

Magnetized turbulent plasmas as high-energy particle accelerators

Martin Lemoine

Astroparticule & Cosmologie (APC)

CNRS – Université Paris Cité

Collaborators:

Virginia Bresci (PhD 2022), Camilia Demidem (RIKEN), Arno Vanthieghem (Obs. Paris), Laurent Gremillet (CEA, France), Guy Pelletier (IPAG, France),

+ A. Bykov (Ioffe), M. Malkov (UCSD), L. Comisso (Columbia U.), K. Murase (Penn State), F. Rieger (MPIPP), L. Sironi (Columbia U.)

The pioneering studies of E. Fermi (1949, 1954)

ightarrow a key problem for particle acceleration in astrophysical plasmas: high conductivity implies small electric fields... in practice $E \sim 0$ everywhere on length/time scales of interest

Debye length scale:
$$\lambda_{\rm D} \sim 10^3 \, {\rm cm} \ T_4^{1/2} n_0^{-1/2}$$

ion plasma time scale:
$$1/\omega_{\rm pi} \sim 10^{-3}\,{\rm s}~n_0^{-1/2}$$

- ightarrow Fermi's solution: E=0 in plasma rest frame, but $E=-v_E \times B/c$ in magnetized plasmas moving at v_E ... particles can gain energy from motional electric fields (more precisely: differences in E, or v_E !)
 - \rightarrow details: assume interaction of particle with "magnetized cloud" moving at v_F in lab frame...

in cloud rest frame: elastic scattering ($\boldsymbol{E} \sim 0$)

in lab frame: energy gain, or loss

→ kinematics: Lorentz transform to center frame, scattering and back gives

$$\Delta \epsilon / \epsilon = \gamma_E^2 \left(1 + \boldsymbol{v_E} \cdot \boldsymbol{v'} / c^2 \right) \left(1 - \boldsymbol{v_E} \cdot \boldsymbol{v} / c^2 \right) - 1 \simeq \mathcal{O}(v_E^2 / c^2)$$

Fermi type A reflection of a cosmic-ray particle

Fig. 1. Type B reflection of a cosmic-ray particle.

Shock waves as particle accelerators in HE astrophysics: the standard scheme

→ particle acceleration in MHD flows:

... particles draw energy from electric field carried by plasma (ideal Ohm's law): $E = -v_E \times B/c$

... often picture as kinematics of interactions back and forth across shock front...

... shapes spectrum $dn/d\epsilon \propto \epsilon^{-2...}$

Stochastic particle acceleration à la Fermi: a standard acceleration scheme in astrophysics

... from acceleration in solar flares

... to AGN cores...

... to acceleration in extra-galactic jets...

→ a stochastic process of acceleration:

... particles diffuse in momentum space through energy gain- or loss-interactions

... expected acceleration timescale $t_{\rm acc} \propto 1/v_E^2$ with v_E characteristic random velocity (e.g. Alfvén)

... long-standing issue: acceleration mechanism? ... origin of electric field? ... consequences? ... relativistic regime?

Stochastic particle acceleration in astrophysics

... a key question: how to describe stochastic acceleration in random electric fields...

... a well-known signature: hard spectra = most of the energy at the highest energies...

→ a non-linear, multi-scale problem:

... e.g. in turbulence: charged particles build the e.m. fields that transport them ...

⇒ HPC numerical simulations, e.g. MHD or « particle-in-cell » (PIC) method

Detailed mechanism of acceleration in turbulent plasmas?

 2^{nd} order Fermi (49,54) acceleration: scattering off discrete **magnetized structures**, with $\boldsymbol{E}=0$ in local rest frame

 $E = -v_E \times B/c$

Fermi type A: bounce on magnetic mirror

Fermi type B: bounce on curved field line

Quasilinear picture: transport in a bath of small-amplitude linear waves (e.g. Alfvén, magnetosonic)...
... energy gain through resonant interactions

... interactions dominated by resonances e.g. $k r_a \sim 1$...

$$\delta E = -v_{\varphi} \times \delta B/c$$

... a schizoid pattern connected to an old debate in turbulence physics: structures vs waves ...

... in practice, assume diffusion coefficient and use Fokker-Planck: $\frac{\partial}{\partial t}f(p,t)=\frac{1}{p^2}\frac{\partial}{\partial p}\left[p^2\,D_{pp}\,\frac{\partial}{\partial p}f(p,t)\right]$

A recurring debate: waves vs structures... impact on cosmic-ray transport + acceleration?

→ Quasilinear calculations of diffusion coefficients:

$$\frac{\mathrm{d}p}{\mathrm{d}t} = q\,\hat{\boldsymbol{p}}\cdot\boldsymbol{\delta}\boldsymbol{E} \Rightarrow \langle\Delta p^2\rangle = \int_0^{\Delta t}\mathrm{d}t_1\int_0^{\Delta t}\mathrm{d}t_2\,\ldots\,\langle\delta E_i\left(\boldsymbol{x}(t_1),\,t_1\right)\delta E_j\left(\boldsymbol{x}(t_2),\,t_2\right)\rangle$$

$$\sim \Delta t\int\mathrm{d}\boldsymbol{k}\int^{+\infty}\mathrm{d}\tau\,\mathcal{R}_{\boldsymbol{k}}(t)\,\mathcal{P}_{\delta B_{\boldsymbol{k}}} \qquad \qquad \text{(key) assumption for practical calculations: } \boldsymbol{\delta}\boldsymbol{B}\sim\text{Gaussian random field}$$

$$\text{[as sum of random phased }\delta B_{\boldsymbol{k}}\text{]}$$

$$\text{... all information in power spectrum }P_{\delta B_{\boldsymbol{k}}}$$

→ Waves or structures: RPA means waves are incoherent, while phase coherence builds up structures ... as outliers to the distribution (non-Gaussianity – intermittency)

Insights from particle tracking in MHD numerical simulations

→ MHD / hybrid simulations¹ of magnetized turbulence + particle tracking:

... recent simulations provide evidence for fast acceleration in localized regions ...

... non-trivial energy distributions (~not simple Fokker-Planck)² ...

1. Dmitruk+03, Arzner+06, ..., Isliker+17, Trotta+19, Pezzi+22

Refs:

2. see however results by X. Sun, C. Demidem

Insights from numerical simulations

 \rightarrow PIC simulations¹ of particle acceleration in semi- to fully-relativistic (Alfvén $v_A \gtrsim 0.1 c$), collisionless turbulence:

- \rightarrow unexpected² emergence of powerlaws, $dn/dp \propto p^{-s}$ with $s \sim 2 \dots 4$, signature of a rich phenomenology...
- \rightarrow in relativistic regime, diffusion coefficient $D_{pp}\sim 0.2~\sigma~p^2~c/l_c~$ (scaling w/ Alfvén 4-velocity)

Refs:

- 1. Zhdankin+17,18,20, ... Wong+ 19, Comisso+Sironi 18, 19, Nättilä + Beloborodov 20, Vega+20, ... Bresci+22
- + many MHD/hybrid (Dmitruk+03, Arzner+06, ..., Isliker+17, Trotta+19, Pezzi+22)
- 2. discussion in M.L. + Malkov 20

Detailed mechanism of acceleration in turbulent plasmas?

 2^{nd} order Fermi (49,54) acceleration: scattering off discrete **magnetized structures**, with E=0 in local rest frame

$$E = -v_F \times B/c$$

Fermi type A: bounce on magnetic mirror

Fermi type B: bounce on curved field line

Quasilinear picture: transport in a bath of small-amplitude linear waves (e.g. Alfvén, magnetosonic)...

... energy gain through resonant interactions

... interactions dominated by resonances e.g. $k r_a \sim 1$...

$$\delta E = -v_{\varphi} \times \delta B/c$$

... in practice, assume diffusion coefficient and use Fokker-Planck:

$$\frac{\partial}{\partial t} f(p,t) = \frac{1}{p^2} \frac{\partial}{\partial p} \left[p^2 D_{pp} \frac{\partial}{\partial p} f(p,t) \right]$$

→ outline:

- 1. generalize Fermi acceleration to turbulence, including relativistic ($v_A \sim c$)...
 - ⇒ Fermi prevails in strong turbulence due to strong intermittency of velocity structures
 - ... and Fokker-Planck fails.
- 2. phenomenological application: acceleration in black hole coronae and Ice Cube neutrinos

Generalized Fermi acceleration in a random velocity flow

→ Fermi acceleration: in original Fermi scheme, particles gain energy by point-like, discrete interactions with moving scattering centers (carrying electric fields!)

... key difference for turbulence (or large-scale random velocity flow): velocity flow $v_E = c \ E \times B/B^2$ is continuous...

... many models¹, a direct connection to structures on various scales...

... follow particle momentum in the (non-inertial) frame where ${\pmb E}=0$

$$\frac{\mathrm{d}\gamma'}{\mathrm{d}\tau} = -\Gamma_{a\,b}^0 \frac{{p'}^a\,{p'}^b}{m^2c^2}$$
 ... inertial forces: $\Gamma_{a\,b}^0 \propto \partial_a u_{E\,b}$... γ' comoving particle Lorentz factor

... in that frame, energy variation \propto non-inertial forces characterized by velocity shear of u_E (4-velocity!)

 \rightarrow fully covariant implementation of Fermi acceleration in turbulence, diffusion coefficient $\propto (u_E/c)^2$

Refs: 1. Fermi 49,..., Bykov+Toptygin 83, Ptuskin 88, Chandran+Maron 04, Cho+Lazarian 06, Ohira 13, Brunetti+Lazarian 16, ...

2. M.L. 19 [PRD 99, 083006 (2019)], 21 [PRD 104, 063020 (2021)]; see also previous works by Webb 85, 89

Generalized Fermi acceleration in magnetized turbulence

 \rightarrow theoretical model¹: $\dot{p} = \Gamma_l p$

(simplified expression in comoving frame)

with Γ_l a random field: gradients of v_E coarse-grained on scale $l \gtrsim r_q$...

 Γ_l from dynamic curved field lines, or dynamic perp. gradients (mirrors), or acceleration of field lines

Map of $\ln |\Gamma_I|$ in MHD 1024³ sim.² (no guide field: large-amplitude turb.)

→ Properties of the random force:

... (exponential) energy gain if $\Gamma_l > 0$, loss if $\Gamma_l < 0$

... Γ_l is non-Gaussian, highly localized in specific regions... (in large-amplitude turbulence)

... different particles experience different histories ⇒ powerlaw spectrum

A transport model reproducing spectra obtained by particle tracking in MHD simulation

→ comparison to numerical data:

- 1. fit model (here 2: blue & red) to p.d.f. of forces (Γ_l)
- 2. integrate kinetic equation¹
- 3. compare to distribution measured in MHD 1024³ simulation² by time-dependent particle tracking...

 \Rightarrow model reproduces time- and energy- dependent Green functions... + produces powerlaw spectra $dn/dp \propto p^{-4}$

Refs.: 1. Lemoine 22 [PRL 129, 215101 (2022)]

2. no guide field - Eyink+13, JHU database

The (dominant?) role of the field line curvature

→ energization through curvature drift:

... a dominant process in reconnection physics¹

... field line curvature: $\kappa = \boldsymbol{b} \cdot \boldsymbol{\nabla} \boldsymbol{b}$ $(\boldsymbol{b} \equiv \boldsymbol{B}/|\boldsymbol{B}|)$

... statistics of κ : a powerlaw a large values², p.d.f.(κ) $\propto \kappa^{-2.5} \Rightarrow$ origin, connection to statistics of random force?

Refs.: 1. e.g. Drake+06, ..., Dahlin+14, ...

2. Schekochihin+01, Yang+19, Yuen+Lazarian20

3. Bandyopadhyay+20, Huang+20

Evolution on ``long" timescales: from simulations to astrophysical objects

→ limited duration of simulations:

... in practice, simulations run for $T \sim O(10 \ \ell_c/c)$

 \dots PIC spectrum \sim Green's function to go from thermal to supra-thermal over T

... important:

- (1) stochastic acceleration is diffusion + advection in momentum space...
- (2) final spectrum depends on injection history + whether turbulence is sustained or not ("decaying")
- (3) high-energy particles take most of the energy... until they exhaust the turbulence that feeds them!

Evolution on ``long'' timescales: self-regulation through turbulence damping

- → damping of turbulence by stochastic particle acceleration¹:
 - ... wave-particle picture: cyclotron damping of resonant waves...
 - ... in non-resonant Fermi: suprathermal particles bring in effective viscosity + diffusivity

... simplified model²: incorporate energy loss in turbulent cascade through kernel describing where energy is drawn form in k-space for particles of momentum p...

 \Rightarrow consequences for particle spectra: remodeled to broken powerlaw, constant energy/decade $dn/dp \propto p^{-2}$

particle acceleration w/o feedback

particle acceleration w/ feedback

Refs.: 1. Eichler 79, Eilek 79, ... Kakuwa 16 ...

2. M.L., Murase, Rieger 24

Stochastic Fermi acceleration & high-energy neutrinos from NGC 1068

excess of high-energy (1-10 TeV) neutrinos from nearby AGN NGC 1068... \rightarrow Ice Cube 22: ... a possible scenario: stochastic acceleration in turbulent corona + p-p, $p-\gamma$ neutrino production¹

- → model²: integrate spectra through transport eqn... ... including relevant energy losses
 - → p acceleration to >100TeV possible for turbulent Alfvén velocity $v_{\rm A} \gtrsim 0.1c$
 - → issue: ad-hoc normalization of the flux...

... particle feedback on turbulence appears unavoidable

Refs.: 1. e.g. Murase 22 + refs.,... Padovani+24 2. ML + Rieger, in prep.

Stochastic Fermi acceleration & high-energy neutrinos from NGC 1068

excess of high-energy (1-10 TeV) neutrinos from nearby AGN NGC 1068... \rightarrow Ice Cube 22: ... a possible scenario: stochastic acceleration in turbulent corona + p-p, $p-\gamma$ neutrino production¹

- → model²: integrate spectra through transport eqn... ... including relevant energy losses
 - → p acceleration to >100TeV possible for turbulent Alfvén velocity $v_{\rm A} \gtrsim 0.1c$
 - → issue: sensitivity to acceleration rate...

$$\langle \epsilon \rangle \propto \exp\left(4D_{pp}t/p^2\right)$$

1. e.g. Murase 22 + refs.,... Padovani+24 Refs.:

2. ML+ Rieger, in prep.

Stochastic Fermi acceleration & high-energy neutrinos from NGC 1068

ightharpoonup lce Cube 22: excess of high-energy (1-10 TeV) neutrinos from nearby AGN NGC 1068... ... a possible scenario: stochastic acceleration in turbulent corona + p-p, $p-\gamma$ neutrino production¹

→ model²: integrate spectra through transport eqn...
 ... including relevant energy losses

... proper account of feedback of particles on turbulence (damping) ⇒ reasonable fit to Ice Cube data, without fine-tuning of normalization...

... high-energy tail likely shaped by distribution of acceleration rates (e.g. v_A) inside corona...?

Refs.: 1. e.g. Murase 22 + refs.,... Padovani+24

2. ML + Rieger, in prep.

Summary + discussion: generalized Fermi acceleration in turbulent plasmas

→ Summary (1): particle acceleration in turbulence as generalized Fermi process

... Fermi acceleration generalized to turbulence: acceleration in localized regions of strong (field line) velocity gradients ... model supported by PIC+MHD simulations ...

... generalization to transport: interaction with (static) regions of strong curvature leads to strong scattering events ... can sustain scattering with m.f.p. $\lambda_{\rm s}\sim\ell_{\rm c}^{0.7}\,r_{\rm g}^{0.3}$

→ Summary (2): application to phenomenology of Ice Cube neutrinos from Seyferts

... (generalized Fermi) transport equation allows to model spectra ...

... an important effect in (many) sources: account for feedback of particles on turbulence... acceleration process becomes self-regulated