

IESYA

Precise Quantum Angle Generator Designed for Noisy Quantum Devices

S. Monaco^{1,2}, F. Rehm³, K. Borras^{1,2},
 D. Krücker¹, S. Schnake^{1,2}
 ¹DESY, ²RWTH Aachen University, ³CERN

December 12, 2024

Quantum Computing for High Energy Physics

A brief motivation for Quantum Models in High Energy Physics.

- **Use Case:** Particle Physics Calorimeter Simulations
 - Calorimeter detectors responsible for measuring particle energies in physics
 - Current Geant4 Monte Carlo simulations are computationally demanding
 - Searching for alternatives

Previously: Geant4 Monte Carlo Simulations

Now: Deep Learning (150 000x speed up)

Developed a Deep Learning model for calorimeter simulation which requires fewer computing resources (DLGAN)

Next: Explore Quantum Computing

Quantum Computing allows for the accurate evolution of a quantum state $|0\rangle^{\otimes N}$ into another $|\psi\rangle$

- ✓ High dimensional search space Hilbert space
 - Fewer parameters needed
 - Faster learning

compared to classical models

QAG Model

How the Quantum Angle Generator works and is trained

In this study: A new quantum generative model: **Quantum Angle Generator** (QAG)

Why a new model?

- Current quantum models do not satisfy our requirements
 - QGAN (Quantum Generative Adversarial Network):

Training is resource inefficient and unstable

QCBM (Quantum Circuit Born Machine):
 Does not scale well in qubits and gates

• The generation of *N* pixels requires *N* qubits

• The generation of *N* pixels requires *N* qubits

Quantum State Preparation

- Implement superposition through *H*
- Implement random noise through *RY*

• The generation of *N* pixels requires *N* qubits

Quantum State Preparation

- Implement superposition through *H*
- Implement random noise through *RY*

- Only initial investigation with simplified models
- Understand advantages and challenges

Once the optimal parameters $\vec{\theta^*}$ are found through the training process

- 1. Generate a random noise-vector \vec{x} for the *RY* gates
- 2. Compute expectation value $\langle \sigma_Z \rangle$ for each qubit:

$$\langle \sigma_Z
angle = 2 * rac{\# |0
angle}{n_{ ext{shots}}}$$

- 1. Generate *M* images
- 2. Evaluate the MMD loss
- 3. Update the parameters $\theta_i \rightarrow \theta_{i+1}$

M images (epoch 0)

- 1. Generate *M* images
- 2. Evaluate the MMD loss
- 3. Update the parameters $\theta_i \rightarrow \theta_{i+1}$

M images (epoch 20)

- 1. Generate *M* images
- 2. Evaluate the MMD loss
- 3. Update the parameters $heta_i o heta_{i+1}$

M images (epoch 40)

- 1. Generate *M* images
- 2. Evaluate the MMD loss
- 3. Update the parameters $\theta_i \rightarrow \theta_{i+1}$

M images (epoch 60)

- 1. Generate *M* images
- 2. Evaluate the MMD loss
- 3. Update the parameters $heta_i o heta_{i+1}$

M images (epoch 80)

Model Evaluation

Overview of the model's performance on the EleScan dataset

Total energy distributions of true (Geant4) and generated events

Average measured energy for each pixel

High accuracy in both total energies and average pixel-wise energies

Model is able to reproduce correlations and anti-correlations of the showers

Models trained without noise

- Models trained without noise
- Inference made under noise

Less accuracy in Hardware due to presence of swap gates in the transpiled circuit

Current noise levels on real hardware: 1-2%

 \rightarrow noise impact within the inherent uncertainty

Models trained in noisy instances

- Models trained with noise
- Inference made with noise

Improved accuracy, the model is able to adapt its parameters to the noisy hardware to improve its precision

To be noted: Different scale in *x* and *y*

When trained directly on the noise instance the QAG model is able to adapt its parameters to the noisy hardware to improve its precision

Models trained in noisy instances

Models trained in noiseless simulators

Conclusions

Summary of the model and future developments

QAG: a quantum generative model

- Efficient scaling with respect to gates and qubits
- Consistent, smooth, and rapid training convergence
- ✓ High inference accuracy
- Effectively adapts to noise in current NISQ devices

Future developments

- \bigcirc Conduct a more comprehensive hyperparameter optimization
- \bigcirc Overcome limit 1 qubit \leftrightarrow 1 pixel
- \heartsuit Refine model geometry to align better to the specific physical problem

References

PhD Thesis:

Florian Rehm: *Deep learning and quantum generative models for high energy physics calorimeter simulations*, RWTH Aachen University, PhD Dissertation (2023)

Paper:

Florian Rehm, Sofia Vallecorsa, Kerstin Borras, Dirk Krücker, Michele Grossi, Valle Varo: *Precise Image Generation on Current Noisy Quantum Computing Devices*, Quantum Science and Technology (2023)

Questions?

Contact

Saverio Monaco

- 🖂 saverio.monaco@desy.de
- github.com/SaverioMonaco/QAG (Private)

ENGAGE has received funding from the European Union's Horizon 2020 Research and Innovation Programme under the Marie Skłodowska-Curie Grant Agreement No. 101034267.

Backup slides

Continuous (QAG)

Discrete (QCBM)

Source of entropy given by \vec{x}

Source of entropy given by the measurement process

More qubits neededSingle measurement

• The noise analysis was conducted on **IBM superconducting** quantum computers.

Noise analysis:

- The noise analysis was conducted on **IBM superconducting** quantum computers.
- Additional tests are underway on newer and distinct architectures.

Superconducting quantum processor with a **star topology** and central resonator

Ion-trap quantum processors

• • •