calculated

I(x) =
∞∑

s=0

Γ(x + 1)
Γ(x + d/2 + s + 1)

as

=
Γ(x + 1)

Γ(x + d/2 + 1)

(
a0 +

a1

(x + d/2 + 1)
+

a2

(x + d/2 + 1)(x + d/2 + 2)

+ · · ·
)
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Factorial series
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Guessing

Idea

suppose we have obtained a result of the form

F = 1(. . .) + ζ2(. . . ) + ζ3(. . . ) + ln(2)(. . . ) + Li4(1
2)(. . . ) + · · ·

where (. . .) denote power series in y with rational coefficients
this form can often be obtained by using diff eqns
this representation is unique

can we do better?
Guess a recurrence [Kauers,Jaroschek,Johansson ’15]

and try to solve it using Sigma [Schneider ’07]

if recurrence can be solved, i.e. first-order factorizing, one obtains
(generalized) harmonic sums, which can be resummed using
HarmonicSums [Ablinger ’13]
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Guessing

Example

start with the sequence for Ci in
∑

Ciy i

−2,0,−1
6 ,−

1
6 ,−

3
20 ,−

2
15 ,−

5
42 ,−

3
28 ,−

7
72 ,−

4
45 ,−

9
110 ,−

5
66 ,−

11
156 ,

− 6
91 ,−

13
210 ,−

7
120 ,−

15
272 ,−

8
153 ,−

17
342 ,−

9
190 ,−

19
420 , . . .

guess recurrence
n2Cn − (n − 1)(n + 2)Cn+1 = 0
solve the recurrence
Cn = − n−1

n(n+1)

sum it
−2 −

∑∞
n=1

n−1
n(n+1)y

n = − (y−2) log(1−y)
y
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Conclusions

Conclusion

Many approaches exist for various classes of integrals.
Two very stong options to obtain numerical results
Amount of multi purpose tools for analytical integrals very limited.
Different problems may require different methods even mithin the
same project.
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same project.

Thank you very much for your attention!
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