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Overview

® ML methods for signal detection with unknown
rare background, rejection of background,

model parameter inference

® central idea: search for compatible events
regarding low-level observables allowing

common signal hypothesis
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Abstract. Simulation-based inference (SBI) makes it possible to infer the parameters of a model from
high-dimensional low-level features of the observed events. In this work we show how this method can be
used to establish the presence of a weak signal on top of an unknown background, to discard background
events and to determine the signal properties. The key idea is to use SBI methods to identify events that
are similar to each other in the sense that they agree on the inferred model parameters. We illustrate
this method for the case of axion-like particles decaying to photons at beam-dump experiments. For poor
detector resolution the diphoton mass cannot be reliably reconstructed, so there is no simple high-level
observable that can be used to perform a bump hunt. Since the SBI methods do not require explicit
high-level observables, they offer a promising alternative to increase the sensitivity to new physics.
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1 Introduction

A complete experimental analysis turns observations into
either exclusion limits on, or preferred regions in the pa-
rameter space of a model, depending on whether or not
there is a (significant) excess over expected backgrounds.
A well-established and powerful procedure to perform this
kind of analysis is bump hunting [1], which searches for a
signal that is localised (in terms of some informative ob-
servables) compared to a more broadly distributed back-
ground. The central advantage of bump hunting is that it
can be performed even in situations where the background
cannot be reliably simulated or contains a-priori unknown
contributions, as long as it is sufficiently smooth. If an
excess over the background is observed, it provides two
pieces of information. First, it may be an indication that
the background-only hypothesis is not the right explana-
tion for the data. And second, the position of the excess is
informative about the properties of a hypothetical signal.

‘While bump hunting is a very powerful technique and
has lead to the discovery of various new particles, it suffers
from a number of limitations that need to be addressed.
One of them is the look-elsewhere effect [2] related to the

separation between two neighbouring events (in the ob-
servable under consideration) is small compared to the
experimental resolution. The opposite case, where indi-
vidual events are well-separated, makes it challenging to
obtain numerically stable inferences for the background
and signal model.

For the success of bump hunting it is crucial to identify
a suitable observable and construct a summary statistic.
For example, when searching for a new particle decaying
into two final state particles that can be well-measured in
the detector, the obvious choice is the invariant mass of the
decay products. However, in more complicated scenarios,
it can be difficult to find the optimal way to combine low-
level features into one or more high-level observables. As
shown in Ref. [3], even for a two-body decay the invariant
mass may not be the optimal choice, if the four-vectors of
the final state particles are hard to measure accurately.

In such a scenario, the optimal sensitivity to new physics
may be obtained by directly analysing the low-level fea-
tures of individual events using the methods of simulation-
based inference (SBI), ie. machine-learning (ML) algo-
rithms that do not explicitly construct high-level observ-
ables nor summary statistics, which are conventionally
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Experimental Setup & Simulation ﬂ(".
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® search for ALPs decaying into 2 photons in
SHIP
® produced in rare (mainly B) meson decays

® small number of background events produced
by muon and neutrino inelastic scatterings
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model parameters: m, € [0.1GeV, 4.5GeV]
and ct,/ m, €[0.05 mGeV-1, 500 mGeV1]

low-level observables: photon energies,
calorimeter hit positions, polar and azimuthal
Incidence angles

limited detector resolution: smearing

background: resemble signals, no fixed mass
and lifetime
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Conventional Approaches ﬂ(".

Traditional Bump Hunt Simulation-based Inference
construct high-level observable and search for ® infer parameters by analysing high-
localised signal in more broadly distributed dimensional low-level observables
background ® do not require construction of explicit high-
even if background cannot be reliably level observables
simulated ® need simulations
problems: ® problem:
® look-elsewhere effect ® unknown or difficult-to-simulate
® poor detector resolution backgrounds

® |ow number of signal events
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Combined Approach A\‘(IT
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Event Compatibility based on

Observables (ECO) Events with Posterior Overlap (EPO)
® classifier trained to distinguish pairs of low ® classifier extracting mass posteriors from low-
level observable vectors of signal events from level observables with likelihood-trick
those of background events m classifier establishing compatibility of events

based on posteriors
® signals agree on inferred model parameters

—> signal identified by rarity
-> no look-elsewhere effect
—> adjust threshold to account for different expected background rates
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Analysis Strategy ﬂ(".

Extract posteriors Compute compatibility scores Discard 1st incompatible event
251 ] ]
—— event 1 (bkg) y
—— event 2 (sig) E
201 — event 3 (sig) 1 i ]
% —— event 4 (sig) % E %
8 1. event 5 (bkg) o | i O |
= = ! =
g g : g
= 2 ! ]
o 101 o o
o © o
Q [SY Q
51 ] ]
-1.0 -0.5 0.0 0.5 -1.0 -0.5 0.0 0.5 -1.0 -0.5 0.0 0.5
log10 ma[GeV] logi10 ma[GeV] log10 ms[GeV]
Discard 2nd incompatible event Keep compatible events Combine posteriors
251 ] ] i
score 1: 8.8e-02 < 0.68 score 2: 9.2e-01 i
score 2: 6.4e-01 score 3: 9.1e-01 = 0.68 logi10m,; =0.01+0.02 :
- 201 score 3: 6.5e-01 | score 4: 9.3e-01 ] :
< score 4: 6.4e-01 < N [
v (5} (0} !
O 151 O | Q ]
= = =
g g S
2 2 ]
o 101 o 5
o) Lo o i
= S a i
51 : - :
-1.0 -0.5 0.0 0.5 -1.0 =0.5 0.0 0.5 =1..0 =0.5 0.0 0.5
log1o ma[GeV] log10 ma[GeV] log10 ma[GeV]

December 12, 2024  Kierthika Chathirathas MU Days 2024



Results
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(Z)s sensitivity for m; = 1.0GeV and good resolution

® performance comparison:

® TS: number of remaining events
® p-value: p(l) =
® expectation value of significance

Nmax
mz=l

pp(m)

Z(1) = V2erf(1 —p(D)

® EPO and ECO hunt outperform
traditional bump hunt for poor
detector resolution
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® Challenge: rare and hard-to-model backgrounds, unknown optimal high-level observables
® ECO and EPO hunt leveraging classifiers
® EPO enables inference of model parameters
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ALP Parameter Space ﬂ(".
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Detector Resolution

® [imited detector resolution:

® smearing of truth-level observables

® good resolution:

® poor resolution:

28 = 0.05, 9(6) = a(¢p) = 5mrad
2 = 0.1, 6(6) = o(¢) = 10mrad

® calorimeter hit position resolution of 1 mm
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Likelihood-Trick

® Neyman-Pearson lemma: likelihood ratio test is strongest measure between two groups A4
(score(x) = 0) and B (score(x) = 1) with probability distributions u, and ug, respectively
L(x|pa)
L(x|ua)+L(x|pp)

® Optimal decision function: score(x) =

. - o . p(x, u)
B =
[rain classifier to distinguish between two groups, such that score(x) e )T ()
. Score(Xops) P(Xops, U) L(xobs“t)n(ﬂ) L(xops|it)
[ | — — — —
Apply on observed data: ——— e = s = T0POen) ) LER(x,ps| 1)

® Posterior from Bayes’ Theorem: p(ulx,ps) = LER(X,ps|)T(1)
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Background Rejection

. ROC for the SHiP experiment and good resolution ROC for the SHiP experiment and poor resolution

10 10%

® compromise between falsely accepted ¢ o — mooz "+ s — m-saon
baCkg round eventS and falsely rEJeCted Signal \ — EPO hunt — m,=4.0GeV | —— EPO hunt —— m,=4.0GeV
events when fixing threshold

® performance comparison: Receiver Operator
Characteristic (ROC) curve

® focus on large signal acceptance
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Parameter Inference

® combine single-event posteriors to extract
posterior from multiple observed events

® multiply ratios together and with prior,
normalization

® signal events are incorrectly rejected or

background events are incorrectly accepted:

empirical coverages smaller than expected
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four signal events plus one background event (top) and three
signal events plus two background events (bottom)
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