
Dr
aft

Introduction to FORM

March 25, 2025

Bakar Chargeishvili

Computer Algebra and Particle Physics - CAPP 2025,
March 24 – 28, 2025

Dr
aft

2
Plan for today

▶ Preprocessor commands

▶ Dollar variables

▶ Alternatives to FORM’s default preprocessor

▶ Parallelization

▶ Color algebra

▶ Diagram generation

▶ Floating point engine

Bakar Chargeishvili | Introduction to FORM

Dr
aft

3
FORM Preprocessor: The Engine Behind Symbolic Algebra

▶ Preprocessor = powerful text manipulation engine that runs before actual FORM code

▶ Handles code generation, repetitive tasks, and conditional compilation

Key Commands:
▶ #define - Create macros and constants

▶ #if/#else/#endif - Conditional code blocks

▶ #do/#enddo - Loops for generating repetitive expressions

▶ #include - Import external files/libraries

▶ ...-operator is also a preprocessor command

The preprocessor transforms your code before FORM even sees it - essential for managing
complex calculations

Bakar Chargeishvili | Introduction to FORM

Dr
aft

4
Preprocessor (dollar) variables

▶ Define new preprocessor variables using #$a = 0 notation and use it without #-sign.
▶ Dollar variables are shared between preprocessor and algebraic compiler

▶ Not all preprocessor variables are shared
Let’s analyze this program:

1 #-
2 #$a = 25;
3 *Try commenting the next line
4 L test = $a;
5

6 $a = 30;
7 #do i=1,5
8 #message Iteration number `i'
9 #enddo

10

11 #message Can we print $a this way?: `$a'
12

13 .sort
14 L test = $a;
15 Print;
16 .end

Bakar Chargeishvili | Introduction to FORM

Dr
aft

5
Store captured wildcards

One can use dollar varibales to store captured wildcards for later use:
1 #-
2 CF func;
3 Auto S i;
4

5 L test1 = func(1,2,3,4);
6

7 id func(i1?$a,i2?$b,?k)=func(i1,i2,?k);
8

9 #message we got `$a' and `$b'
10

11 .sort
12 #message we got `$a' and `$b'
13 L test2 = func($a,$b);
14

15 Print;
16 .end

Bakar Chargeishvili | Introduction to FORM

Dr
aft

6
To .sort or not to .sort - preprocessor edition

Plug in the expansion of ln(1 + x) in expansion of ex − 1 around x = 0:

ln(1 + x) =
N∑

i=1

(−1)i+1x i
/i + . . . ,

ex − 1 =
N∑

i=1

x i

i!
+ . . . = x

(
1 +

x
2

(
1 +

x
3

(
1 +

x
4

(. . .)
)))

.

1 #-
2 #define N "60"
3 On Statistics;
4 Symbol i, x(:`N'), y(:`N');
5 *define ln(1+x)
6 Local X = - sum_(i, 1, `N', sign_(i)/i*x^i);
7 *tag x by y
8 id x = x*y;
9 *Telescope formula

10 #do i=2,`N'+1
11 id y = 1 + x*y/`i';
12 * .sort
13 #enddo
14 Print;
15 .end

Bakar Chargeishvili | Introduction to FORM

Dr
aft

7
Preprocessing - Poweruser’s Edition

▶ We can use other programming languages as a preprocessor:

▶ Write FORM code using other scripting languages and postprocess the result as desired.
Example, using python:

1 import subprocess, re
2 code = '''
3 #-
4 S a,b;
5

6 L test = (a+b)^30;
7 '''
8 form_file_name = '/tmp/FORM_Code.frm'
9 with open(form_file_name,'w') as f:

10 f.write(code)
11 result = subprocess.run(["form","-f",form_file_name],
12 capture_output=True,text=True).stdout
13 result=result.replace('\n','')
14 result=result.replace(' ','')
15 result=result.replace(';','')
16 result=re.sub('^.*=','',result)
17 print(result)

Bakar Chargeishvili | Introduction to FORM

Dr
aft

8
Revisiting Pascal’s triangle

▶ Try to calculate the sum of all elements at the depth i which are multiplets of 3.
▶ Using only FORM.

▶ Using FORM to construct the triangle, but another language as pre- (and post-)processor.

Bakar Chargeishvili | Introduction to FORM

Dr
aft

9
Setup parameters of FORM

▶ FORM uses setup parameters to set the size of various buffers needed during the
calculation.

▶ The default parameters might not be suited for your problem.

▶ Example of modified values which works for moderate size problems (up to couple
million terms depending on the size of a term):

1 #-
2 #:SmallSize 5000000
3 #:LargeSize 20000000
4 #:WorkSpace 50000000
5 #:MaxTermSize 300000
6 #:TermsInSmall 30000

▶ A script to determine the sane values for your specific machine:
https://github.com/tueda/formset
▶ Might not work on *BSD-based systems as intended.

▶ Check out Chapter 17 in the manual to understand how to choose the values.

Bakar Chargeishvili | Introduction to FORM

https://github.com/tueda/formset

Dr
aft

10Parallelization

▶ Parallelization in FORM is as easy as calling tform (installed by default) executable
instead of form.

▶ For example
1 tform -w 64 YourFile.frm

Parallelizes the calculation automatically on 64 cores.

Caveat
▶ Preprocessor calls and dollar variables might still force the linear execution. Use them

economically.
1 S x,a,b;
2 CF f;
3 L F = f(a+b) + f(a+2*b);
4 .sort
5 id f(x?$x) = f(x);
6 #do i=1,1
7 Multiply,$x;
8 #enddo
9 .end

Bakar Chargeishvili | Introduction to FORM

Dr
aft

11
Color algebra

▶ FORM can be expanded with the powerful addon for the color algebra

▶ Obtain the library and place it in your workdir:
https://www.nikhef.nl/~form/maindir/packages/color/color.h

Let’s calculate:
tr
(

T αT β
)

1 #include- color.h
2 S Na, Nc;
3 Auto I i=N,j=Na,k=N;
4 G Q1 = T(i1,i2,j1)*T(i2,i1,j2);
5

6 .sort
7 #call docolor
8 Print;
9 .end

Bakar Chargeishvili | Introduction to FORM

https://www.nikhef.nl/~form/maindir/packages/color/color.h

Dr
aft

12
Diagram generation

▶ Since v5 FORM supports diagram generation

Example from ϕ3 theory:
1 Model PHI3;
2 Particle phi,1;
3 Vertex phi,phi,phi:g;
4 EndModel;
5 Vector Q,Q1,...,Q7,p,p0,...,p21;
6 Indices j1,j2,i1,...,i21;
7 Set QQ:Q1,...,Q4;
8 Set pp:p1,...,p4;
9

10 L test = diagrams_(PHI3,{phi,phi},{phi},QQ,pp,0);
11 Print;
12 .end

Output:
test =

topo_(1)*node_(1,1,E(-Q1))*node_(2,1,e(-Q2))*node_(3,1,mu(-Q3))*
node_(4,1,MU(-Q4))*node_(5,Qe,e(Q1),E(Q2),photon(-p1))*
node_(6,Qmu,mu(Q4),MU(Q3),photon(p1));

Bakar Chargeishvili | Introduction to FORM

Dr
aft

13
Floating point evaluations

▶ Starting with version 5.0 FORM is also equiped with arbitrary floating point engine:

Evaluate πζ(5, 3):

1 #-
2 #define Pi "22/7"
3 #startfloat 500,15
4

5 L test = `Pi'*mzv_(5,3);
6

7 Evaluate;
8

9 Print;
10 .end

Bakar Chargeishvili | Introduction to FORM

Dr
aft

14
Moving forward

▶ It’s impossible to cover all the great features of FORM in details in 3 lecturs

▶ Read the manual: https://www.nikhef.nl/~form/maindir/documentation/
reference/html/manual.html

▶ Beginner-friendly (somewhat outdated, but still very useful) manual by Andr´e Heck,
FORM for Pedestrians: https://www.nikhef.nl/~form/maindir/documentation/
tutorial/online/online.html

▶ When judging FORM against other computer algebra systems remember slide 6 from
yesterday.

Bakar Chargeishvili | Introduction to FORM

https://www.nikhef.nl/~form/maindir/documentation/reference/html/manual.html
https://www.nikhef.nl/~form/maindir/documentation/reference/html/manual.html
https://www.nikhef.nl/~form/maindir/documentation/tutorial/online/online.html
https://www.nikhef.nl/~form/maindir/documentation/tutorial/online/online.html

Dr
aftThanks for your attention!

