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Outline
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Introduction to foundation 

models



▪ Pre-trained on a certain (large) dataset for a certain task, fine-tuned to perform on a 

different dataset or a different task

▪ Better performance than training the downstream task from scratch
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What are foundation models?



▪ During pretraining, the model learns aspects of the data that are useful for downstream 

tasks

▪ The model has a “head start” compared to a model that needs to train from scratch
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Why does it work?

”Draw some of these animals” ”Which one of these is a horse?”

Aha! I have seen
this before!

Umm, what’s
a horse?

Pretraining Downstream task

Image credits:
DALL-E

themarketingblog.co.uk
drawception.com



▪ Once pre-trained, downstream tasks require less resources

▪ Human resources

▪ Compute resources

▪ Can leverage the pretraining to boost performance on small datasets

▪ Sharing pre-trained models can provide others with access to resources that are 

normally not accessible for them (data, computing resources)

Anna Hallin | Foundation models for HEP | PUNCHLunch 2024.09.19 6

Benefits



▪ GPT-3 (arXiv 2005.14165)

▪ Input: text

▪ Pretraining: generate text (transformer) 

▪ Finetuning: conversational data + reinforcement learning with human feedback 
→ ChatGPT

▪ CLIP (arXiv 2103.00020)

▪ Input: text and images

▪ Pretraining: match images with descriptions (transformer for text, ResNet/ViT for 
images)

▪ Zero shot: image classification

▪ Note: a transformer in itself is not a foundation model
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Examples of foundation models



▪ Can be useful in itself, or a surrogate task

▪ Example of surrogate tasks: BERT (arXiv 1810.04805)

▪ Masked language modeling in addition to next sentence prediction 

▪ Masking out tokens allows bidirectional training: sees both previous and future 

words in order to capture the context within a sentence

▪ Next sentence prediction captures context between sentences: does sentence B 

follow sentence A?
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Pretraining



Foundation models become powerful because of scale:

▪ Data amount 

▪ Architecture

▪ Compute

▪ Example GPT-3: 300B tokens, 175 billion parameters, estimated thousands of GPUs 

trained over several weeks (~1023 flops)

In the context of language models (autoregressive transformers), empirical scaling laws [1] 

show that the cross-entropy loss improves with scale according to simple power laws.
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Scale

[1] Kaplan et al, Scaling Laws for Neural Language Models. arXiv 2001.08361



A foundation model might be able to perform tasks that it was not trained for, and that 

were not anticipated. This behavior comes with scale [2].

Examples from GPT-3 and BERT:

▪ Translation

▪ Coding

▪ Basic arithmetic

▪ Sentiment analysis

▪ Few-shot and zero-shot learning
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Emergent properties

[2] Bommasani et al, On the Opportunities and Risks of Foundation Models. arXiv 2108.07258

2206.07682



Foundation models 

for HEP
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Natural language vs physics

Text

▪ Characters, (sub)words, symbols...

▪ Order matters

▪ Meaning builds across many sentences

Physics

▪ (Mostly) continuous numbers

▪ Single numbers

▪ Sets of numbers (vectors, time series)

▪ Can be permutation invariant

▪ Some sets of numbers like 4-vectors carry special 

meaning 

▪ Symmetries might be present
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▪ Teach LLMs to do maths and physics

▪ Symbolic maths (arXiv 1912.01412)

▪ Number embedding in text (arXiv 2310.02989)

▪ Take inspiration from LLMs+others, build from scratch

▪ The remainder of the talk will focus on this approach

Anna Hallin | Foundation models for HEP | PUNCHLunch 2024.09.19 13

Two approaches to foundation models in physics
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A foundation model example

Image credit: J. Birk



▪ ParticleTransformer (ParT) 

▪ H. Qu, C. Li, S. Qian; arXiv 2202.03772

▪ Masked particle modeling (MPM) 

▪ T. Golling, L. Heinrich, M. Kagan, S. Klein, M. Leigh, M. Osadchy, J. A. Raine; arXiv 

2401.13537

▪ OmniJet-α 

▪ J. Birk, AH, G. Kasieczka; arXiv 2403.05618

▪ OmniLearn 

▪ V. Mikuni, B. Nachman; arXiv 2404.16091
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A selection of foundation models for particle jets

Image credit: J. Birk
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Comparison of foundation models

Name Pre-training goal Architecture Loss Downstream tasks

ParT Classification Transformer Cross-entropy class 
labels

Classification on different dataset
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Comparison of foundation models

Name Pre-training goal Architecture Loss Downstream tasks

ParT Classification Transformer Cross-entropy class 
labels

Classification on different dataset

MPM Predict masked out 
tokens (surrogate task)

Transformer Cross-entropy 
masked token 
prediction

Classification (tagging, anomaly 
detection)



Name Pre-training goal Architecture Loss Downstream tasks

ParT Classification Transformer Cross-entropy class 
labels

Classification on different dataset

MPM Predict masked out 
tokens (surrogate task)

Transformer Cross-entropy 
masked token 
prediction

Classification (tagging, anomaly 
detection)

OmniJet-α Next token prediction 
(generation)

Transformer Cross-entropy next 
token prediction

Classification (tagging), Generation 
(unconditional)
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Comparison of foundation models
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Comparison of foundation models

Name Pre-training goal Architecture Loss Downstream tasks

ParT Classification Transformer Cross-entropy class 
labels

Classification on different dataset

MPM Predict masked out 
tokens (surrogate task)

Transformer Cross-entropy 
masked token 
prediction

Classification (tagging, anomaly 
detection)

OmniJet-α Next token prediction 
(generation)

Transformer Cross-entropy next 
token prediction

Classification (tagging), Generation 
(unconditional)

OmniLearn Generation + 
classification

Transformer + 
diffusion

Cross-entropy class 
labels + diffusion 
velocity parameter

Classification (tagging: different 
dataset, different experiment, 
different collision type; anomaly 
detection), Generation 
(conditional), Reweighting and 
unfolding



▪ LLMs need to turn text into numbers (which is what our models can work with), use 

tokenization: text → sequence of integer tokens

▪ In physics, to predict particle kinematics, as opposed to class labels:

▪ Regression – so far no published results with this (seems to be more difficult)

▪ Cross-entropy – need discrete numbers = tokens

▪ Example of a particle jet:

▪ Jet = 𝑝1, 𝑝2, … , 𝑝𝑁

▪ 𝑝𝑖= {𝑝𝑇 , 𝜂, 𝜙, PID, charge, … } → token𝑖

▪ Jets as sequences of integers:

{< start token >, token1, token2, … , tokenN, < stop token >}
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Tokenization

Image credit: J. Birk



▪ Divide each dimension into bins

▪ Sub-optimal coverage

▪ Vocab size becomes ς𝑖∈𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 𝑛𝑏𝑖𝑛𝑠,𝑖

▪ Tokens → Embedding: Linear(𝑛tokens, 𝑑embed)

▪ Embedding → Tokens: Linear(𝑑embed, 𝑛tokens)

▪ Example: 100 000 tokens with embedding dimension 128 → 25.6M parameters
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Binning



Learns an embedding space that gives the best reconstruction.

▪ Unconditional tokens: tokenize one constituent at a time, 1:1 correspondence

▪ Conditional tokens: sees all constituents, adapts the tokens → one token can cover 

multiple parts of feature space

Vocab size is less sensitive to adding dimensions.
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VQ-VAE

Image credit: J. Birk

1711.00937, 2305.08842



▪ VQ-VAE adapts to the shape of the data

▪ Conditional tokenization covers more of the phase space
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Binning vs VQ-VAE

2403.05618



A closer look at 

OmniJet-α

24



▪ OmniJet-α is the first foundation model for particle physics that is able to task-switch:

▪ unsupervised full jet generation 

▪ supervised classification

▪ Tokenizes with VQ-VAE

▪ Uses a transformer for generative pretraining based on the GPT-1 architecture [3] with 

next-token-prediction as training target.
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A closer look at OmniJet-α

[3] Radford et al, “Improving language understanding by generative pre-training,” (2018)



▪ JetClass [4]: 10 classes of simulated jets with 10M jets of each type, originally used in 

ParT

▪ Tokenize all 10 classes at once to evaluate tokenization performance

▪ For pretraining, generation and classification: use 10M q/g jets and 10M t → bqq’ jets. 

▪ No class labels are passed to the model during pretraining.

▪ Use constituent features pT, ηrel, φrel (rel = relative to the jet axis), no jet-level information
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Dataset

[4] http://dx.doi.org/10.5281/zenodo.6619767



Compared several approaches:

▪ Binning

▪ VQ-VAE

▪ Unconditional

▪ Conditional 

▪ Different codebook sizes (vocab sizes)

We proceed with conditional tokens with codebook 

size 8192.
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Tokenization



The transformer backbone is trained with the next-token-

prediction head.

▪ Causal mask prevents attention to future tokens

▪ n heads = 8, N GPT blocks = 3 results in 6.7M parameters

▪ Model learns to predict the next token, given a sequence 

of previous tokens: 𝑝(𝑥𝑗|𝑥𝑗−1, … , 𝑥1, < 𝐬𝐭𝐚𝐫𝐭 𝐭𝐨𝐤𝐞𝐧 >)
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Backbone training

0

0 153

0 153 5489

0 153 5489 51

0 153 5489 51 8193



During generation, the model generates tokens auto-

regressively:

▪ Model has learned 𝑝(𝑥𝑗|𝑥𝑗−1, … , 𝑥1, < start token >)

▪ Model recieves <start token> and generates until it

generates a <stop token> or the maximum sequence 

length is reached 

Generally good agreement to truth distribution

Constituent 𝑝𝑇 spectrum tail has few events → the limited 

codebook size shows up as bumps
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Generation



The next-token-prediction head is changed to a classification head. We tested three approaches:

▪ From scratch: all weights are initialized from scratch, no pre-training is used

▪ Fine-tuning: load weights of the pre-trained generative model

▪ regular fine-tuning: all weigths can change

▪ backbone fixed: weights of the pre-trained transformer backbone are held fixed
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Transfer learning: classify quark/gluon vs hadronic top jets



▪ Significantly better result when using pre-training

▪ Full fine-tuning slightly better than backbone fixed
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Transfer learning results



▪ Significantly better result when using pre-training

▪ Full fine-tuning slightly better than backbone fixed
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Transfer learning results

Pre-trained model requires 
only 1000 training events to 
reach the same accuracy 
level that the ”from scratch” 
model reaches with 1M 
events.



Outlook
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▪ Downstream tasks

▪ Pretraining

▪ Training goal

▪ Architecture

▪ Loss

▪ Tokenization or not

▪ Unsupervised, self-supervised, supervised...

▪ Input data

▪ Multi-modal? Why and how?

▪ Add physics info? Constraints, symmetries...
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Creating your first foundation model



▪ Foundation models are multi-task and multi-dataset machine learning models that once 

pretrained can be applied to a variety of downstream tasks 

▪ The successful development of foundation models for physics would be a major 

breakthrough, improving performance and saving human and compute resources

▪ Open questions:

▪ What is the most efficient representation of the data?

▪ How to introduce multi-modal data?

▪ Exploring architectures and pretraining strategies

▪ Expanding to further downstream tasks

▪ Investigating effects of scaling
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Conclusion and outlook
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