

XLZD – Towards the Next-Generation Liquid Xenon Observatory for Dark Matter & Neutrino Physics

Alexey Elykov Karlsruhe Institute of Technology, Institute for Astroparticle Physics alexey.elykov@kit.edu

KIT – The Research University in the Helmholtz Association

www.kit.edu

- Initial scintillation light: S1
- Proportional scintillation signal: S2
- ➤ Energy: S1 area, S2 area
- Position: X-Y (S2 signal), Z (drift time)
- Interaction type (ER/NR): S2/S1 ratio

Dual-phase Time Projection Chamber (TPC)

XENON dark matter direct detection experiments at Laboratori Nazionali del Gran Sasso (LNGS)

What comes next...?

Towards the Neutrino Fog with Xenon Detectors

Dark Matter	
\succ	JCAP 10, 016 (2015)
\succ	ICAP 11 017 (2016)

Supernova neutrinos

- Phys. Rev. D 94, 103009 (2016)
- Phys. Rev. D 105, 043008 (2022)

Solar neutrinos (pp + B8)

- Eur. Phys. J. C 80, 1133 (2020)
- Phys. Rev. D 106, 096017 (2022)
- J. Phys. G 50, 013001 (2023)

Alexey Elykov

XLZD - XENON-LZ-DARWIN

- > New collaboration aiming to build & operate a next-generation detector
- > **XENONNT**, **LZ** operating largest most sensitive ~6 t (active) xenon TPCs
- > **DARWIN** R&D towards ~10x larger detector: electrodes, HV, photosensors,...
- > Fall 2024: Collaboration formed, with > 70 institutions from 15 countries
- > Design Book: out October 2024 arxiv: 2410.17137

XLZD - XENON-LZ-DARWIN

XLZD Nominal Design:

60 t liquid-xenon in TPC (~80 t total)

Option of staged approach for early science

Baseline configuration:

- 3-inch PMTs, 1182/array \succ
- 2.97 m e- drift, 2.98 m diameter \succ

XENON10

- Drift field: 240-290 V/cm \succ
- Extraction field: 6-8 kV/cm \succ

XLZD - XENON-LZ-DARWIN

XLZD Nominal Design:

- > Double-walled Ti cryostat, 7 cm liquid-xenon "skin" detector around the TPC
- Neutron & muon vetoes
- Candidates for underground hosting lab: LNGS, Boulby, SURF (siting decision expected for 2026)

KIT

Towards the Ultimate Xenon Detector

High-voltage:

- Electrodes design, construction & performance
- HV feedthrough
- Drift field homogeneity
- > Xenon purity
- Light collection efficiency
- Photosensors & readout
- Background mitigation

Goals

- > Electrode design, production, treatment, coating & diagnostics (imaging & ML methods)
 - Design & construction of XLZD ~3 m scale electrode prototype at KIT
- > Surface quality measurements & correlation with instabilities in liquid-xenon
- > Xenon properties in HV, tritium studies

Current Work

- > Study of different electrode concepts (wires/mesh)
 - Mechanical design
 - Electrical field, optical, mechanical simulations
 - Identification (ML) & treatment of defects
- > Electrode production, assembly & qualification at ~1.5 m scale
- > Setting up to do the above also on XLZD ~3 m scale

Multiple local test facilities: bHiVE, HiCUTIE, MOTION

Goals

- > Electrode design, production, treatment, coating & diagnostics (imaging & ML methods)
 - Design & construction of XLZD ~3 m scale electrode prototype at KIT
- > Surface quality measurements & correlation with instabilities in liquid-xenon
- > Xenon properties in HV, tritium studies

Current Work

- > Study of different electrode concepts (wires/mesh)
 - Mechanical design
 - Electrical field, optical, mechanical simulations
 - Identification (ML) & treatment of defects
- > Electrode production, assembly & qualification at ~1.5 m scale
- Setting up to do the above also on XLZD ~3 m scale

Check out the poster

bHiVE - bite-sized High Voltage setup for Electrodes

- > Study electron & photon emission from electrode samples
- > Form better understanding of electrode properties that cause emission
- > Explore emission mitigation techniques
 - Electrode coating Au, Cu (MPIK HD), Al/MgF₂ (U. Alabama)
 - SS treatment methods citric, nitric acid, etc...
- > Couple HV data, microscopy, camera imaging to simulations & theory

bHiVE chamber Camera Camera, Sample holder & GND plate

run, manunun Aanoteilchenphysik

Alexey Elykov

HICUTIE

Assess performance of full-scale electrodes before insertion into a detector

> Use localized high field in gaseous Ar to identify defect locations

HiCUTIE - High-voltage Coordinate Unit for Targeted Inspection of Electrodes

- Prototype ~1 m scale, then expand to ~3 m
 - Hardware & software R&D
 - Electrode on potential & grounded probe
 - ITEM x-y linear motion system
 - Camera & LED for imaging inspected locations
 - Dedicated control software
- Ongoing commissioning

1.6 m

PVC rina

1.6 m

Probe

Camera

Anna Götz

Alexey Elykov

Poster Anna Götz

Institut für Astroteilchenphysik

MOTION - Liquid-xenon TPC for HV Applications

- > 80 kg liquid-xenon TPC with up to -200 kV voltage biasing
 - Port access for diagnostics of HV components (feedthrough, electrodes, couplings)
- > Monitoring of systematics: effects of purity, surface, pressure...
- Surface quality vs. voltage breakdown in xenon
- SiPMs to monitor cathodic emission, single electron, etc...
- Camera for monitoring discharges
- > Studies with tritium:
 - Calibration & removal, permeation of tritium in SS

nner vessel

25 cm

Poster Yanina Biondi

Summary

XLZD (XENON-LZ-DARWIN) - New international collaboration

- > Aim to build & operate \geq 60 t liquid-xenon TPC
- Explore WIMP parameter space down to the "neutrino fog"
- > Search for $0v\beta\beta$ -decay
- Observe solar & SN neutrinos & more …

R&D Efforts Towards XLZD

- Large-scale demonstrators (U. Freiburg, U. Zurich)
- Test R&D setups:
 - HV feedthrough, electrode development & testing KIT
 - Xenon purity U. Münster
 - Photosensors U. Zurich
 - Background mitigation MPIK
 - ...& more...

Design Book - arxiv: 2410.17137 xlzd.org

Additional Materials & Backup

Xenoscope at the University of Zurich

Vertical demonstrator:

- Electron drift over 2.6 m ,~400 kg of xenon
- Custom HV
- Electron cloud diffusion
- Optical properties of Xe
- Purity monitor

TPC - commissioning

- > 173 shaping rings 16 cm \varnothing
- ➢ Top SiPM array
- > HV up to 50 kV
- Levelling system

Time [us]

KIT, Institut für Astroteilchenphysik

Pancake at the University of Freiburg

- * Test full-scale components & concepts
 - Test in: LXe, cold gXe, under HV
 - > **Probe**: sagging, e- emission, large-scale cooling
- 5 t stainless steel & double-walled cryostat
- Successfully commissioned
- Instrumented with PMTs & cameras
- * Tests of electrode performance

JINST 19 (2024) P05018

Background mitigation

- ⁸⁵Kr distillation goal of 0.1 ppt ^{nat}Kr Achieved <0.026 ppt
- ◆ ²²²Rn distillation goal of 0.1 µBq/kg Achieved ~0.8 µBq/kg
- U. Münster LowRAD (ERC AdG)
- Cu coating against radon emanation Electrochemical deposition of Cu
- Material screening:

Radio-pure materials with low Rn-emanation

Photosensors

Baseline Design with PMTs

- Established technology, low dark count rate (~0.02 Hz/mm²), high QE (30-40%)
- Radiopurity improvement on 3" PMTs
- UZH testing square 2" PMTs lower buoyancy & sub-ns rise time
- Characterisation of SPE response, dark counts, light emission, afterpulsing
- R&D & study of other photosensors...

