

CLUSTER OF EXCELLENCE QUANTUM UNIVERSE

Foundation models for HEP

Leveraging the power behind large language models for physics

PUNCHLunch 2024.09.19

Anna Hallin

anna.hallin@uni-hamburg.de

Outline

- Introduction to foundation models
- Foundation models in HEP
- A closer look at a foundation model for jet physics
- Outlook

Introduction to foundation models

What are foundation models?

- Pre-trained on a certain (large) dataset for a certain task, fine-tuned to perform on a different dataset or a different task
- Better performance than training the downstream task from scratch

Why does it work?

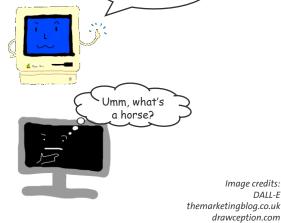
- During pretraining, the model learns aspects of the data that are useful for downstream tasks
- The model has a "head start" compared to a model that needs to train from scratch

Pretraining

Downstream task

"Draw some of these animals"

"Which one of these is a horse?"



Aha! I have seen this before!

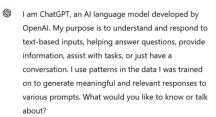
Benefits

- Once pre-trained, downstream tasks require less resources
 - Human resources
 - Compute resources
- Can leverage the pretraining to boost performance on small datasets
- Sharing pre-trained models can provide others with access to resources that are normally not accessible for them (data, computing resources)

Examples of foundation models

what are you?

- GPT-3 (arXiv 2005.14165)
 - Input: text
 - Pretraining: generate text (transformer)
 - Finetuning: conversational data + reinforcement learning with human feedback
 → ChatGPT
- CLIP (arXiv 2103.00020)
 - Input: text and images
 - Pretraining: match images with descriptions (transformer for text, ResNet/ViT for images)
 - Zero shot: image classification
- Note: a transformer in itself is not a foundation model

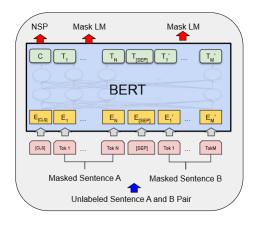


get the jumper cables correct rank: 1/2 correct probability: 99.20%

a mame.

Pretraining

- Can be useful in itself, or a surrogate task
- Example of surrogate tasks: BERT (arXiv 1810.04805)
 - Masked language modeling in addition to next sentence prediction
 - Masking out tokens allows bidirectional training: sees both previous and future words in order to capture the context within a sentence
 - Next sentence prediction captures context between sentences: does sentence B follow sentence A?



Scale

Foundation models become powerful because of scale:

- Data amount
- Architecture
- Compute
- Example GPT-3: 300B tokens, 175 billion parameters, estimated thousands of GPUs trained over several weeks ($\sim 10^{23}$ flops)

In the context of language models (autoregressive transformers), empirical scaling laws [1] show that the cross-entropy loss improves with scale according to simple power laws.

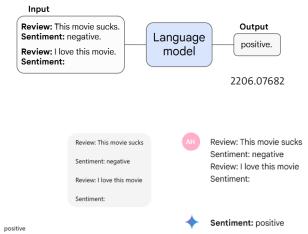
[1] Kaplan et al, Scaling Laws for Neural Language Models. arXiv 2001.08361

Emergent properties

A foundation model might be able to perform tasks that it was **not trained for**, and that were not anticipated. This behavior comes with **scale** [2].

Examples from GPT-3 and BERT:

- Translation
- Coding
- Basic arithmetic
- Sentiment analysis
- Few-shot and zero-shot learning



[2] Bommasani et al, On the Opportunities and Risks of Foundation Models. arXiv 2108.07258

Foundation models for HEP

Natural language vs physics

Text

- Characters, (sub)words, symbols...
- Order matters
- Meaning builds across many sentences

Physics

- (Mostly) continuous numbers
 - Single numbers
 - Sets of numbers (vectors, time series)
- Can be permutation invariant
- Some sets of numbers like 4-vectors carry special meaning
- Symmetries might be present

Two approaches to foundation models in physics

- Teach LLMs to do maths and physics
 - Symbolic maths (arXiv 1912.01412)
 - Number embedding in text (arXiv 2310.02989)
- Take inspiration from LLMs+others, build from scratch
 - The remainder of the talk will focus on this approach

A foundation model example

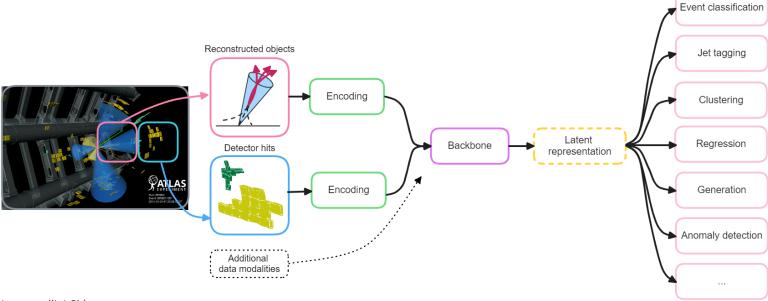
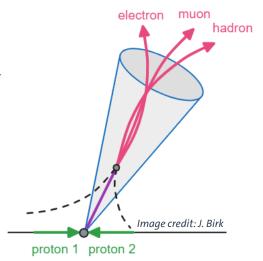


Image credit: J. Birk

A selection of foundation models for particle jets

- ParticleTransformer (ParT)
 - H. Qu, C. Li, S. Qian; arXiv 2202.03772
- Masked particle modeling (MPM)
 - T. Golling, L. Heinrich, M. Kagan, S. Klein, M. Leigh, M. Osadchy, J. A. Raine; arXiv 2401.13537
- OmniJet-α
 - J. Birk, AH, G. Kasieczka; arXiv 2403.05618
- OmniLearn
 - V. Mikuni, B. Nachman; arXiv 2404.16091



Name	Pre-training goal	Architecture	Loss	Downstream tasks
ParT	Classification	Transformer	Cross-entropy class labels	Classification on different dataset

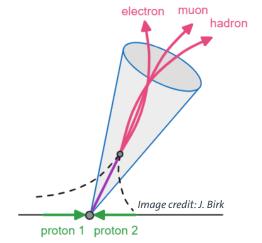
Name	Pre-training goal	Architecture	Loss	Downstream tasks
ParT	Classification	Transformer	Cross-entropy class labels	Classification on different dataset
MPM	Predict masked out tokens (surrogate task)	Transformer	Cross-entropy masked token prediction	Classification (tagging, anomaly detection)

Name	Pre-training goal	Architecture	Loss	Downstream tasks
ParT	Classification	Transformer	Cross-entropy class labels	Classification on different dataset
MPM	Predict masked out tokens (surrogate task)	Transformer	Cross-entropy masked token prediction	Classification (tagging, anomaly detection)
OmniJet-α	Next token prediction (generation)	Transformer	Cross-entropy next token prediction	Classification (tagging), Generation (unconditional)

Name	Pre-training goal	Architecture	Loss	Downstream tasks
ParT	Classification	Transformer	Cross-entropy class labels	Classification on different dataset
MPM	Predict masked out tokens (surrogate task)	Transformer	Cross-entropy masked token prediction	Classification (tagging, anomaly detection)
OmniJet-α	Next token prediction (generation)	Transformer	Cross-entropy next token prediction	Classification (tagging), Generation (unconditional)
OmniLearn	Generation + classification	Transformer + diffusion	Cross-entropy class labels + diffusion velocity parameter	Classification (tagging: different dataset, different experiment, different collision type; anomaly detection), Generation (conditional), Reweighting and unfolding

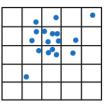
Tokenization

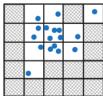
- LLMs need to turn text into numbers (which is what our models can work with), use tokenization: text → sequence of integer tokens
- In physics, to predict particle kinematics, as opposed to class labels:
 - Regression so far no published results with this (seems to be more difficult)
 - Cross-entropy need discrete numbers = tokens
- Example of a particle jet:
 - Jet = $\{p_1, p_2, ..., p_N\}$
 - $p_i = \{p_T, \eta, \phi, \text{PID}, \text{charge}, ...\} \rightarrow \text{token}_i$
 - Jets as sequences of integers: {< start token >, token₁, token₂, ..., token_N, < stop token >}

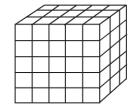


Binning

- Divide each dimension into bins
- Sub-optimal coverage
- Vocab size becomes $\prod_{i \in features} n_{bins,i}$
 - Tokens \rightarrow Embedding: Linear ($n_{\text{tokens}}, d_{\text{embed}}$)
 - Embedding \rightarrow Tokens: Linear ($d_{\mathrm{embed}}, n_{\mathrm{tokens}}$)
 - Example: 100 000 tokens with embedding dimension 128 \rightarrow 25.6M parameters







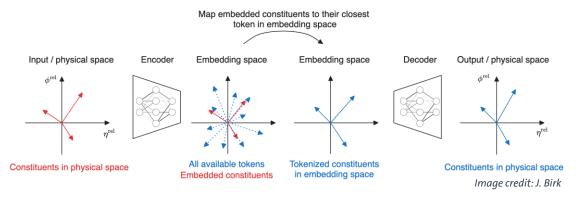
VQ-VAE

1711.00937, 2305.08842

Learns an embedding space that gives the best reconstruction.

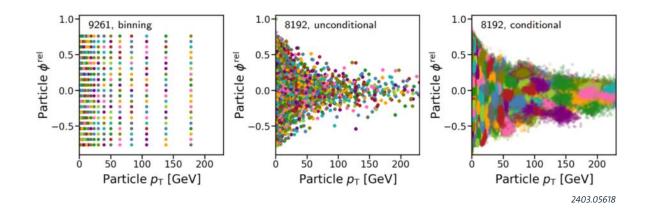
- Unconditional tokens: tokenize one constituent at a time, 1:1 correspondence
- Conditional tokens: sees all constituents, adapts the tokens → one token can cover multiple parts of feature space

Vocab size is less sensitive to adding dimensions.



Binning vs VQ-VAE

- VQ-VAE adapts to the shape of the data
- Conditional tokenization covers more of the phase space



A closer look at OmniJet-a

A closer look at OmniJet-α

- OmniJet- α is the first foundation model for particle physics that is able to **task-switch**:
 - unsupervised full jet generation
 - supervised classification
- Tokenizes with VQ-VAE
- Uses a transformer for generative pretraining based on the GPT-1 architecture [3] with next-token-prediction as training target.

[3] Radford et al, "Improving language understanding by generative pre-training," (2018)

Dataset

- JetClass [4]: 10 classes of simulated jets with 10M jets of each type, originally used in ParT
- Tokenize all 10 classes at once to evaluate tokenization performance
- For pretraining, generation and classification: use 10M q/g jets and 10M $t \rightarrow bqq'$ jets.
- No class labels are passed to the model during pretraining.
- Use **constituent features** p_T , η^{rel} , φ^{rel} (rel = relative to the jet axis), no jet-level information

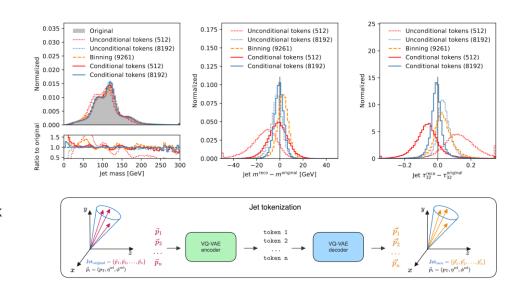
[4] http://dx.doi.org/10.5281/zenodo.6619767

Tokenization

Compared several approaches:

- Binning
- VQ-VAE
 - Unconditional
 - Conditional
 - Different codebook sizes (vocab sizes)

We proceed with **conditional tokens** with codebook size **8192**.

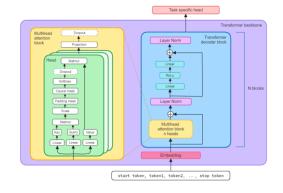


Backbone training

The transformer backbone is trained with the **next-token-prediction** head.

- Causal mask prevents attention to future tokens
- n heads = 8, N GPT blocks = 3 results in 6.7M parameters
- Model learns to predict the next token, given a sequence of previous tokens: $p(x_i|x_{i-1},...,x_1, < \text{start token} >)$

0				
0	153			
0	153	5489		
0	153	5489	51	
0	153	5489	51	8193



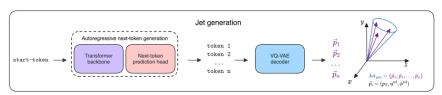
Generation

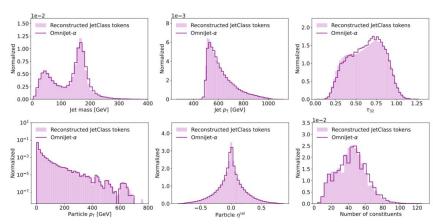
During generation, the model generates tokens **auto-regressively**:

- Model has learned $p(x_i|x_{i-1},...,x_1, < \text{start token} >)$
- Model recieves <start token> and generates until it generates a <stop token> or the maximum sequence length is reached

Generally **good agreement** to truth distribution

Constituent p_T spectrum tail has few events \rightarrow the limited codebook size shows up as bumps

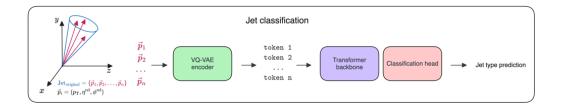




Transfer learning: classify quark/gluon vs hadronic top jets

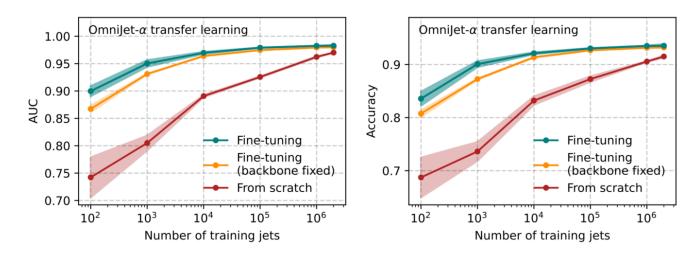
The next-token-prediction head is changed to a classification head. We tested three approaches:

- From scratch: all weights are initialized from scratch, no pre-training is used
- Fine-tuning: load weights of the pre-trained generative model
 - regular fine-tuning: all weigths can change
 - backbone fixed: weights of the pre-trained transformer backbone are held fixed



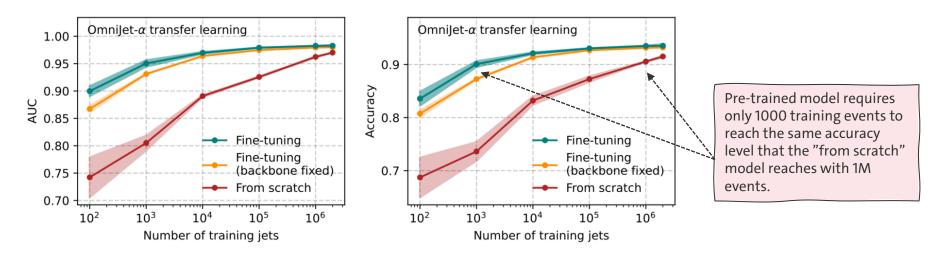
Transfer learning results

- Significantly better result when using pre-training
- Full fine-tuning slightly better than backbone fixed



Transfer learning results

- Significantly better result when using pre-training
- Full fine-tuning slightly better than backbone fixed



Outlook

Creating your first foundation model

- Downstream tasks
- Pretraining
 - Training goal
 - Architecture
 - Loss
 - Tokenization or not
 - Unsupervised, self-supervised, supervised...
- Input data
 - Multi-modal? Why and how?
 - Add physics info? Constraints, symmetries...

Conclusion and outlook

- Foundation models are multi-task and multi-dataset machine learning models that once pretrained can be applied to a variety of downstream tasks
- The successful development of foundation models for physics would be a major breakthrough, improving performance and saving human and compute resources
- Open questions:
 - What is the most efficient representation of the data?
 - How to introduce multi-modal data?
 - Exploring architectures and pretraining strategies
 - Expanding to further downstream tasks
 - Investigating effects of scaling

