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Outline

= |ntroduction to foundation models
=  Foundation models in HEP
= Acloserlook at a foundation model for jet physics

=  Qutlook
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Introduction to foundation
models
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What are foundation models?

= Pre-trained on a certain (large) dataset for a certain task, fine-tuned to perform on a
different dataset or a different task

= Better performance than training the downstream task from scratch

Some Downsiream task
large
dataset
| Downstream task

Pretraining

Downstream task |

Downstream task
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Why does it work?

During pretraining, the model learns aspects of the data that are useful for downstream
tasks

The model has a “head start” compared to a model that needs to train from scratch

Ahal T have seen
this beforel!

Pretraining Downstream task

Umm, what's
a horse?

"Draw some of these animals” "Which one of these is a horse?”

Image credits:

DALL-E
themarketingblog.co.uk
drawception.com
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Benefits

= Once pre-trained, downstream tasks require less resources
* Human resources

= Compute resources
= Can leverage the pretraining to boost performance on small datasets

= Sharing pre-trained models can provide others with access to resources that are
normally not accessible for them (data, computing resources)
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Examples of foundation models

= GPT-3 (arXiv 2005.14165)
= Input: text
* Pretraining: generate text (transformer)
* Finetuning: conversational data + reinforcement learning with human feedback
— ChatGPT
= CLIP (arXiv 2103.00020)
* |nput:text and images

= Pretraining: match images with descriptions (transformer for text, ResNet/ViT for
images)

= Zero shot: image classification

= Note: a transformer in itself is not a foundation model
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what are you?

| am ChatGPT, an Al language model developed by
OpenAl. My purpose is to understand and respond to
text-based inputs, helping answer questions, provide
information, assist with tasks, or just have a
conversation. | use patterns in the data | was trained
on to generate meaningful and relevant responses to
various prompts. What would you like to know or talk
about?

correct label: meme

coffeelisnjtihelping

getthejjumper cahles

correct rank: 1/2  correct probability: 99.20%

a hatespeech meme.

o 20 40 60 80 100



Pretraining

= Can be useful in itself, or a surrogate task

= Example of surrogate tasks: BERT (arXiv 1810.04805) ﬂsp " Y \
= Masked language modeling in addition to next sentence prediction
= Masking out tokens allows bidirectional training: sees both previous and future BERT
words in order to capture the context within a sentence ElE]. EllE]

= Next sentence prediction captures context between sentences: does sentence B
follow sentence A?

Masked Sentence A Masked Sentence B

Unlabeled Sentence A and B Pair

UH
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Scale

Foundation models become powerful because of scale:
= Data amount

= Architecture

= Compute

= Example GPT-3: 300B tokens, 175 billion parameters, estimated thousands of GPUs
trained over several weeks (~1023 flops)

In the context of language models (autoregressive transformers), empirical scaling laws [1]
show that the cross-entropy loss improves with scale according to simple power laws.
[1] Kaplan et al, Scaling Laws for Neural Language Models. arXiv 2001.08361
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Emergent properties

A foundation model might be able to perform tasks that it was not trained for, and that
were not anticipated. This behavior comes with scale [2].

Input

Review: This movie sucks. Output

Sentiment: negative.

Examples from GPT-3 and BERT:

Language
model

. . . positive.
Review: | love this movie.

Sentiment:

= Translation

2206.07682
= Coding
= BaS|C da I’Ith metIC Review: This movie sucks Review: This movie sucks
Sentiment: negative
Sentiment: negative . . .
. . Review: | love this movie
= Sentiment analysis — Sentiment:
Sentiment:
= Few-shot and zero-shot learning ) N
© positive * Sentiment: positive
[2] Bommasani et al, On the Opportunities and Risks of Foundation Models. arXiv 2108.07258
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Foundation models
for HEP
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Natural language vs physics

Text Physics

» Characters, (sub)words, symbols... * (Mostly) continuous numbers

= Order matters = Single numbers

= Sets of numbers (vectors, time series)

= Meaning builds across many sentences
= Can be permutation invariant

= Some sets of numbers like 4-vectors carry special
meaning

= Symmetries might be present

PN rversis oo
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Two approaches to foundation models in physics

= Teach LLMs to do maths and physics
= Symbolic maths (arXiv 1912.01412)
* Number embedding in text (arXiv 2310.02989)

= Take inspiration from LLMs+others, build from scratch

= The remainder of the talk will focus on this approach
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A foundation model example

Image credit: J. Birk
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Reconstructed objects

Event classification

Jet tagging
f E ? —» Encoding Clustering
. Backbone —p» Latent Regression
Detector hits representation
E +— Encoding Generation

Anomaly detection

Anna Hallin | Foundation models for HEP | PUNCHLunch 2024.09.19
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A selection of foundation models for particle jets

= ParticleTransformer (ParT)

= H.Qu,C.Li,S. Qian; arXiv 2202.03772 electron Mmuon

hadron

= Masked particle modeling (MPM)
= T.Golling, L. Heinrich, M. Kagan, S. Klein, M. Leigh, M. Osadchy, J. A. Raine; arXiv
2401.13537
= Omnilet-a
= J.Birk, AH, G. Kasieczka; arXiv 2403.05618

=  Omnilearn
= V. Mikuni, B. Nachman; arXiv 2404.16091

N  Image credit: J. Birk

proton 1 proton 2
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Comparison of foundation models

m Pre-training goal Architecture Downstream tasks

ParT Classification Transformer Cross-entropy class  Classification on different dataset
labels

UH
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Comparison of foundation models

m Pre-training goal Architecture Downstream tasks

ParT Classification Transformer Cross-entropy class  Classification on different dataset
labels
MPM Predict masked out Transformer Cross-entropy Classification (tagging, anomaly
tokens (surrogate task) masked token detection)
prediction
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Comparison of foundation models

m Pre-training goal Architecture Downstream tasks

ParT Classification Transformer Cross-entropy class  Classification on different dataset
labels
MPM Predict masked out Transformer Cross-entropy Classification (tagging, anomaly
tokens (surrogate task) masked token detection)
prediction
Omnilet-a Next token prediction Transformer Cross-entropy next  Classification (tagging), Generation
(generation) token prediction (unconditional)
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Comparison of foundation models

m Pre-training goal Architecture Downstream tasks

ParT Classification Transformer Cross-entropy class
labels
MPM Predict masked out Transformer Cross-entropy
tokens (surrogate task) masked token
prediction
Omnilet-a Next token prediction Transformer Cross-entropy next
(generation) token prediction
OmniLearn Generation + Transformer + Cross-entropy class
classification diffusion labels + diffusion

velocity parameter
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Classification on different dataset

Classification (tagging, anomaly
detection)

Classification (tagging), Generation
(unconditional)

Classification (tagging: different
dataset, different experiment,
different collision type; anomaly
detection), Generation
(conditional), Reweighting and
unfolding

19



Tokenization

= LLMs need to turn text into numbers (which is what our models can work with), use
tokenization: text - sequence of integer tokens

= In physics, to predict particle kinematics, as opposed to class labels:

= Regression —so far no published results with this (seems to be more difficult)

= Cross-entropy — need discrete numbers = tokens

= Example of a particle jet:

= ]et: {pl,pz,...

*  p;={pr,n ¢, PID, charge, ...} — token;

= Jets as sequences of integers:

{< start token >, token,, token,, ..., tokeny, < stop token >}
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hadron

N Image credit: J. Birk

proton 1 proton 2



Binning

Divide each dimension into bins

Sub-optimal coverage

= Vocab size becomes [[icfeqtures Mvins,i

= Tokens—> Embedding: Linear (n¢okens dembed)

Embedding — Tokens: Linear (demped, Mtokens)

Example: 100 000 tokens with embedding dimension 128 — 25.6M parameters
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VQ-VAE

1711.00937, 2305.08842

Learns an embedding space that gives the best reconstruction.

= Unconditional tokens: tokenize one constituent at a time, 1:1 correspondence

= Conditional tokens: sees all constituents, adapts the tokens — one token can cover
multiple parts of feature space

Vocab size is less sensitive to adding dimensions.

UH
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Map embedded constituents to their closest
token in embedding space

Input / physical space Encoder Embedding space Embedding space

v
v

All available tokens Tokenized constituents

Constituents in physical space ; h
P : Embedded constituents in embedding space

Decoder Output / physical space
qsral

rel

Constituents in physical space
Image credit: J. Birk

Anna Hallin | Foundation models for HEP | PUNCHLunch 2024.09.19
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Binning vs VQ-VAE

= VQ-VAE adapts to the shape of the data

= Conditional tokenization covers more of the phase space

=
o

———t il
jmensc o 0 o
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jmacs s o o
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o
o

|
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)
100

150 200 50 100 150 200
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UH
i
¥ Universitit Hamburg

DER FORSCHUNG | DER LEHRE | DER BILDUNG

2403.05618

Anna Hallin | Foundation models for HEP | PUNCHLunch 2024.09.19

23



A closer look at
Omnilet-a
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A closer look at Omnilet-a

= Omnilet-ais the first foundation model for particle physics that is able to task-switch:
= unsupervised full jet generation

= supervised classification
= Tokenizes with VQ-VAE

= Uses a transformer for generative pretraining based on the GPT-1 architecture [3] with
next-token-prediction as training target.

Simulated jets
/' Jet tagging
—+% VQVAE |—p| Backbone |—pp Latent
representation \
s Generation

[3] Radford et al, “Improving language understanding by generative pre-training,” (2018)
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Dataset

= JetClass [4]: 10 classes of simulated jets with 10M jets of each type, originally used in
ParT

= Tokenize all 10 classes at once to evaluate tokenization performance
= For pretraining, generation and classification: use 10M q/g jets and 10M t = bqq’ jets.
= Noclass labels are passed to the model during pretraining.

= Use constituent features p;, n', @™ (rel = relative to the jet axis), no jet-level information

[4] http://dx.doi.org/10.5281/zen0do.6619767
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Tokenization

Compared several approaches:
= Binning

= VQ-VAE
= Unconditional
= Conditional
= Different codebook sizes (vocab sizes)

We proceed with conditional tokens with codebook
size 8192.
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Original 0.175 4 Unconditional tokens (512) - Unconditional tokens (512)
Unconditional tokens (512) Unconditional tokens (8192) - Unconditional tokens (8192)
- Unconditional tokens (8192) 0.1504 --- Binning (9261) 20 ~= Binning (9261)
- Binning (9261) —— Conditional tokens (512} Caonditional tokens (512)
E Conditional tokens (512) 0.1254 - Conditional tokens (8192) Conditional tokens (8192)
g Conditional tokens (8192) - o
E o @
5 0.015 i & 0.100 =
] [
E E
2 0.0751 =
5 0.000 0-0501
=
=
5 0.0254
8
2 - : | 0.000 L= —_— - 0 - : —
= 0 50 100 150 200 250 300 -40 =20 0 20 40 -0.2 0.0 02
Jet mass [GeV] Jet meo — moranal [Gey) Jet 750 — 7gganal
Jet tokenization
b token 1 P
B2 VO-VAE token 2 VOVAE Py
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. . token n "
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Backbone training

The transformer backbone is trained with the next-token-

prediction head.

= Causal mask prevents attention to future tokens

* nheads =8, N GPT blocks = 3 results in 6.7M parameters

0

0 153

0 153 5489

0 153 5489 51

0 153 5489 51 8193

= Model learns to predict the next token, given a sequence

of previous tokens: p(x;j|x;_y, ..., X1, < start token >)

Muithead -

Tmuaiclrr- backbane

Tnsfu
docodar ook
=
T
%

Multihead
Sodils

Hblocks
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Generation

During generation, the model generates tokens auto-

regressively:

= Model has learned p(x;|xj_1, ...

, X1, < start token >)

start-token —p

i Autoregressive next-token generation

'
'
Transimner Next-token
hmkmna prediction head

Jet generation

token 1

R
i -
' P
' o
' token 2 VQ-VAE p2
7 decoder —
K .
token n =
Pn

T

Jef
i

z

etgen = {B1, P20}
= (pr. ', ¢ ll

= Model recieves <start token> and generates until it n;zs
generates a <stop token> orthe maximum sequence ...
length is reached o
Generally good agreement to truth distribution -
Constituent py spectrum tail has few events — the limited B
codebook size shows up as bumps §1o
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2 2
s s
E4 E1o
s S
z z
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Transfer learning: classify quark/gluon vs hadronic top jets

The next-token-prediction head is changed to a classification head. We tested three approaches:
= From scratch: all weights are initialized from scratch, no pre-training is used

= Fine-tuning: load weights of the pre-trained generative model
= regular fine-tuning: all weigths can change

= backbone fixed: weights of the pre-trained transformer backbone are held fixed

Jet classification

P token 1
Pa g token 2 ey

:QWY&E » o » Transfur:\:r Classification head | . Jet type prediction
= token n
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Transfer learning results

= Significantly better result when using pre-training

= Full fine-tuning slightly better than backbone fixed

1.00 - Omnijet-a transfer learning Omnijet-a transfer learning
0.95 - 0.9 -
0.90 - > !
1= c
2 0.85- 3 0.8
0.80 - —e— Fine-tuning < —e— Fine-tuning
Fine-tuning ! Fine-tuning
0.75 "~ (backbone fixed) 0.7 2 “~ (backbone fixed)
| —e— From scratch i —e— From scratch
0.70 1. |
107 103 104 10° 108 102 103 104 10° 108

Number of training jets Number of training jets
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Transfer learning results

= Significantly better result when using pre-training

= Full fine-tuning slightly better than backbone fixed

Omnijet-a transfer learning

1.00 -
0.95 A
0.90 A

3

< 0.85 A
0.80 - —eo— Fine-tuning

Fine-tuning
0.75 - (backbone fixed)
i —e— From scratch
0.70 1, . . ; ;
102 103 104 10° 109

UH
S
a8 Universitdt Hamburg

DER FORSCHUNG |

Number of training jets

DER LEHRE | DER BILDUNG

Accuracy

0.7 1

Omnijet-a transfer learning

~
~eo
~
R

—e— Fine-tuning

Fine-tuning
"~ (backbone fixed)
—e— From scratch

~

103 104 10° 10°

Number of training jets
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N

T’re—trained model requires
only 1000 training events to
reach the same accuracy
level that the "from scratch”
model reaches with TM

Levents.

32



Outlook
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Creating your first foundation model

= Downstream tasks

= Pretraining
= Training goal
= Architecture
* Loss

= Tokenization or not

= Unsupervised, self-supervised, supervised...

= Inputdata
= Multi-modal? Why and how?

= Add physics info? Constraints, symmetries...
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Conclusion and outlook

= Foundation models are multi-task and multi-dataset machine learning models that once

pretrained can be applied to a variety of downstream tasks

= The successful development of foundation models for physics would be a major
breakthrough, improving performance and saving human and compute resources

= Open questions:
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What is the most efficient representation of the data?
How to introduce multi-modal data?

Exploring architectures and pretraining strategies
Expanding to further downstream tasks

Investigating effects of scaling
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