Recent studies for m(W) QCD modelling

DESY SM group meeting

September 23, 2024

LAB, F. Dattola

QCD modelling reweighting procedure

$(p_{\rm T}, y, M)$ predictions with DYTurbo

- Compute 2D $(p_{\rm T}, y)$ full PHSP distributions in mass (M) bins.
- For each y bin compute predictions in $p_{\rm T}$ at **NNLO+NNLL**:
 - > relying on analytical resummation of large logs to all orders in α_s

$$d\sigma_{NNLO+NNLL}^{V} = d\sigma_{NNLL}^{res} - d\sigma_{NLO}^{CT(res)} + d\sigma_{NLO}^{V+jet}$$

 $d\sigma_{\text{NNLL}}^{\text{res}} = d\hat{\sigma}_{\text{LO}} \times H^V \times S_{\text{NP}} \times \exp\{G_{\text{NNLL}}(\alpha_s, L)\} \rightarrow \text{Perturbative Sudakov Form Factor } S(b)$

> including non-perturbative QCD effects in S(b) via

$$S_{\text{NP}}(b) = \exp\left[-g_j(b) - g_K(b)\log\frac{m_{ll}^2}{Q_0^2}\right]$$

with a prescription to avoid Landau pole in *b* space, $b_*^2 = \frac{b^2}{1 + b^2/b_{lim}^2}$

$$g_j(b) = \frac{g b^2}{\sqrt{1 + \lambda b^2}} + \operatorname{sign}(q) \left(1 - \exp\left[-|q| b^4\right] \right)$$
$$g_K(b) = g_0 \left(1 - \exp\left[-\frac{C_F \alpha_s(b_0/b_*)b^2}{\pi g_0 b_{\lim}^2}\right] \right)$$

pT(W)/pT(Z)

Why care about pT(W)/pT(Z)?

• QCD modelling of boson transverse momentum distribution can be validated studying the predicted differential cross-section ratio

$$R_{W/Z}(p_{\rm T}) = \left(\frac{1}{\sigma_W} \cdot \frac{\mathrm{d}\sigma_W(p_{\rm T})}{\mathrm{d}p_{\rm T}}\right) \left(\frac{1}{\sigma_Z} \cdot \frac{\mathrm{d}\sigma_Z(p_{\rm T})}{\mathrm{d}p_{\rm T}}\right)^{-1}$$

- For the W-mass at 7 TeV MiNLO and NNLL analytic resummed predictions (i.e., DYRes, RESBOS, CuTe) were discarded in favour of PYTHIA 8 AZ based on findings related to pT(W)/pT(Z):
 - Unexpected **turnover** of ratio at *p*T ~ 5 GeV (DYRes, RESBOS, CuTe) **vs monotonic falling** (PYTHIA 8 AZ)

pT(W)/pT(Z)

Why care about pT(W)/pT(Z)?

• QCD modelling of boson transverse momentum distribution can be validated studying the predicted differential cross-section ratio

$$R_{W/Z}(p_{\rm T}) = \left(\frac{1}{\sigma_W} \cdot \frac{\mathrm{d}\sigma_W(p_{\rm T})}{\mathrm{d}p_{\rm T}}\right) \left(\frac{1}{\sigma_Z} \cdot \frac{\mathrm{d}\sigma_Z(p_{\rm T})}{\mathrm{d}p_{\rm T}}\right)^{-1}$$

- For the W-mass at 7 TeV MiNLO and NNLL analytic resummed predictions (i.e., DYRes, RESBOS, CuTe) were discarded in favour of PYTHIA 8 AZ based on findings related to pT(W)/pT(Z):
 - MiNNLO and NNLL analytic resummed predictions disfavoured by recoil distribution in data

(reweighting pTW by the product of pTZ from PYTHIA 8 AZ and RW/Z(pT) from DYRes, MiNLO+PYTHIA)

pT(W)/pT(Z)

Why care about pT(W)/pT(Z)?

• QCD modelling of boson transverse momentum distribution can be validated studying the predicted differential cross-section ratio

$$R_{W/Z}(p_{\rm T}) = \left(\frac{1}{\sigma_W} \cdot \frac{\mathrm{d}\sigma_W(p_{\rm T})}{\mathrm{d}p_{\rm T}}\right) \left(\frac{1}{\sigma_Z} \cdot \frac{\mathrm{d}\sigma_Z(p_{\rm T})}{\mathrm{d}p_{\rm T}}\right)^{-1}$$

- For the W-mass at 7 TeV MiNLO and NNLL analytic resummed predictions (i.e., DYRes, RESBOS, CuTe) were discarded in favour of PYTHIA 8 AZ based on findings related to pT(W)/pT(Z):
 - Ratio predicted by **PYTHIA 8 AZ in good agreement with data** for *p*T < 30 GeV

DYTurbo setup

- Studies performed using DYTurbo tag v1.4.beta
- All W, Z predictions are **NNLO(+NNLL)** computed in pT bins of 0.5 GeV.
- No kinematical selection cuts on the leptons besides invariant mass cuts:
 - 80 < M(II) < 100 GeV and M(Iv) > 50 GeV.
- Central value of the scales $\mu_F = \mu_R = \mu_{RES} = M$.
- All predictions are computed using **CT18NNLO** as PDF set.
- We compare
 - VFN forward evolution of the PDFs from $Q_0 \rightarrow b_0/b \sim p_{\rm T}$ with LHAPDF;
 - **FFN iterative backward evolution** of the PDFs from $\mu_F \rightarrow b_0/b \sim p_T$.

(Always switching off b and c PDFs below the corresponding thresholds.)

DYTurbo setup

- Studies performed using DYTurbo tag v1.4.beta
- All W, Z predictions are **NNLO(+NNLL)** computed in pT bins of 0.5 GeV.
- No kinematical selection cuts on the leptons besides invariant mass cuts:
 - 80 < M(II) < 100 GeV and M(Iv) > 50 GeV.
- Central value of the scales $\mu_F = \mu_R = \mu_{RES} = M$.
- All predictions are computed using **CT18NNLO** as PDF set.
- We compare

 VFN forward evolution of 	There exit several <i>flavour number schemes</i> that incorporate the heavy quark effects
	under different assumptions. Depending on the relation between the mass of a heavy
	quark m_q and the scale at which we probe the PDF, Q , we can identify two limiting
• FFN iterative backward	cases:
	$m_q \ll Q$ In this case we can simply treat the heavy quark as another massless proton, so that it is perturbatively generated by the DGLAP evolution. $\sim \sf VFN$
	$m_q \gtrsim Q$ The heavy quark can be considered as a purely final state that does not participate in the evolution (since there is no energy to produce it). This then
	allows to consider fully the mass effects in the matrix elements of the final state.

FFN

Effect of heavy-flavour initiated processes

- Heavy-flavour-initiated (HFI) production introduce differences between Z and W.
- HFI production results in a **harder boson pT spectrum**, however c, b quarks contribute differently to W and Z production:
 - for example, at 7 TeV, $cc \rightarrow Z$ ($bb \rightarrow Z$) are 6% (3%) of Z production, $cs \rightarrow W$ is ~20% of W production.

→ Disentangle HFI effects studying **pT(W)/pT(Z)** for different allowed initial state flavours:

- 2 flavours \rightarrow keep only $uu \rightarrow Z$, $dd \rightarrow Z$ and $ud \rightarrow W$ couplings;
- 3 flavours \rightarrow add ss \rightarrow Z and $us \rightarrow W$;
- 4 flavours \rightarrow add cc \rightarrow Z and cs \rightarrow W, cd \rightarrow W;
- 5 flavours \rightarrow add $bb \rightarrow Z$ and $ub \rightarrow W$, $cb \rightarrow W$.

Effect of non-perturbative form factor (FF)

- Check pT(W)/pT(Z) with 5 flavours for **different values of** g_1 **in the non-perturbative FF:**
 - $g_1 = 0, 0.5, 1, 1.5 \text{ GeV}^2$;

comparing

• VFN forward evolution vs FFN iterative backward evolution of the PDFs.

(Always switching off b and c PDFs below the corresponding thresholds.)

5 flavours, VFN forward PDF evolution: $g_1 = 0, 0.5, 1, 1.5 \text{ GeV}^2$

5 flavours, FFN backward PDF evolution: $g_1 = 0, 0.5, 1, 1.5 \text{ GeV}^2$

5-flavour ratios with PDF and scale uncertainties

- Check *p*T(*W*)/*p*T(*Z*) with 5 flavour couplings accounting for **PDF and scale uncertainties**.
- Uncertainty on pT(W)/pT(Z) due to PDFs is computed at NNLO(+NNLL) using CT18NNLO Hessian eigenvectors (90% CL):

$$\delta R_{W/Z}(\text{PDF}) = \frac{1}{2} \sqrt{\sum_{i} (R_{+i} - R_{-i})^2}$$

- Uncertainty on pT(W)/pT(Z) due to missing higher-order terms also at NNLO(+NNLL) performing independent variation of μ_F , $\mu_{R,\mu_{RES}}$ in the range M/2 $\leq \{\mu_F, \mu_R, \mu_{RES}\} \leq 2M$ with the constraints $0.5 \leq \{\mu_F/\mu_R, \mu_{RES}/\mu_R, \mu_{RES}/\mu_F\} \leq 2$ and taking the envelope.
- We compare results obtained with
 - VFN forward evolution vs FFN iterative backward evolution of the PDFs.

(Always switching off b and c PDFs below the corresponding thresholds.)

5-flavour ratios with PDF and scale uncertainties: VFN forward evolution

5-flavour ratios with PDF and scale uncertainties: FFN backward evolution

Next checks

 Check pT(W)/pT(Z) at NNLO(+NNLL) with DYTurbo against other predictions, e.g. Powheg MiNNLO+Pythia8 (MiNNLOPS).

• Reweight detector-level distributions and check against data: data-driven checks with recoil.

... a brief detour into Ai's

Status of Ai production

Physics	2D Ai(pT,Y)	3D Ai(pT,Y,M)
NLO		
NNPDF40_nnlo	W+ 5TeV (NLO) ; W- 5TeV (NLO) W+ 13TeV (NLO); W- 13TeV (NLO)	
NNPDF31_nnlo	W+ 5TeV (NLO) ; W- 5TeV (NLO) W+ 13TeV (NLO); W- 13TeV (NLO)	
CT18ANNLO	W+ 5TeV (NLO) ; W- 5TeV (NLO) W+ 13TeV (NLO); W- 13TeV (NLO)	
CT18NNLO	W+ 5TeV (NLO) ; W- 5TeV (NLO) W+ 13TeV (NLO); W- 13TeV (NLO)	
MSHT20nnlo	W+ 5TeV (NLO) ; W- 5TeV (NLO) W+ 13TeV (NLO); W- 13TeV (NLO)	
HERAPDF20_NNL0	W+ 5TeV (NLO) ; W- 5TeV (NLO) W+ 13TeV (NLO); W- 13TeV (NLO)	
NNLO		
NNPDF40_nnlo		
NNPDF31_nnlo		
CT18ANNLO		
CT18NNL0		
MSHT20nnlo		
HERAPDF20_NNL0		

- 2D Ai(pT, Y) at NLO completed for W+/- and Z: missing maps will be linked to the table.
- 2D Ai(pT, Y) at NNLO almost completed for W+/-(only HERAPDF still running) in good progress for Z.

A huge thanks to Fra' who's sharing with me the production :)