First searches for axion and dark photon dark matter using MAD prototypes

Matter and Universe days 2024

David Leppla-Weber (DESY, FH-ALPS) on behalf of the MADMAX collaboration Hamburg, 12.12.2024

The MADMAX collaboration:

Sponsored by:

MAgnetized Disk and Mirror Axion eXperiment

Searching for dark matter

- MADMAX searches for the dark matter axion
- > Axion motivated by solution to strong CP problem
- Popular dark matter candidate
- Axions within a magnetic field induce an effective current: J_a = g_{aγ}Bà
- Fullsize MADMAX designed to be sensitive down to QCD band at 40 µeV to 400 µeV
- Mass too low for accelerators and too high for conventional cavities

Axion landscape with projections of DESY experiments. Yellow band: DFSZ & KSVZ QCD axion models. Outside of yellow band: Axion like particles (ALPs)

Working principle

Fields at a dielectric interface

- > Photon emission at dielectric interfaces:
 - Electric field from axion \leftrightarrow B-field coupling
 - Discontinuity at interface solved by γ emission
 - Interface to a mirror: $\epsilon_2 \to \infty$
 - \rightarrow Called a dish antenna

Working principle

Fields at a dielectric interface

- > Photon emission at dielectric interfaces:
 - Electric field from axion \leftrightarrow B-field coupling
 - Discontinuity at interface solved by γ emission
 - Interface to a mirror: $\epsilon_2 \to \infty$
 - \rightarrow Called a dish antenna

- > MADMAX booster is a dielectric haloscope:
 - Stack of dielectric disks in front of a mirror
 - Photons emitted at dielectric interfaces $(\omega = m_a)$
 - Signal amplified by resonances and interference
 - Amplification w.r.t. dish antenna quantified by the boost factor β² (central for sensitivity calculation!)

Booster prototypes

Closed booster:

- > CB100: 3 $\emptyset 100 \text{ mm}$ sapphire ($\epsilon \simeq 9.36$) disks
- > CB200: 3 Ø200 mm sapphire disks
- > Easier simulation due to fixed boundary conditions
- > Axion couples to TE11 mode

Open booster:

- > OB300: 3 Ø300 mm sapphire disks
- > Easier tunability due to free movement of components
- > Axion couples to gaussian beam

$$g_{ay} = 2.04(3) \times 10^{-14} \text{ GeV}^{-1} \sqrt{\frac{\text{SNR}}{5}} \sqrt{\frac{400^2}{\rho^2}} \sqrt{\frac{1\text{m}^2}{A}} \sqrt{\frac{\text{T}_{\text{sys}}}{8\text{K}}} \frac{10 \text{ T}}{\text{B}_{\text{e}}} \sqrt{\frac{0.8}{\eta}} \left(\frac{1.3 \text{ days}}{\Delta t}\right)^{1/4} \sqrt{\frac{300 \text{ MeV}^2}{\rho_0}} \left(\frac{\text{m}_a}{100 \, \mu \text{eV}}\right)^{5/3} \text{MADMAX sensitivity}$$

Data takings

OB300 at UHH

- > Data taking at SHELL over Christmas 2023
- > No magnet \rightarrow Dark photon search
- > Goal:
 - Demonstrate feasability of open booster

CB100 & CB200 at CERN

- CERN visit at 1.6 T Morpurgo magnet in February & March 2024
- > Goals:
 - Demonstrate ability to set ALPs limits
 - Demonstrate tuning ability

Beadpull method

Beadpull setup & reflectivity measurement

- > Reflectivity measurement with and without bead: ΔΓ = ^{ϵ₀δ_eα₀ω/4P_n E²}
- > Bead pulled through the setup
 → Full field within the booster measured
- Described in detail in [JCAP04(2024)005] (J. Egge et al)

Beadpull method

Beadpull setup & reflectivity measurement

- > Reflectivity measurement with and without bead: $\Delta\Gamma = \frac{\epsilon_0 \delta_e \alpha_0 \omega}{4 P_0} \mathbf{E}^2$
- > Bead pulled through the setup
 → Full field within the booster measured
- Described in detail in [JCAP04(2024)005]
 (J. Egge et al)

OB300 measured boost factor

> Field E related to boost factor

$$\beta^2 = \frac{g_{a\gamma}^2}{16 P_{\rm in} P_0} \left| \int_{V_a} dV \; \mathbf{E} \cdot \dot{a} \mathbf{B} \right|^2 \label{eq:beta_alpha}$$

 Described in detail in [JCAP04(2023)064] (J. Egge)

OB300 @ SHELL/UHH

Dark photon search

> Competitive dark photon limits over a $\sim 1.2 \,\text{GHz} = 5 \,\mu\text{eV}$ range

- > Demonstrates open booster feasability
- > Submitted to PRL, [arXiv:2408.02368]

- > Verification of TE11 mode resonance using 1D beadpull
- > Field shape matches TE11 mode
 - \rightarrow Booster modelled by single mode simulation

- > Noise model of booster with receiver chain
- > Important checks (simplified):
 - Match of broadband oscillation length \rightarrow receiver model correct
 - Match of TE11 resonance position \rightarrow booster model correct

- > Boost factor simulated by this model
- > Uncertainties from fit procedure, 3D correction and time stability

² 500 ¹ 70.55 76.60 76.65 76.70 76.75 76.80 ² 70.35 76.60 76.65 76.70 76.75 76.80 ² 70.35 76.40 79.45 70.50 79.35 Boost factors of all datasets

19.19 19.21

19.23

> 5 different booster configurations used

Frequency [GHz]

β² Peak 18.531 GHz

18.543 GHz
 18.557 GHz

19.196 GHz

> Limits already competitive

CB200 @ CERN

AX Preliminary

18.51 18.53 18.55

2500

1500

1000

Sec. 2000

Results

- > Paper on arXiv [arXiv:2409.11777]
- Submitted to PRL

Summary & Outlook

- MADMAX is a dielectric haloscope looking for axion dark matter around 100 µeV
- > Axion and dark photon search successfully performed with prototypes
- > Prototype limits already competitive with existing limits

Summary & Outlook

- > MADMAX is a dielectric haloscope looking for axion dark matter around 100 µeV
- > Axion and dark photon search successfully performed with prototypes
- > Prototype limits already competitive with existing limits
- > Outlook:
 - Cold data from CERN currently being analysed
 - Prototype cryostat expected next year
 - Stronger magnetic fields (e.g. at DarkWave lab)

Thank you!

Contact

Deutsches Elektronen-Synchrotron DESY

www.desy.de

David Leppla-Weber ALPS david.leppla.weber@dest

LNA noise model

- Noiseless two-port device with voltage and current source connected in parallel
- > Two-port device impedance from deembedding of LNA internal length
- > Parameters:
 - Voltage noise amplitude V_n
 - Current noise amplitude In
 - Voltage/current noise correlation c

