

The detector Upgrades for HL-LHC at DESY

Sergio Díez Cornell (DESY)

MU days DESY, 12-13 December 2024

HELMHOLTZ

Introduction

Leading the effort in instrumentation

DESY keeping his commitment driving collider physics

- Contributing to the major international collaborations as one of the main players
 - Full exploitation of ATLAS and CMS experiments
 - Crucial in the most ambitious upgrade projects within the detectors: Trackers and HGCAL (endcap calorimeter)
- Maintaining the leading role of DESY in particle physics instrumentation
 - In-house experience and competence in construction of detector systems
 - Strong, multidisciplinary engineering teams
 - State-of-the-art facilities
 - German "hub" for universities and institutions

The HL- LHC Upgrade

Exploring the limits of the World's biggest collider

- Main measurement: measurement at 4sigma (or better) of the Higgs self-coupling mechanism, by combining ATLAS and CMS
- Main challenges: 5-7x higher instantaneous luminosity (7.5x10³⁴ cm⁻²s⁻¹) and 10x more pile-up events (μ = 200) in the detectors
- Main design goal: Maintain or improve resolution and particle identification performance of current detectors

The HL- LHC Upgrade

Exploring the limits of the World's biggest collider

- Main measurement: measurement at 4sigma (or better) of the Higgs self-coupling mechanism, by combining ATLAS and CMS
- Main challenges: 5-7x higher instantaneous luminosity (7.5x10³⁴ cm⁻²s⁻¹) and 10x more pile-up events (μ = 200) in the detectors
- Main design goal: Maintain or improve resolution and particle identification performance of current detectors

High granularity

High speed

Radiation tolerant

The HL- LHC Upgrade

Exploring the limits of the World's biggest collider

- Main measurement: measurement at 4sigma (or better) of the Higgs self-coupling mechanism, by combining ATLAS and CMS
- Main challenges: 5-7x higher instantaneous luminosity (7.5x10³⁴ cm⁻²s⁻¹) and 10x more pile-up events (μ = 200) in the detectors
- Main design goal: Maintain or improve resolution and particle identification performance of current detectors

Replacing the old trackers

After more than a decade of excellent performance

ATLAS Inner Detector End-cap

CMS strips tracker End-cap

The new CMS and ATLAS trackers

A whole new scale for silicon detectors

The new CMS and ATLAS trackers

The role of DESY

The new CMS and ATLAS trackers

The role of DESY

HELMHOLTZ | HL-LHC@DESY | Sergio Díez Cornell, 13.12.2024

Covering the full spectrum

From the smallest sensing units to the biggest structures

Covering the whole range of the detectors design, assembly, and test from the start

- Silicon sensors and modules
- (Instrumented) support structures and its electronics
- Global structures
- Integration of sub-detectors
- System testing
- Know-how expertise present at DESY for integration, installation and commissioning of detector systems instrumental for their success

Tooling for assembly, QC and integration

Exploiting the strong and multidisciplinary engineering expertise at DESY

- Leaders in production of custom-built tooling and setups for components assembly, quality control (QC), and detector integration
 - Module and instrumented supports assembly
 - Thermal QC
 - Electrical QC
 - Integration tooling and tests
 - **Dual-phase CO₂ cooling** machines

Tooling for assembly, QC and integration

Exploiting the strong and multidisciplinary engineering expertise at DESY

- Leaders in production of custom-built tooling and setups for components assembly, quality control (QC), and detector integration
 - Module and instrumented supports
 assembly
 - Thermal QC
 - Electrical QC
 - Integration tooling and tests
 - **Dual-phase CO₂ cooling** machines

Tooling for assembly, QC and integration

Exploiting the strong and multidisciplinary engineering expertise at DESY

- Leaders in production of custom-built tooling and setups for components assembly, quality control (QC), and detector integration
 - Module and instrumented supports ٠ assembly
 - **Thermal QC** ٠
 - **Electrical QC** ٠
 - **Integration tooling** and tests ٠
 - **Dual-phase CO₂ cooling** machines ٠

Tooling for assembly, QC and integration

Exploiting the strong and multidisciplinary engineering expertise at DESY

- Leaders in production of custom-built tooling and setups for components assembly, quality control (QC), and detector integration
 - Module and instrumented supports assembly
 - Thermal QC
 - Electrical QC
 - Integration tooling and tests
 - Dual-phase CO₂ cooling machines
- Produced and delivered most of these tools to the ATLAS and CMS Collaborations

Detector Assembly Facility (DAF)

New clean rooms for new detectors

DESY laboratories for integration

- Detector Assembly Facility, constructed for the assembly and integration of the new CMAS and end-cap trackers
- ISO-6 and ISO-7 clean rooms
- More than 600sqm of laboratory space

Approaching production phase

ATLAS

First steps into final assembly of components

Recent milestones: ATLAS

- Qualified as module and instrumented support sites
 - More than 55 pre-production modules and three fully instrumented petals built and QCed during pre-production
- First cosmic tests performed on system test setup
- Multiple DESY components in production
 - Local supports ("petal cores")
 - ~ 20% of cores received and tested
 - Back-end electronics boards ("EoS")
 - >50% of production assembled and tested
 - Rapidly approaching production on modules (est. March 2025)
- Recent **arrival of endcap global structure**, ready for integration
 - End-cap integration already exercised on system test setup

ATLAS system test setup

Approaching production phase

First steps into final assembly of components

Recent milestones: CMS

- Pre-production gaining traction
 - First 5 pre-production modules in fabrication, expected O(25) by Feb 2025
 - First two pre-production supports ("DEEs") in-hand, a total of four by Feb 2025
 - DEE integration exercise took place at DESY in June 2024
 - 13 prototype modules mounted on prototype Dee and operated in parallel with final services routing
- Moving towards production
 - DEE production recently started (Dec 2024), first objects expected by Q2 2025
 - Module production aiming for Q3 2025

A new Endcap Calorimeter for CMS

Replacing pre-shower, ECAL and HCAL

Current CMS endcap Calorimeter

A new Endcap Calorimeter for CMS

High Granularity Calorimeter (HGCAL)

High Granularity Calorimeter (HGCAL)

- Silicon and SiPM-on-Tile readout
- SiPM-on-Tile: Developed at DESY
 - Originally developed for future e+e- colliders
 - Scintillator part: 3700 m², 280k SiPMs

DESY contributions

- Development and production of 2000 Tilemodules
- Automated production techniques
- Mapping and calibration software

HGCAL SiPM scintillator tiles

CMS HGCAL Status

Approaching production

Production techniques proven

- Scintillator tile wrapping: DESY development
 - Reproduced at 2nd site (FNAL)
- Tilemodule assembly: adaptation of industrial pick & place technology

Quality control procedures in place

- Tile dimensions, light output, tilemodule response to particles (beam, cosmics)
 - Throughput matches production requirements
 - Results according to specs

Pre-series module production complete

- Close-to-final components
- Final production techniques

Populated HGCAL scintillator sector

CMS HGCAL Outlook

System testing and production start

2025-26: Tilemodule production and test

- Tile wrapping, electrical assembly, placement of tiles
- Tests of tiles, electronics and full modules

System tests and software development

- In cooperation with KIT
- Build up expertise for integration, commissioning
- Testbed for software: machine learning for calibration, simulation,...

Future developments

- Prepare for scalability and integration challenges
- High-granularity calorimeter for future Higgs factory

First 10-degree sector test

Beam test in 3T field

In summary

DESY background and workforce provides a strong systems and commissioning competence

State-of-the-art facilities

Well regarded as a "German instrumentation hub" for universities and institutes

Multiple successful projects completed or in production

Ambitious goals for instrumentation in future experiments in HEP

Thank you

Contact

Deutsches Elektronen-Synchrotron DESY Sergio Díez Cornell FH - ATLAS Group sergio.diez.cornell@desy.de

www.desy.de