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Tidal disruption events

When a massive star passes close enough to a SMBH


• ~ half of the star’s mass remains bounded by the 

SMBH gravitational force 


• Mass accretion -> relativistic jet -> months/year-long 

flare (optical transient)


• Energy to be reprocessed by accretion ~ 


• Fallback rate  (Phinney 1989)


• Thermal black body (bb) emissions in optical/UV 

(OUV) bands.


• Some (~1/4) TDEs are observed in (thermal) X-ray 

and infrared (IR) ranges

1054 erg

∝ t−5/3

https://www.desy.de/e409/e116959/e119238/media/9170/TDE_DESY_SciComLab_sound_080p.mp4
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TDE models
• Radio, -rays, non-thermal X-rays: 

relativistic jet, sub relativistic wind


• Thermal X-rays: close to jet/funnel & hot 

disk corona


• Optical/UV: photosphere of hot disk corona 

(beyond which integrated optical depth < 1)


• Infrared (IR): dust-echo, corona…


• 4 TDEs/candidates with luminous X-ray 
jets among hundreds of TDEs


1.AT 2022cmc

2.Sw 1112-82

3.Sw1644+57

4.Sw 2058+05


γ

Dai+ 2018

Disks - Hayashaki & Yamazaki 19 (HY19)

Wide angle winds - Fang 20, Murase+ 20

Stream-stream - Dai + 15,, HY19,

Jets - Wang + 11,Wang & Liu 16, Dai & Fang 17, Lunardini & Winter 17, Senno + 17
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Jetted TDE: AT 2022cmc
• Recently documented jetted TDE (z = 1.193, Andreoni+ Nat.2022)

• Bright non-thermal X-rays:   

relativistic jets (Pasham+ 2023) + later-time steepening (Eftekhari+ 2024)

• Optical: black body emission from thermal envelope (Yao+ 2024)

• Radio: GRB-like jet forward shocks ( ) propagating in the 

circumnuclear medium (CNM)  

(e.g., Matsumoto & Metzger 2023; Yao+ 2024; Zhou+ 2024)


LX,iso ∼ 3 × 1047 erg/s (T/5 d)−2

Γ ∼ 2 − 5
ncnm ∝ R−k, 1.5 ≲ k ≲ 2.0

Andreoni+ Nat.2022

Eftekhari+ 2024

|Neutrino and EM signals from TDEs | Chengchao Yuan, 2024/11/22

Pasham et al. Nat. Astro. (2023)
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Jetted TDE: forward shock model
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TDE FS model  radio spectra/lightcurves:

• Explosion, no continuous power injection

• 


• Synchrotron emission from accelerated 

• Wind-like CNM profile 


• Cannot explain X-ray observations two 
component jet

→

Γ0 ∼ 1 − 10
e−

ρcnm ∝ R−k (1.5 < k < 2)
→

AT 2022cmc radio fitting

(Matsumoto & Metzger 2024)
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FS dominated jet evolution with explosion energy :

Isotropic equivalent energy of the jet


 (No internal energy injection)

E0 = Γ2
0Mejc2

dEiso = c2dm }

Γ
Γ

Γ0

Eiso = ΓM2
ej + Γmc2 +

(Γ − 1)( ̂γΓ2 − Γ + 1)
Γ

mc2

Jet schematic (not to scale)
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Jetted TDE: AT 2022cmc — structured jet
Narrow fast jet and wide slow jet

CY, Zhang, Winter & Murase, arXiv: 2406.11513 (ApJ)

Accretion rate ( )ηacc ∼ 0.01 − 0.1

Fallback time

Jet luminosities ( )ηf/s ∼ 0.1

Two components

• Slow outflow (quasi-isotropic)

• Fast relativistic jet (beamed)

CNM density profile 
k = 1.8, Rcnm = 1018 cm

Curd and Narayan 2019

y/rg

R
adiation pressure

https://arxiv.org/abs/2406.11513
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Jetted TDE: AT 2022cmc — jet dynamics

Jet evolution: continuous energy/mass injections; GRB-like treatment; forward/reverse 
shocks

CY, Zhang, Winter & Murase, arXiv: 2406.11513 (ApJ)

A more comprehensive treatment including:

• Continuous power injection from central engine

• Reverse shock deceleration of unshocked ejecta

 Radio and X-ray afterglows of jetted TDEs | Chengchao Yuan

https://arxiv.org/abs/2406.11513
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Numerical method:  (Astrophysical Multi-Messenger Modeling)AM3

Numerically solving the coupled PDEs for electron, proton, neutrons, neutrino and photon distributions.

• An Open-Source Tool for Time-Dependent Leptoic-Hadronic Radiation Modeling 

• Applied to active galactic nuclei, gamma-ray bursts, TDEs  

   Klinger, Rudolph, Rodrigues, CY, Clairfontaine, Fedynitch, Winter, Pohl, Gao, arXiv: 2312.13371 (ApJS)


• Developed at DESY; Public to the community (https://gitlab.desy.de/am3/am3) 

• Dedicated for single-zone isotropic multi-messenger (EM and neutrinos) emissions

• Compiled in C++ with a Python interface: fast and easy to use 

• Reliable and trackable 

• Well-documented with detailed instructions and examples

• More than 14 papers on GRBs, AGNs, and TDEs are published based on AM3. The number keeps expanding! 

• Check the doc website to learn more: https://am3.readthedocs.io 

 Radio and X-ray afterglows of jetted TDEs | Chengchao Yuan

∂tni = Qi,ext + ∑
k

Qint,k→i − ∂E( ·E ⋅ ni) − (αi,esc + αi,adv)ni
Injection Cooling Escape/Sinking

https://arxiv.org/abs/2312.13371
https://am3.readthedocs.io
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Jetted TDE: AT 2022cmc — spectra
Fast jet reverse shock: X-ray (fast cooling)

Slow jet forward shock: radio (SSA)

Radiation modeling
Powerlaw injection Qe ∝ γ−s

e

γe,min = (Γ − 1)
s − 2
s − 1

ϵe

fe

mp

me

Bd = 32πϵBΓ(Γ − 1)np,dmpc2

Norm . (4πR2
f t′￼f,dyn)∫ Qedγe = feNe

Γf/s for FS, Γrel = (Γf/s / Γf/s,0 + Γf/s,0 / Γf/s)/2 for RS

CY, Zhang, Winter & Murase, arXiv: 2406.11513 (ApJ)

 Radio and X-ray afterglows of jetted TDEs | Chengchao Yuan

https://arxiv.org/abs/2406.11513
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Optical:                                                                      

• Originated from a thermal envelope (Yao+, 2024)


• ULs for structured jets


X-rays:

• Continuously powered reverse shock model: works good!

• Lightcurve steepening after ~100 d and the late time ULs after 

~200d (red points, Eftekhari+ 2024): Jet break correction  


• Analytically consistent,  


• Variability timescale: active engine ( short term) and                                                             
reverse shock ( , long term)


Slow jet forward shock: 16 GHz and later-time 225 GHz light 
curves


∼ RSch /c,
∼ Rf /(Γ2

f c)

 

 

10

AT 2022cmc: structured jet light curves
CY, Zhang, Winter & Murase, arXiv: 2406.11513 (ApJ)

fbr =
1

1 + (Γfθf)−2
→ (Γfθf)2, Tobs > Tbr (Γf < θ−1

f )

 Radio:

 Radio and X-ray afterglows of jetted TDEs | Chengchao Yuan

https://arxiv.org/abs/2406.11513
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Revisiting X-ray afterglows of 4 jetted TDEs
z=1.19 z=1.19

z=0.98 z=0.35

Yuan et al. arXiv: 2411.07925

 Radio and X-ray afterglows of jetted TDEs | Chengchao Yuan

Fast jet reverse shock model

Late-time X-ray limits:

• Ceased central engine + jet break:           

SW J1644 (sharp X-ray break)

• Transition to sub-Eddington rate jet 

power injection stops 


                            


→

·MBH(tce) =
LEdd

ηradc2

https://arxiv.org/abs/2411.07925


DESY. 12

Jetted TDE X-ray afterglows
Gamma-ray and neutrino detectability 

• 4 jetted TDEs: lower than Fermi-LAT 100d; Detection horizon for AT2022cmc-like TDEs: z = 0.17, rate ~ 0.02-0.1 per year 

• Neutrino fluence from jetted TDEs: two orders lower than IceCube-Gen2 sensitivity low target photon density for ← pγ

Yuan et al. arXiv: 2411.07925 Radio and X-ray afterglows of jetted TDEs | Chengchao Yuan

https://arxiv.org/abs/2411.07925
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Summary and conclusions

• The continuous power injection effects the early time light curves


• A persistently powered structured (two-component) jet model could explain the radio (e.g., slow jet, 
forward shock) and X-ray (fast jet, reverse shock) spectra/lightcurves of jetted AT 2022cmc


• Joint spectral and lightcurve fitting could reduce the parameter degeneracy


• The jet break and central engine cessation may lead to the late-time steepening in X-ray lightcurves 
in all 4 jetted TDEs


• TDE relativistic jets are challenging to be detected by current gamma-ray and neutrino detectors. 


• Additional contributions, such as hidden winds and external photon fields, are needed to be efficient 
gamma-ray/neutrino emitters. The neutrino and electromagnetic cascade signals from neutrino-
emitting TDEs will be presented in the poster session.

 Radio and X-ray afterglows of jetted TDEs | Chengchao Yuan



Thanks for your attention!
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Tidal disruption events

When a massive star passes close enough to a SMBH


• ~ half of the star’s mass remains bounded by the 

SMBH gravitational force 


• Mass accretion -> relativistic jet -> months/year-long 

flare (optical transient)


• Energy to be reprocessed by accretion ~ 


• Fallback rate  (Phinney 1989)


• Thermal black body (bb) emissions in optical/UV 

(OUV) bands.


• Some (~1/4) TDEs are observed in (thermal) X-ray 

and infrared (IR) ranges

1054 erg

∝ t−5/3

Martin J. Rees, Nature 1988

 Radio and X-ray afterglows of jetted TDEs | Chengchao Yuan
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Numerical Method:  (Astrophysical Multi-Messenger Modeling)AM3

Numerically solving the coupled PDEs for electron, proton, neutrons, neutrino and photon distributions.

Cooling Escape/SinkInjection
∂tni = Qi,ext + ∑

k

Qint,k→i − ∂E( ·E ⋅ ni) − (αi,esc + αi,adv)ni

| Multimessenger Modelling of TDEs | Chengchao Yuan, 2024/02/23

Time step: 


Running time (1CPU) for calculation up to : 


• ~2 min for extended radiation zone 

• 30 min for compact region 

Δt = 0.001tfs − 0.01tfs
tν

R ≳ 1017 cm
R ≲ 1016 cm

• An Open-Source Tool for Time-Dependent Lepto-Hadronic 
Modeling of Astrophysical Sources 


• Blazars, GRBs, TDEs, etc  

   (Klinger, Rudolph, Rodrigues, CY +, arXiv: 2312.13371, ApJS)

https://am3.readthedocs.io/

Performance: C++ source code, python interface

• Simulation: kernel initialization, particle injection, ~30 

steps to steady state

• Tested on a single CPU on Apple M2 chip

• Very fast for lepto-hadronic simulations (< 0.5 s/step)

https://arxiv.org/abs/2312.13371
https://am3.readthedocs.io/
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Jetted TDE: forward shock model

FS dominated jet evolution with explosion energy :

Isotropic equivalent energy of the jet


 (No internal energy injection)

E0 = Γ2
0Mejc2

dEiso = c2dm

Γ0

1

Γ

t

Coasting

Phase


Decelerating

Phase


Sub-relativistic
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Eiso = ΓM2
ej + Γmc2 +

(Γ − 1)( ̂γΓ2 − Γ + 1)
Γ

mc2 }
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Jet schematic (not to scale)
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Jet break

For jets with opening angle 


• : observer has no 

knowledge outside  cone


• : observer feels the 

progressive deficit of energy with 
in  since no emission outside 
the jet cone is available 


•  defines break time , 

correction factor  applies 

after 


θj

θj > 1/Γ
Γ−1

θj < 1/Γ

Γ−1

θj = 1/Γ tbr

(θjΓ)2

tbr

Geometric effect of decelerating jet

 Radio and X-ray afterglows of jetted TDEs | Chengchao Yuan
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Equal-arrival-time surface (EATS)
Relate the time interval  in the observer’s frame to the emission time interval in the jet  (engine frame)ΔT Δte

 Radio and X-ray afterglows of jetted TDEs | Chengchao Yuan

T1 = te,1 + d /c

T2 = te,2 + d /c − βΔte cos θ

te,1

te,2

T1

T2

Γ,

βcΔte

βcΔte cos θ

ΔT = T2 − T1 = Δte(1 − β cos θ)

Set , radius 


For , 

te,1 = 0 R = ∫ βcdte ∼
βcT

1 − β cos θ
θ = 0 T = (1 + z)te(1 − β) ≃ (1 + z)te /(2Γ2)

Photons from the EATS arrives simultaneously

R =
βcT

(1 − β cos θ)(1 + z)

Integrate the emissivity over the EATS:

0 50 100 150 200

-10

-5

0

5

10

β cT
1 + z

β
cT

1
+
z

Γ = 2, 5, 10

θj
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Revisiting X-ray afterglows of 4 jetted TDEs

z=0.35

Yuan et al. arXiv: 2411.07925
 Radio and X-ray afterglows of jetted TDEs | Chengchao Yuan

Spectral fitting


https://arxiv.org/abs/2411.07925

