

From KATRIN to KATRIN++

Markus Steidl. "Matter and the Universe" Days 2024@DESY

1

v - mass, a fundamental parameter

Key role for Standard Model:

- \rightarrow Higgs mass mechanism of S.M. does not fit to neutrinos, right handed neutrinos would be minimal extension of S.M.
- \rightarrow implications for extensions to the SM, such as seesaw mechanisms and leptogenesis.

Key role for cosmology

 $\rightarrow \nu {}^{\mbox{\prime}} s$ are the most abundant massive particle in the

Universe

 \rightarrow Neutrino masses impact cosmological evolutions (CMB, LSS, H₀...)

Neutrino mass in tritium β-decay

Measurement of effective mass *m*, based on kinematic parameters & energy conservation

Neutrino mass in tritium β-decay

Experimental challenges:

- High source activity, super-allowed transition
 - \Rightarrow Tritium: E_0 = 18.6 keV, $T_{1/2}$ = 12 yr
- Excellent energy resolution (~1 eV)
- Low **background** («1 cps)

Tritium Laboratory Karlsruhe safe tritium technologies & versatile tritium analytics (> 30 yr)

Experimental improvements wrg

- Factor 6 more in statistics
- **Factor 2** lower **background** using "*shifted analyzing plane*" configuration
- Precision calibration tools available (Kr co-circulation with T-gas, novel e-gun)
- Detector patches to account for inhomogeneities
 - **Improved** statistical sensitivity by optimized scan-time distribution
- **Systematic studies** e.g. measure Kr line widths to determine plasma parameters.
- Eliminated trapped particle backgrounds

Systematic uncertainties

Statistical uncertainty dominates

Significant reduction of the **background**-related systematics

Better control over source scattering

Increased conservative uncertainties in this release

Reduced uncertainties in following data

Reduction of the molecular finalstates uncertainties

Reassessment of theoretical uncertainty estimation: S. Schneidewind et al., Eur. Phys. J. C 84, 494 (2024)

→ further reduction of systematics for final neutrino mass analysis

Data & Fit result

- Maximum likelihood fit with common m_{ν}^2 parameter in 59 data sets
- Excellent goodness-of-fit: p-value=0.84

Results

Best-fit value
$$m_{\mathbf{v}}^2 = -0.14^{+0.13}_{-0.15} \,\mathrm{eV}^2$$

Negative *m*² estimates allowed by the spectrum model to accommodate statistical fluctuations

Lokhov-Tkachov construction

 $m_{\nu} < 0.45 \,\mathrm{eV} \ (90 \,\% \,\mathrm{CL})$

KATRIN collab: arXiv:2406.13516

Feldman-Cousin m_{ν} < 0.31 eV at 90 % CL

Bayesian analysis is in preparation

KATRIN data taking continues

Meanwhile ~ 170 Mio counts recorded – x4.5 the statistics! Another 50 Mio to come in 2025 + calibration/systematics improvements

• New detector and data processing (from 1 cps/pixel → 10⁵ cps/pixel)

Differential: energy determined directly by detector response, i.e. not by an integral scan of the spectrometer

A TRISTAN module Silicon Drift Detector with 166 pixels Achieve Fano-noise limited perfromance Max-Planck Institute of Physics, Munich Halbleiterlabor Munich

2 ASIC boards as frontend Politecnico di Milano

TRISTAN tower (9 modules) optimized for compact insertion into beamline with cooling and keeping XUHV condition

- New beamline configuration with source modifications
- New analysis methods required and new systematic effects involved

Setting up all equipment in 2025 in a new detector section; to be swapped in 2026.

2025: Pre-characterization of TRISTAN detector with calibration sources

New DAQ & Prepare data processing (1 TB/s streaming to backend), data and analysis management for ~50 TB/a

Karlsruhe Institute of Technology

Arrival of first 3 detectors from Munich/Milano

TRISTAN module TRISTAN tower with 9 modules (here with 3 modules and 6 dummies) Integration into Beamtube inside s.c.solenoid Feedthrough chamber for DAQ interface

First Light with solid 83mKr source

Differential measurements KATRIN with TRISTAN detectors

Unique opportunity for new scientific scope.

Hardware for installation in 2026 is on schedule.

Additional challenges remain:

(data management, control and **treatment of limiting systematic effects by scattering**, implementation of new analysis & simulation mehtods)

Prospects for direct neutrino mass measurement

Initial R&D towards KATRIN++

Aim for investigation

Develop atom cooling mechanism Trapping times / max. densities Interplay of beta-driven plasma (meV-eV) and ultra-cold trapped atoms (neV)

Tritium atom throughput on the order of 10 g/day (c.f. KATRIN: 40 g/day)

Initial R&D towards KATRIN++

Quantum Sensors

Aim for investigation

- Find suitable quantum sensors for energy measurement or Time-of-Flight methods
- Windowless coupling of mK-sensors to source/spectrometer on higher temperature
- Operation in magnetic fields (> 20 mT)

Scaleability to sensitive areas o(100 cm²)

Cross-topic activity with MT, Contribution to InnoPool QS4Physics

Candidate: Metallic Magnetic Microcalorimeters (MMCs)

Use established MAC-E filter and KATRIN source technology to characterize quantum sensors Use expertise and technical capabilities of existing TLK to develop atomic tritium source

PoF-V

Summary

Release of m<450 meV (90% C.L.) based on</p>

~20% of anticipated total data

Stable operation of KATRIN & TLK: 80% of data for final analysis are on disc.

Preparation in full swing for KATRIN with TRISTAN detectors — new physics program

Atomic tritium and quantum sensors are key technologies for next generation (KATRIN++). Initial R&D started as seed for PoF-V.

Appendix

Input parameters for sensitivity simulation

molecular tritium atomic tritium qU = 18520 eVFitrange $E_0 - 30 eV$ t = 3 years $m_v = 0 eV$ stat. bg (diff) = 0 mcps/eV CD = $3.78 \cdot 10^{21} m^{-2}$ 'statistics only'

This photo has been mirrored for better comparativity to other photo of slide.