

 Isobel Kolbé, Anna McCoy, Farid Salazar, Yukari Yamauchi

Contents

1 Mission Statement 2

2 Talk Format 2

3 Speakers 2
3.1 Target speaker pool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
3.2 Process for choosing speakers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

3.2.1 Call for speakers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
3.2.2 Speaker application and nomination forms . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.2.3 Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.2.4 Invitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3.3 Diversity and inclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

4 Committee 5
4.1 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4.2 Joining the committee . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4.3 Hosting speakers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

5 Amending the charter 6

1

 LARGE NEUTRINO MASSES CONSISTENT WITH COSMOLOGY 
.& keV STERILE NEUTRINO DARK MATTER 
.FROM A DARK SECTOR

Cristina Benso, KIT

Based on [2410.23926 [hep-ph]] in collaboration with Thomas Schwetz and Drona Vatsyayan

100 keV 10 keV 1 keV



2

INTRODUCTION & MOTIVATIONS

MU Days 2024 - 12.12.2024, DESY Hamburgcristina.benso@kit.edu

mailto:cristina.benso@kit.edu


3

• Standard Model is great

INTRODUCTION & MOTIVATIONS

MU Days 2024 - 12.12.2024, DESY Hamburgcristina.benso@kit.edu

mailto:cristina.benso@kit.edu


4

• Standard Model is great but it does not explain (at least) two puzzles of Nature:  

INTRODUCTION & MOTIVATIONS

MU Days 2024 - 12.12.2024, DESY Hamburgcristina.benso@kit.edu

mailto:cristina.benso@kit.edu


5

• Standard Model is great but it does not explain (at least) two puzzles of Nature:  
- active neutrino masses          seesaw mechanism (3 heavy RH Majorana neutrinos ) 
- dark matter           sterile neutrino DM (  )

N
ψ

INTRODUCTION & MOTIVATIONS

MU Days 2024 - 12.12.2024, DESY Hamburgcristina.benso@kit.edu
* KATRIN Collaboration, [2406.13516 [nucl-ex]] ** I. Esteban et al, [2410.05380 [hep-ph]] 

mailto:cristina.benso@kit.edu


6

• Standard Model is great but it does not explain (at least) two puzzles of Nature:  
- active neutrino masses          seesaw mechanism (3 heavy RH Majorana neutrinos ) 
- dark matter           sterile neutrino DM (  )

N
ψ

INTRODUCTION & MOTIVATIONS

MU Days 2024 - 12.12.2024, DESY Hamburgcristina.benso@kit.edu
* KATRIN Collaboration, [2406.13516 [nucl-ex]] ** I. Esteban et al, [2410.05380 [hep-ph]] 

mailto:cristina.benso@kit.edu


7

• Standard Model is great but it does not explain (at least) two puzzles of Nature:  
- active neutrino masses          seesaw mechanism (3 heavy RH Majorana neutrinos ) 
- dark matter           sterile neutrino DM (  )

N
ψ

INTRODUCTION & MOTIVATIONS

MU Days 2024 - 12.12.2024, DESY Hamburgcristina.benso@kit.edu
* KATRIN Collaboration, [2406.13516 [nucl-ex]] ** I. Esteban et al, [2410.05380 [hep-ph]] 

mailto:cristina.benso@kit.edu


8

• Standard Model is great but it does not explain (at least) two puzzles of Nature:  
- active neutrino masses          seesaw mechanism (3 heavy RH Majorana neutrinos ) 
- dark matter           sterile neutrino DM (  )

N
ψ

INTRODUCTION & MOTIVATIONS

MU Days 2024 - 12.12.2024, DESY Hamburgcristina.benso@kit.edu
* KATRIN Collaboration, [2406.13516 [nucl-ex]] ** I. Esteban et al, [2410.05380 [hep-ph]] 

mailto:cristina.benso@kit.edu


9

• Standard Model is great but it does not explain (at least) two puzzles of Nature:  
- active neutrino masses          seesaw mechanism (3 heavy RH Majorana neutrinos ) 
- dark matter           sterile neutrino DM (  )

• Lab. experiments aim to measure directly the small value of active neutrino masses; 
 - KATRIN:  current upper limit  eV *, expected final reach  eV; 

 - Oscillation data:   eV, for normal (inverted) neutrino mass ordering. **
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Cosmological bounds on neutrino masses are established constraining  :   eV *

          if  changes, the upper bound on  can be relaxed. 

          At high temperatures,  are relativistic and  contributes to 

ρv Σ mν × ( n0
ν

56 cm−3 ) < 0.072

n0
ν Σ mν

ν ρv Neff =
8
7 ( 11

4 )
4/3

(
ρrad − ργ

ργ )

Definition:   neutral fermions, singlets under the SM symmetries

• if neutrinos are Majorana particles: 

Depending on their mass, they can be involved in :

✦ active neutrino masses generation 

✦ baryon asymmetry problem

✦ dark matter puzzle

.

νs | ν4 = cos θ νs + sin θ να

.
<latexit sha1_base64="HncpTJPb3viWUUX/e2zwmpkRX8k="></latexit>














Pontecorvo–Maki–Nakagawa–Sakata matrix
In particle physics, the Pontecorvo–Maki–Nakagawa–Sakata matrix (PMNS matrix), Maki–
Nakagawa–Sakata matrix (MNS matrix), lepton mixing matrix, or neutrino mixing matrix is a
unitary[a] mixing matrix which contains information on the mismatch of quantum states of neutrinos when
they propagate freely and when they take part in weak interactions. It is a model of neutrino oscillation.
This matrix was introduced in 1962 by Ziro Maki, Masami Nakagawa, and Shoichi Sakata,[1] to explain
the neutrino oscillations predicted by Bruno Pontecorvo.[2]

The PMNS matrix
Assumptions

Standard Model
Other models

Parameterization
Experimentally measured parameter values

See also
Notes
References

The Standard Model of particle physics contains three generations or "flavors" of neutrinos, , , and ,
each labeled with a subscript showing the charged lepton that it partners with in the charged-current weak
interaction. These three eigenstates of the weak interaction form a complete, orthonormal basis for the
Standard Model neutrino. Similarly, one can construct an eigenbasis out of three neutrino states of definite
mass, , , and , which diagonalize the neutrino's free-particle Hamiltonian. Observations of neutrino
oscillation established experimentally that for neutrinos, as for quarks, these two eigenbases are different –
they are 'rotated' relative to each other.

Consequently, each flavor eigenstate can be written as a combination of mass eigenstates, called a
"superposition", and vice versa. The PMNS matrix, with components  corresponding to the amplitude
of mass eigenstate  in terms of flavor  "e", "μ", "τ"; parameterizes the unitary
transformation between the two bases:

The vector on the left represents a generic neutrino expressed in the flavor-eigenstate basis, and on the right
is the PMNS matrix multiplied by a vector representing that same neutrino in the mass-eigenstate basis. A
neutrino of a given flavor  is thus a "mixed" state of neutrinos with distinct mass: If one could measure

Contents

The PMNS matrix

directly that neutrino's mass, it would be found to have mass  with probability .

The PMNS matrix for antineutrinos is identical to the matrix for neutrinos under CPT symmetry.

Due to the difficulties of detecting neutrinos, it is much more difficult to determine the individual
coefficients than in the equivalent matrix for the quarks (the CKM matrix).

In the Standard Model, the PMNS matrix is unitary. This implies that the sum of the squares of the values
in each row and in each column, which represent the probabilities of different possible events given the
same starting point, add up to 100%.

In the simplest case, the Standard Model posits three generations of neutrinos with Dirac mass that oscillate
between three neutrino mass eigenvalues, an assumption that is made when best fit values for its parameters
are calculated.

In other models the PMNS matrix is not necessarily unitary, and additional parameters are necessary to
describe all possible neutrino mixing parameters in other models of neutrino oscillation and mass
generation, such as the see-saw model, and in general, in the case of neutrinos that have Majorana mass
rather than Dirac mass.

There are also additional mass parameters and mixing angles in a simple extension of the PMNS matrix in
which there are more than three flavors of neutrinos, regardless of the character of neutrino mass. As of
July 2014, scientists studying neutrino oscillation are actively considering fits of the experimental neutrino
oscillation data to an extended PMNS matrix with a fourth, light "sterile" neutrino and four mass
eigenvalues, although the current experimental data tends to disfavor that possibility.[3][4][5]

In general, there are nine degrees of freedom in any unitary three by three matrix. However, in the case of
the PMNS matrix, five of those real parameters can be absorbed as phases of the lepton fields and thus the
PMNS matrix can be fully described by four free parameters.[6] The PMNS matrix is most commonly
parameterized by three mixing angles ( , , and ) and a single phase angle called  related to
charge-parity violations (i.e. differences in the rates of oscillation between two states with opposite starting
points which makes the order in time in which events take place necessary to predict their oscillation rates),
in which case the matrix can be written as:
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In the simplest case of two-neutrino mixing14 between να, νβ and ν1, ν2, there is only
one squared-mass difference ∆m ≡ ∆m2

21 ≡ m2
2 − m2

1 and the mixing matrix can be
parameterized15 in terms of one mixing angle ϑ,

U =

(
cos ϑ sin ϑ
− sin ϑ cos ϑ

)
. (3.11)

The resulting transition probability between different flavors can be written as

Pνα→νβ
(L) = sin2 2ϑ sin2

(
∆m2L

4E

)
. (3.12)

This expression is historically very important, because the data of neutrino oscillation
experiments have been always analyzed as a first approximation in the two-neutrino
mixing framework using Eq. (3.12). The two-neutrino transition probability can also be
written as

Pνα→νβ
(L) = sin2 2ϑ sin2

(

1.27

(
∆m2/eV2

)
(L/km)

(E/GeV)

)

, (3.13)

where we have used typical units of short-baseline accelerator experiments (see below).
The same numerical factor applies if L is expressed in meters and E in MeV, which are
typical units of short-baseline reactor experiments.

The transition probability in Eq. (3.13) is useful in order to understand the classifi-
cation of different types of neutrino experiments. Since neutrinos interact very weakly
with matter, the event rate in neutrino experiments is low and often at the limit of the
background. Therefore, flavor transitions are observable only if the transition probability
is not too low, which means that it is necessary that

∆m2L

4E
! 0.1 − 1 . (3.14)

Using this inequality we classify neutrino oscillation experiments according to the ratio
L/E which establishes the range of ∆m2 to which an experiment is sensitive:

Short-baseline (SBL) experiments. In these experiments L/E " 1 eV−2. Since the
source-detector distance in these experiment is not too large, the event rate is
relatively high and oscillations can be detected for ∆m2L/4E ! 0.1, leading a
sensitivity to ∆m2 ! 0.1 eV2. There are two types of SBL experiments: reactor ν̄e

disappearance experiments with L ∼ 10 m, E ∼ 1 MeV as, for example, Bugey [64];
accelerator νµ experiments with L " 1 km, E ! 1 GeV, as, for example, CDHS [71]
(νµ → νµ), CCFR [72] (νµ → νµ, νµ → νe and νe → ντ ), CHORUS [73] (νµ → ντ

and νe → ντ ), NOMAD [74] (νµ → ντ and νµ → νe), LSND [75] (ν̄µ → ν̄e and
νµ → νe), KARMEN [76] (ν̄µ → ν̄e).

Long-baseline (LBL) and atmospheric experiments. In these experiments L/E "
104 eV−2. Since the source-detector distance is large, these are low-statistics ex-
periments in which flavor transitions can be detected if ∆m2L/4E ! 1, giving a

14This is a limiting case of three-neutrino mixing obtained if two mixing angles are negligible.
15Here we neglect a possible Majorana phase, which does not have any effect on oscillations (see the

end of Section 3.2).
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.

ν4 = cos θ νs + sin θ να

.
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Cosmological bounds on neutrino masses are established constraining  :   eV *

          if  changes, the upper bound on  can be relaxed. 

          At high temperatures,  are relativistic and  contributes to 

the depletion of  must be compensated by production of new light or massless dark species . 
Our hypothesis:  are transformed into  (fermionc singlets). 
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✦ dark matter puzzle
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oscillation established experimentally that for neutrinos, as for quarks, these two eigenbases are different –
they are 'rotated' relative to each other.

Consequently, each flavor eigenstate can be written as a combination of mass eigenstates, called a
"superposition", and vice versa. The PMNS matrix, with components  corresponding to the amplitude
of mass eigenstate  in terms of flavor  "e", "μ", "τ"; parameterizes the unitary
transformation between the two bases:

The vector on the left represents a generic neutrino expressed in the flavor-eigenstate basis, and on the right
is the PMNS matrix multiplied by a vector representing that same neutrino in the mass-eigenstate basis. A
neutrino of a given flavor  is thus a "mixed" state of neutrinos with distinct mass: If one could measure
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directly that neutrino's mass, it would be found to have mass  with probability .

The PMNS matrix for antineutrinos is identical to the matrix for neutrinos under CPT symmetry.

Due to the difficulties of detecting neutrinos, it is much more difficult to determine the individual
coefficients than in the equivalent matrix for the quarks (the CKM matrix).

In the Standard Model, the PMNS matrix is unitary. This implies that the sum of the squares of the values
in each row and in each column, which represent the probabilities of different possible events given the
same starting point, add up to 100%.

In the simplest case, the Standard Model posits three generations of neutrinos with Dirac mass that oscillate
between three neutrino mass eigenvalues, an assumption that is made when best fit values for its parameters
are calculated.

In other models the PMNS matrix is not necessarily unitary, and additional parameters are necessary to
describe all possible neutrino mixing parameters in other models of neutrino oscillation and mass
generation, such as the see-saw model, and in general, in the case of neutrinos that have Majorana mass
rather than Dirac mass.

There are also additional mass parameters and mixing angles in a simple extension of the PMNS matrix in
which there are more than three flavors of neutrinos, regardless of the character of neutrino mass. As of
July 2014, scientists studying neutrino oscillation are actively considering fits of the experimental neutrino
oscillation data to an extended PMNS matrix with a fourth, light "sterile" neutrino and four mass
eigenvalues, although the current experimental data tends to disfavor that possibility.[3][4][5]

In general, there are nine degrees of freedom in any unitary three by three matrix. However, in the case of
the PMNS matrix, five of those real parameters can be absorbed as phases of the lepton fields and thus the
PMNS matrix can be fully described by four free parameters.[6] The PMNS matrix is most commonly
parameterized by three mixing angles ( , , and ) and a single phase angle called  related to
charge-parity violations (i.e. differences in the rates of oscillation between two states with opposite starting
points which makes the order in time in which events take place necessary to predict their oscillation rates),
in which case the matrix can be written as:

Assumptions

Standard Model

Other models

Parameterization

directly that neutrino's mass, it would be found to have mass  with probability .

The PMNS matrix for antineutrinos is identical to the matrix for neutrinos under CPT symmetry.

Due to the difficulties of detecting neutrinos, it is much more difficult to determine the individual
coefficients than in the equivalent matrix for the quarks (the CKM matrix).
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describe all possible neutrino mixing parameters in other models of neutrino oscillation and mass
generation, such as the see-saw model, and in general, in the case of neutrinos that have Majorana mass
rather than Dirac mass.

There are also additional mass parameters and mixing angles in a simple extension of the PMNS matrix in
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charge-parity violations (i.e. differences in the rates of oscillation between two states with opposite starting
points which makes the order in time in which events take place necessary to predict their oscillation rates),
in which case the matrix can be written as:
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Pontecorvo–Maki–Nakagawa–Sakata matrix
In particle physics, the Pontecorvo–Maki–Nakagawa–Sakata matrix (PMNS matrix), Maki–
Nakagawa–Sakata matrix (MNS matrix), lepton mixing matrix, or neutrino mixing matrix is a
unitary[a] mixing matrix which contains information on the mismatch of quantum states of neutrinos when
they propagate freely and when they take part in weak interactions. It is a model of neutrino oscillation.
This matrix was introduced in 1962 by Ziro Maki, Masami Nakagawa, and Shoichi Sakata,[1] to explain
the neutrino oscillations predicted by Bruno Pontecorvo.[2]

The PMNS matrix
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The Standard Model of particle physics contains three generations or "flavors" of neutrinos, , , and ,
each labeled with a subscript showing the charged lepton that it partners with in the charged-current weak
interaction. These three eigenstates of the weak interaction form a complete, orthonormal basis for the
Standard Model neutrino. Similarly, one can construct an eigenbasis out of three neutrino states of definite
mass, , , and , which diagonalize the neutrino's free-particle Hamiltonian. Observations of neutrino
oscillation established experimentally that for neutrinos, as for quarks, these two eigenbases are different –
they are 'rotated' relative to each other.

Consequently, each flavor eigenstate can be written as a combination of mass eigenstates, called a
"superposition", and vice versa. The PMNS matrix, with components  corresponding to the amplitude
of mass eigenstate  in terms of flavor  "e", "μ", "τ"; parameterizes the unitary
transformation between the two bases:

The vector on the left represents a generic neutrino expressed in the flavor-eigenstate basis, and on the right
is the PMNS matrix multiplied by a vector representing that same neutrino in the mass-eigenstate basis. A
neutrino of a given flavor  is thus a "mixed" state of neutrinos with distinct mass: If one could measure
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In the simplest case of two-neutrino mixing14 between να, νβ and ν1, ν2, there is only
one squared-mass difference ∆m ≡ ∆m2

21 ≡ m2
2 − m2

1 and the mixing matrix can be
parameterized15 in terms of one mixing angle ϑ,

U =

(
cos ϑ sin ϑ
− sin ϑ cos ϑ

)
. (3.11)

The resulting transition probability between different flavors can be written as

Pνα→νβ
(L) = sin2 2ϑ sin2

(
∆m2L

4E

)
. (3.12)

This expression is historically very important, because the data of neutrino oscillation
experiments have been always analyzed as a first approximation in the two-neutrino
mixing framework using Eq. (3.12). The two-neutrino transition probability can also be
written as

Pνα→νβ
(L) = sin2 2ϑ sin2

(

1.27

(
∆m2/eV2

)
(L/km)

(E/GeV)

)

, (3.13)

where we have used typical units of short-baseline accelerator experiments (see below).
The same numerical factor applies if L is expressed in meters and E in MeV, which are
typical units of short-baseline reactor experiments.

The transition probability in Eq. (3.13) is useful in order to understand the classifi-
cation of different types of neutrino experiments. Since neutrinos interact very weakly
with matter, the event rate in neutrino experiments is low and often at the limit of the
background. Therefore, flavor transitions are observable only if the transition probability
is not too low, which means that it is necessary that

∆m2L

4E
! 0.1 − 1 . (3.14)

Using this inequality we classify neutrino oscillation experiments according to the ratio
L/E which establishes the range of ∆m2 to which an experiment is sensitive:

Short-baseline (SBL) experiments. In these experiments L/E " 1 eV−2. Since the
source-detector distance in these experiment is not too large, the event rate is
relatively high and oscillations can be detected for ∆m2L/4E ! 0.1, leading a
sensitivity to ∆m2 ! 0.1 eV2. There are two types of SBL experiments: reactor ν̄e

disappearance experiments with L ∼ 10 m, E ∼ 1 MeV as, for example, Bugey [64];
accelerator νµ experiments with L " 1 km, E ! 1 GeV, as, for example, CDHS [71]
(νµ → νµ), CCFR [72] (νµ → νµ, νµ → νe and νe → ντ ), CHORUS [73] (νµ → ντ

and νe → ντ ), NOMAD [74] (νµ → ντ and νµ → νe), LSND [75] (ν̄µ → ν̄e and
νµ → νe), KARMEN [76] (ν̄µ → ν̄e).

Long-baseline (LBL) and atmospheric experiments. In these experiments L/E "
104 eV−2. Since the source-detector distance is large, these are low-statistics ex-
periments in which flavor transitions can be detected if ∆m2L/4E ! 1, giving a

14This is a limiting case of three-neutrino mixing obtained if two mixing angles are negligible.
15Here we neglect a possible Majorana phase, which does not have any effect on oscillations (see the

end of Section 3.2).
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.

ν4 = cos θ νs + sin θ να

.
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RELAXATION OF COSMOLOGICAL BOUND ON NEUTRINO MASSES

MU Days 2024 - 12.12.2024, DESY Hamburgcristina.benso@kit.edu

Cosmological bounds on neutrino masses are established constraining  :   eV *

          if  changes, the upper bound on  can be relaxed. 

          At high temperatures,  are relativistic and  contributes to 

the depletion of  must be compensated by production of new light or massless dark species . 
Our hypothesis:  are transformed into  (fermionc singlets). 

BBN and CMB must not be perturbed

ρv Σ mν × ( n0
ν

56 cm−3 ) < 0.072

n0
ν Σ mν

ν ρv Neff =
8
7 ( 11

4 )
4/3

(
ρrad − ργ

ργ )
ν χ
ν χ

Definition:   neutral fermions, singlets under the SM symmetries

• if neutrinos are Majorana particles: 

Depending on their mass, they can be involved in :

✦ active neutrino masses generation 

✦ baryon asymmetry problem

✦ dark matter puzzle

.

νs | ν4 = cos θ νs + sin θ να

.
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Pontecorvo–Maki–Nakagawa–Sakata matrix
In particle physics, the Pontecorvo–Maki–Nakagawa–Sakata matrix (PMNS matrix), Maki–
Nakagawa–Sakata matrix (MNS matrix), lepton mixing matrix, or neutrino mixing matrix is a
unitary[a] mixing matrix which contains information on the mismatch of quantum states of neutrinos when
they propagate freely and when they take part in weak interactions. It is a model of neutrino oscillation.
This matrix was introduced in 1962 by Ziro Maki, Masami Nakagawa, and Shoichi Sakata,[1] to explain
the neutrino oscillations predicted by Bruno Pontecorvo.[2]

The PMNS matrix
Assumptions

Standard Model
Other models

Parameterization
Experimentally measured parameter values

See also
Notes
References

The Standard Model of particle physics contains three generations or "flavors" of neutrinos, , , and ,
each labeled with a subscript showing the charged lepton that it partners with in the charged-current weak
interaction. These three eigenstates of the weak interaction form a complete, orthonormal basis for the
Standard Model neutrino. Similarly, one can construct an eigenbasis out of three neutrino states of definite
mass, , , and , which diagonalize the neutrino's free-particle Hamiltonian. Observations of neutrino
oscillation established experimentally that for neutrinos, as for quarks, these two eigenbases are different –
they are 'rotated' relative to each other.

Consequently, each flavor eigenstate can be written as a combination of mass eigenstates, called a
"superposition", and vice versa. The PMNS matrix, with components  corresponding to the amplitude
of mass eigenstate  in terms of flavor  "e", "μ", "τ"; parameterizes the unitary
transformation between the two bases:

The vector on the left represents a generic neutrino expressed in the flavor-eigenstate basis, and on the right
is the PMNS matrix multiplied by a vector representing that same neutrino in the mass-eigenstate basis. A
neutrino of a given flavor  is thus a "mixed" state of neutrinos with distinct mass: If one could measure
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directly that neutrino's mass, it would be found to have mass  with probability .

The PMNS matrix for antineutrinos is identical to the matrix for neutrinos under CPT symmetry.

Due to the difficulties of detecting neutrinos, it is much more difficult to determine the individual
coefficients than in the equivalent matrix for the quarks (the CKM matrix).

In the Standard Model, the PMNS matrix is unitary. This implies that the sum of the squares of the values
in each row and in each column, which represent the probabilities of different possible events given the
same starting point, add up to 100%.

In the simplest case, the Standard Model posits three generations of neutrinos with Dirac mass that oscillate
between three neutrino mass eigenvalues, an assumption that is made when best fit values for its parameters
are calculated.

In other models the PMNS matrix is not necessarily unitary, and additional parameters are necessary to
describe all possible neutrino mixing parameters in other models of neutrino oscillation and mass
generation, such as the see-saw model, and in general, in the case of neutrinos that have Majorana mass
rather than Dirac mass.

There are also additional mass parameters and mixing angles in a simple extension of the PMNS matrix in
which there are more than three flavors of neutrinos, regardless of the character of neutrino mass. As of
July 2014, scientists studying neutrino oscillation are actively considering fits of the experimental neutrino
oscillation data to an extended PMNS matrix with a fourth, light "sterile" neutrino and four mass
eigenvalues, although the current experimental data tends to disfavor that possibility.[3][4][5]

In general, there are nine degrees of freedom in any unitary three by three matrix. However, in the case of
the PMNS matrix, five of those real parameters can be absorbed as phases of the lepton fields and thus the
PMNS matrix can be fully described by four free parameters.[6] The PMNS matrix is most commonly
parameterized by three mixing angles ( , , and ) and a single phase angle called  related to
charge-parity violations (i.e. differences in the rates of oscillation between two states with opposite starting
points which makes the order in time in which events take place necessary to predict their oscillation rates),
in which case the matrix can be written as:
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Other models

Parameterization

directly that neutrino's mass, it would be found to have mass  with probability .
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Due to the difficulties of detecting neutrinos, it is much more difficult to determine the individual
coefficients than in the equivalent matrix for the quarks (the CKM matrix).

In the Standard Model, the PMNS matrix is unitary. This implies that the sum of the squares of the values
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In the simplest case, the Standard Model posits three generations of neutrinos with Dirac mass that oscillate
between three neutrino mass eigenvalues, an assumption that is made when best fit values for its parameters
are calculated.

In other models the PMNS matrix is not necessarily unitary, and additional parameters are necessary to
describe all possible neutrino mixing parameters in other models of neutrino oscillation and mass
generation, such as the see-saw model, and in general, in the case of neutrinos that have Majorana mass
rather than Dirac mass.

There are also additional mass parameters and mixing angles in a simple extension of the PMNS matrix in
which there are more than three flavors of neutrinos, regardless of the character of neutrino mass. As of
July 2014, scientists studying neutrino oscillation are actively considering fits of the experimental neutrino
oscillation data to an extended PMNS matrix with a fourth, light "sterile" neutrino and four mass
eigenvalues, although the current experimental data tends to disfavor that possibility.[3][4][5]

In general, there are nine degrees of freedom in any unitary three by three matrix. However, in the case of
the PMNS matrix, five of those real parameters can be absorbed as phases of the lepton fields and thus the
PMNS matrix can be fully described by four free parameters.[6] The PMNS matrix is most commonly
parameterized by three mixing angles ( , , and ) and a single phase angle called  related to
charge-parity violations (i.e. differences in the rates of oscillation between two states with opposite starting
points which makes the order in time in which events take place necessary to predict their oscillation rates),
in which case the matrix can be written as:

Assumptions

Standard Model

Other models

Parameterization

Pontecorvo–Maki–Nakagawa–Sakata matrix
In particle physics, the Pontecorvo–Maki–Nakagawa–Sakata matrix (PMNS matrix), Maki–
Nakagawa–Sakata matrix (MNS matrix), lepton mixing matrix, or neutrino mixing matrix is a
unitary[a] mixing matrix which contains information on the mismatch of quantum states of neutrinos when
they propagate freely and when they take part in weak interactions. It is a model of neutrino oscillation.
This matrix was introduced in 1962 by Ziro Maki, Masami Nakagawa, and Shoichi Sakata,[1] to explain
the neutrino oscillations predicted by Bruno Pontecorvo.[2]

The PMNS matrix
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The Standard Model of particle physics contains three generations or "flavors" of neutrinos, , , and ,
each labeled with a subscript showing the charged lepton that it partners with in the charged-current weak
interaction. These three eigenstates of the weak interaction form a complete, orthonormal basis for the
Standard Model neutrino. Similarly, one can construct an eigenbasis out of three neutrino states of definite
mass, , , and , which diagonalize the neutrino's free-particle Hamiltonian. Observations of neutrino
oscillation established experimentally that for neutrinos, as for quarks, these two eigenbases are different –
they are 'rotated' relative to each other.

Consequently, each flavor eigenstate can be written as a combination of mass eigenstates, called a
"superposition", and vice versa. The PMNS matrix, with components  corresponding to the amplitude
of mass eigenstate  in terms of flavor  "e", "μ", "τ"; parameterizes the unitary
transformation between the two bases:

The vector on the left represents a generic neutrino expressed in the flavor-eigenstate basis, and on the right
is the PMNS matrix multiplied by a vector representing that same neutrino in the mass-eigenstate basis. A
neutrino of a given flavor  is thus a "mixed" state of neutrinos with distinct mass: If one could measure
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In the simplest case of two-neutrino mixing14 between να, νβ and ν1, ν2, there is only
one squared-mass difference ∆m ≡ ∆m2

21 ≡ m2
2 − m2

1 and the mixing matrix can be
parameterized15 in terms of one mixing angle ϑ,

U =

(
cos ϑ sin ϑ
− sin ϑ cos ϑ

)
. (3.11)

The resulting transition probability between different flavors can be written as

Pνα→νβ
(L) = sin2 2ϑ sin2

(
∆m2L

4E

)
. (3.12)

This expression is historically very important, because the data of neutrino oscillation
experiments have been always analyzed as a first approximation in the two-neutrino
mixing framework using Eq. (3.12). The two-neutrino transition probability can also be
written as

Pνα→νβ
(L) = sin2 2ϑ sin2

(

1.27

(
∆m2/eV2

)
(L/km)

(E/GeV)

)

, (3.13)

where we have used typical units of short-baseline accelerator experiments (see below).
The same numerical factor applies if L is expressed in meters and E in MeV, which are
typical units of short-baseline reactor experiments.

The transition probability in Eq. (3.13) is useful in order to understand the classifi-
cation of different types of neutrino experiments. Since neutrinos interact very weakly
with matter, the event rate in neutrino experiments is low and often at the limit of the
background. Therefore, flavor transitions are observable only if the transition probability
is not too low, which means that it is necessary that

∆m2L

4E
! 0.1 − 1 . (3.14)

Using this inequality we classify neutrino oscillation experiments according to the ratio
L/E which establishes the range of ∆m2 to which an experiment is sensitive:

Short-baseline (SBL) experiments. In these experiments L/E " 1 eV−2. Since the
source-detector distance in these experiment is not too large, the event rate is
relatively high and oscillations can be detected for ∆m2L/4E ! 0.1, leading a
sensitivity to ∆m2 ! 0.1 eV2. There are two types of SBL experiments: reactor ν̄e

disappearance experiments with L ∼ 10 m, E ∼ 1 MeV as, for example, Bugey [64];
accelerator νµ experiments with L " 1 km, E ! 1 GeV, as, for example, CDHS [71]
(νµ → νµ), CCFR [72] (νµ → νµ, νµ → νe and νe → ντ ), CHORUS [73] (νµ → ντ

and νe → ντ ), NOMAD [74] (νµ → ντ and νµ → νe), LSND [75] (ν̄µ → ν̄e and
νµ → νe), KARMEN [76] (ν̄µ → ν̄e).

Long-baseline (LBL) and atmospheric experiments. In these experiments L/E "
104 eV−2. Since the source-detector distance is large, these are low-statistics ex-
periments in which flavor transitions can be detected if ∆m2L/4E ! 1, giving a

14This is a limiting case of three-neutrino mixing obtained if two mixing angles are negligible.
15Here we neglect a possible Majorana phase, which does not have any effect on oscillations (see the

end of Section 3.2).
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Definition:   neutral fermions, singlets under the SM symmetries

• if neutrinos are Majorana particles: 

Depending on their mass, they can be involved in :

✦ active neutrino masses generation 

✦ baryon asymmetry problem

✦ dark matter puzzle

.

νs | ν4 = cos θ νs + sin θ να

.
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Pontecorvo–Maki–Nakagawa–Sakata matrix
In particle physics, the Pontecorvo–Maki–Nakagawa–Sakata matrix (PMNS matrix), Maki–
Nakagawa–Sakata matrix (MNS matrix), lepton mixing matrix, or neutrino mixing matrix is a
unitary[a] mixing matrix which contains information on the mismatch of quantum states of neutrinos when
they propagate freely and when they take part in weak interactions. It is a model of neutrino oscillation.
This matrix was introduced in 1962 by Ziro Maki, Masami Nakagawa, and Shoichi Sakata,[1] to explain
the neutrino oscillations predicted by Bruno Pontecorvo.[2]

The PMNS matrix
Assumptions

Standard Model
Other models

Parameterization
Experimentally measured parameter values

See also
Notes
References

The Standard Model of particle physics contains three generations or "flavors" of neutrinos, , , and ,
each labeled with a subscript showing the charged lepton that it partners with in the charged-current weak
interaction. These three eigenstates of the weak interaction form a complete, orthonormal basis for the
Standard Model neutrino. Similarly, one can construct an eigenbasis out of three neutrino states of definite
mass, , , and , which diagonalize the neutrino's free-particle Hamiltonian. Observations of neutrino
oscillation established experimentally that for neutrinos, as for quarks, these two eigenbases are different –
they are 'rotated' relative to each other.

Consequently, each flavor eigenstate can be written as a combination of mass eigenstates, called a
"superposition", and vice versa. The PMNS matrix, with components  corresponding to the amplitude
of mass eigenstate  in terms of flavor  "e", "μ", "τ"; parameterizes the unitary
transformation between the two bases:

The vector on the left represents a generic neutrino expressed in the flavor-eigenstate basis, and on the right
is the PMNS matrix multiplied by a vector representing that same neutrino in the mass-eigenstate basis. A
neutrino of a given flavor  is thus a "mixed" state of neutrinos with distinct mass: If one could measure
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The PMNS matrix

directly that neutrino's mass, it would be found to have mass  with probability .

The PMNS matrix for antineutrinos is identical to the matrix for neutrinos under CPT symmetry.

Due to the difficulties of detecting neutrinos, it is much more difficult to determine the individual
coefficients than in the equivalent matrix for the quarks (the CKM matrix).

In the Standard Model, the PMNS matrix is unitary. This implies that the sum of the squares of the values
in each row and in each column, which represent the probabilities of different possible events given the
same starting point, add up to 100%.

In the simplest case, the Standard Model posits three generations of neutrinos with Dirac mass that oscillate
between three neutrino mass eigenvalues, an assumption that is made when best fit values for its parameters
are calculated.

In other models the PMNS matrix is not necessarily unitary, and additional parameters are necessary to
describe all possible neutrino mixing parameters in other models of neutrino oscillation and mass
generation, such as the see-saw model, and in general, in the case of neutrinos that have Majorana mass
rather than Dirac mass.

There are also additional mass parameters and mixing angles in a simple extension of the PMNS matrix in
which there are more than three flavors of neutrinos, regardless of the character of neutrino mass. As of
July 2014, scientists studying neutrino oscillation are actively considering fits of the experimental neutrino
oscillation data to an extended PMNS matrix with a fourth, light "sterile" neutrino and four mass
eigenvalues, although the current experimental data tends to disfavor that possibility.[3][4][5]

In general, there are nine degrees of freedom in any unitary three by three matrix. However, in the case of
the PMNS matrix, five of those real parameters can be absorbed as phases of the lepton fields and thus the
PMNS matrix can be fully described by four free parameters.[6] The PMNS matrix is most commonly
parameterized by three mixing angles ( , , and ) and a single phase angle called  related to
charge-parity violations (i.e. differences in the rates of oscillation between two states with opposite starting
points which makes the order in time in which events take place necessary to predict their oscillation rates),
in which case the matrix can be written as:
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In the simplest case of two-neutrino mixing14 between να, νβ and ν1, ν2, there is only
one squared-mass difference ∆m ≡ ∆m2

21 ≡ m2
2 − m2

1 and the mixing matrix can be
parameterized15 in terms of one mixing angle ϑ,

U =

(
cos ϑ sin ϑ
− sin ϑ cos ϑ

)
. (3.11)

The resulting transition probability between different flavors can be written as

Pνα→νβ
(L) = sin2 2ϑ sin2

(
∆m2L

4E

)
. (3.12)

This expression is historically very important, because the data of neutrino oscillation
experiments have been always analyzed as a first approximation in the two-neutrino
mixing framework using Eq. (3.12). The two-neutrino transition probability can also be
written as

Pνα→νβ
(L) = sin2 2ϑ sin2

(

1.27

(
∆m2/eV2

)
(L/km)

(E/GeV)

)

, (3.13)

where we have used typical units of short-baseline accelerator experiments (see below).
The same numerical factor applies if L is expressed in meters and E in MeV, which are
typical units of short-baseline reactor experiments.

The transition probability in Eq. (3.13) is useful in order to understand the classifi-
cation of different types of neutrino experiments. Since neutrinos interact very weakly
with matter, the event rate in neutrino experiments is low and often at the limit of the
background. Therefore, flavor transitions are observable only if the transition probability
is not too low, which means that it is necessary that

∆m2L

4E
! 0.1 − 1 . (3.14)

Using this inequality we classify neutrino oscillation experiments according to the ratio
L/E which establishes the range of ∆m2 to which an experiment is sensitive:

Short-baseline (SBL) experiments. In these experiments L/E " 1 eV−2. Since the
source-detector distance in these experiment is not too large, the event rate is
relatively high and oscillations can be detected for ∆m2L/4E ! 0.1, leading a
sensitivity to ∆m2 ! 0.1 eV2. There are two types of SBL experiments: reactor ν̄e

disappearance experiments with L ∼ 10 m, E ∼ 1 MeV as, for example, Bugey [64];
accelerator νµ experiments with L " 1 km, E ! 1 GeV, as, for example, CDHS [71]
(νµ → νµ), CCFR [72] (νµ → νµ, νµ → νe and νe → ντ ), CHORUS [73] (νµ → ντ

and νe → ντ ), NOMAD [74] (νµ → ντ and νµ → νe), LSND [75] (ν̄µ → ν̄e and
νµ → νe), KARMEN [76] (ν̄µ → ν̄e).

Long-baseline (LBL) and atmospheric experiments. In these experiments L/E "
104 eV−2. Since the source-detector distance is large, these are low-statistics ex-
periments in which flavor transitions can be detected if ∆m2L/4E ! 1, giving a

14This is a limiting case of three-neutrino mixing obtained if two mixing angles are negligible.
15Here we neglect a possible Majorana phase, which does not have any effect on oscillations (see the

end of Section 3.2).
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ν4 = cos θ νs + sin θ να
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RELAXATION OF COSMOLOGICAL BOUND ON NEUTRINO MASSES

MU Days 2024 - 12.12.2024, DESY Hamburgcristina.benso@kit.edu

Cosmological bounds on neutrino masses are established constraining  :   eV *

          if  changes, the upper bound on  can be relaxed. 

          At high temperatures,  are relativistic and  contributes to 

the depletion of  must be compensated by production of new light or massless dark species . 
Our hypothesis:  are transformed into  (fermionc singlets). 

BBN and CMB must not be perturbed

the transformation of  into  must take place in the specific temperature range  .

ρv Σ mν × ( n0
ν

56 cm−3 ) < 0.072

n0
ν Σ mν

ν ρv Neff =
8
7 ( 11

4 )
4/3

(
ρrad − ργ

ργ )
ν χ
ν χ

ν χ 100 keV ≳ T ≳ 10 eV

Definition:   neutral fermions, singlets under the SM symmetries

• if neutrinos are Majorana particles: 

Depending on their mass, they can be involved in :

✦ active neutrino masses generation 

✦ baryon asymmetry problem

✦ dark matter puzzle

.

νs | ν4 = cos θ νs + sin θ να

.
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Pontecorvo–Maki–Nakagawa–Sakata matrix
In particle physics, the Pontecorvo–Maki–Nakagawa–Sakata matrix (PMNS matrix), Maki–
Nakagawa–Sakata matrix (MNS matrix), lepton mixing matrix, or neutrino mixing matrix is a
unitary[a] mixing matrix which contains information on the mismatch of quantum states of neutrinos when
they propagate freely and when they take part in weak interactions. It is a model of neutrino oscillation.
This matrix was introduced in 1962 by Ziro Maki, Masami Nakagawa, and Shoichi Sakata,[1] to explain
the neutrino oscillations predicted by Bruno Pontecorvo.[2]

The PMNS matrix
Assumptions

Standard Model
Other models

Parameterization
Experimentally measured parameter values
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Notes
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The Standard Model of particle physics contains three generations or "flavors" of neutrinos, , , and ,
each labeled with a subscript showing the charged lepton that it partners with in the charged-current weak
interaction. These three eigenstates of the weak interaction form a complete, orthonormal basis for the
Standard Model neutrino. Similarly, one can construct an eigenbasis out of three neutrino states of definite
mass, , , and , which diagonalize the neutrino's free-particle Hamiltonian. Observations of neutrino
oscillation established experimentally that for neutrinos, as for quarks, these two eigenbases are different –
they are 'rotated' relative to each other.

Consequently, each flavor eigenstate can be written as a combination of mass eigenstates, called a
"superposition", and vice versa. The PMNS matrix, with components  corresponding to the amplitude
of mass eigenstate  in terms of flavor  "e", "μ", "τ"; parameterizes the unitary
transformation between the two bases:

The vector on the left represents a generic neutrino expressed in the flavor-eigenstate basis, and on the right
is the PMNS matrix multiplied by a vector representing that same neutrino in the mass-eigenstate basis. A
neutrino of a given flavor  is thus a "mixed" state of neutrinos with distinct mass: If one could measure

Contents

The PMNS matrix

directly that neutrino's mass, it would be found to have mass  with probability .

The PMNS matrix for antineutrinos is identical to the matrix for neutrinos under CPT symmetry.

Due to the difficulties of detecting neutrinos, it is much more difficult to determine the individual
coefficients than in the equivalent matrix for the quarks (the CKM matrix).

In the Standard Model, the PMNS matrix is unitary. This implies that the sum of the squares of the values
in each row and in each column, which represent the probabilities of different possible events given the
same starting point, add up to 100%.

In the simplest case, the Standard Model posits three generations of neutrinos with Dirac mass that oscillate
between three neutrino mass eigenvalues, an assumption that is made when best fit values for its parameters
are calculated.

In other models the PMNS matrix is not necessarily unitary, and additional parameters are necessary to
describe all possible neutrino mixing parameters in other models of neutrino oscillation and mass
generation, such as the see-saw model, and in general, in the case of neutrinos that have Majorana mass
rather than Dirac mass.

There are also additional mass parameters and mixing angles in a simple extension of the PMNS matrix in
which there are more than three flavors of neutrinos, regardless of the character of neutrino mass. As of
July 2014, scientists studying neutrino oscillation are actively considering fits of the experimental neutrino
oscillation data to an extended PMNS matrix with a fourth, light "sterile" neutrino and four mass
eigenvalues, although the current experimental data tends to disfavor that possibility.[3][4][5]

In general, there are nine degrees of freedom in any unitary three by three matrix. However, in the case of
the PMNS matrix, five of those real parameters can be absorbed as phases of the lepton fields and thus the
PMNS matrix can be fully described by four free parameters.[6] The PMNS matrix is most commonly
parameterized by three mixing angles ( , , and ) and a single phase angle called  related to
charge-parity violations (i.e. differences in the rates of oscillation between two states with opposite starting
points which makes the order in time in which events take place necessary to predict their oscillation rates),
in which case the matrix can be written as:
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interaction. These three eigenstates of the weak interaction form a complete, orthonormal basis for the
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mass, , , and , which diagonalize the neutrino's free-particle Hamiltonian. Observations of neutrino
oscillation established experimentally that for neutrinos, as for quarks, these two eigenbases are different –
they are 'rotated' relative to each other.

Consequently, each flavor eigenstate can be written as a combination of mass eigenstates, called a
"superposition", and vice versa. The PMNS matrix, with components  corresponding to the amplitude
of mass eigenstate  in terms of flavor  "e", "μ", "τ"; parameterizes the unitary
transformation between the two bases:

The vector on the left represents a generic neutrino expressed in the flavor-eigenstate basis, and on the right
is the PMNS matrix multiplied by a vector representing that same neutrino in the mass-eigenstate basis. A
neutrino of a given flavor  is thus a "mixed" state of neutrinos with distinct mass: If one could measure
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In the simplest case of two-neutrino mixing14 between να, νβ and ν1, ν2, there is only
one squared-mass difference ∆m ≡ ∆m2

21 ≡ m2
2 − m2

1 and the mixing matrix can be
parameterized15 in terms of one mixing angle ϑ,

U =

(
cos ϑ sin ϑ
− sin ϑ cos ϑ

)
. (3.11)

The resulting transition probability between different flavors can be written as

Pνα→νβ
(L) = sin2 2ϑ sin2

(
∆m2L

4E

)
. (3.12)

This expression is historically very important, because the data of neutrino oscillation
experiments have been always analyzed as a first approximation in the two-neutrino
mixing framework using Eq. (3.12). The two-neutrino transition probability can also be
written as

Pνα→νβ
(L) = sin2 2ϑ sin2

(

1.27

(
∆m2/eV2

)
(L/km)

(E/GeV)

)

, (3.13)

where we have used typical units of short-baseline accelerator experiments (see below).
The same numerical factor applies if L is expressed in meters and E in MeV, which are
typical units of short-baseline reactor experiments.

The transition probability in Eq. (3.13) is useful in order to understand the classifi-
cation of different types of neutrino experiments. Since neutrinos interact very weakly
with matter, the event rate in neutrino experiments is low and often at the limit of the
background. Therefore, flavor transitions are observable only if the transition probability
is not too low, which means that it is necessary that

∆m2L

4E
! 0.1 − 1 . (3.14)

Using this inequality we classify neutrino oscillation experiments according to the ratio
L/E which establishes the range of ∆m2 to which an experiment is sensitive:

Short-baseline (SBL) experiments. In these experiments L/E " 1 eV−2. Since the
source-detector distance in these experiment is not too large, the event rate is
relatively high and oscillations can be detected for ∆m2L/4E ! 0.1, leading a
sensitivity to ∆m2 ! 0.1 eV2. There are two types of SBL experiments: reactor ν̄e

disappearance experiments with L ∼ 10 m, E ∼ 1 MeV as, for example, Bugey [64];
accelerator νµ experiments with L " 1 km, E ! 1 GeV, as, for example, CDHS [71]
(νµ → νµ), CCFR [72] (νµ → νµ, νµ → νe and νe → ντ ), CHORUS [73] (νµ → ντ

and νe → ντ ), NOMAD [74] (νµ → ντ and νµ → νe), LSND [75] (ν̄µ → ν̄e and
νµ → νe), KARMEN [76] (ν̄µ → ν̄e).

Long-baseline (LBL) and atmospheric experiments. In these experiments L/E "
104 eV−2. Since the source-detector distance is large, these are low-statistics ex-
periments in which flavor transitions can be detected if ∆m2L/4E ! 1, giving a

14This is a limiting case of three-neutrino mixing obtained if two mixing angles are negligible.
15Here we neglect a possible Majorana phase, which does not have any effect on oscillations (see the

end of Section 3.2).
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1

Definition:   neutral fermions, singlets under the SM symmetries

• if neutrinos are Majorana particles: 

Depending on their mass, they can be involved in :

✦ active neutrino masses generation 

✦ baryon asymmetry problem

✦ dark matter puzzle

.

νs | ν4 = cos θ νs + sin θ να

.
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Pontecorvo–Maki–Nakagawa–Sakata matrix
In particle physics, the Pontecorvo–Maki–Nakagawa–Sakata matrix (PMNS matrix), Maki–
Nakagawa–Sakata matrix (MNS matrix), lepton mixing matrix, or neutrino mixing matrix is a
unitary[a] mixing matrix which contains information on the mismatch of quantum states of neutrinos when
they propagate freely and when they take part in weak interactions. It is a model of neutrino oscillation.
This matrix was introduced in 1962 by Ziro Maki, Masami Nakagawa, and Shoichi Sakata,[1] to explain
the neutrino oscillations predicted by Bruno Pontecorvo.[2]

The PMNS matrix
Assumptions

Standard Model
Other models

Parameterization
Experimentally measured parameter values

See also
Notes
References

The Standard Model of particle physics contains three generations or "flavors" of neutrinos, , , and ,
each labeled with a subscript showing the charged lepton that it partners with in the charged-current weak
interaction. These three eigenstates of the weak interaction form a complete, orthonormal basis for the
Standard Model neutrino. Similarly, one can construct an eigenbasis out of three neutrino states of definite
mass, , , and , which diagonalize the neutrino's free-particle Hamiltonian. Observations of neutrino
oscillation established experimentally that for neutrinos, as for quarks, these two eigenbases are different –
they are 'rotated' relative to each other.

Consequently, each flavor eigenstate can be written as a combination of mass eigenstates, called a
"superposition", and vice versa. The PMNS matrix, with components  corresponding to the amplitude
of mass eigenstate  in terms of flavor  "e", "μ", "τ"; parameterizes the unitary
transformation between the two bases:

The vector on the left represents a generic neutrino expressed in the flavor-eigenstate basis, and on the right
is the PMNS matrix multiplied by a vector representing that same neutrino in the mass-eigenstate basis. A
neutrino of a given flavor  is thus a "mixed" state of neutrinos with distinct mass: If one could measure
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The PMNS matrix

directly that neutrino's mass, it would be found to have mass  with probability .

The PMNS matrix for antineutrinos is identical to the matrix for neutrinos under CPT symmetry.

Due to the difficulties of detecting neutrinos, it is much more difficult to determine the individual
coefficients than in the equivalent matrix for the quarks (the CKM matrix).

In the Standard Model, the PMNS matrix is unitary. This implies that the sum of the squares of the values
in each row and in each column, which represent the probabilities of different possible events given the
same starting point, add up to 100%.

In the simplest case, the Standard Model posits three generations of neutrinos with Dirac mass that oscillate
between three neutrino mass eigenvalues, an assumption that is made when best fit values for its parameters
are calculated.

In other models the PMNS matrix is not necessarily unitary, and additional parameters are necessary to
describe all possible neutrino mixing parameters in other models of neutrino oscillation and mass
generation, such as the see-saw model, and in general, in the case of neutrinos that have Majorana mass
rather than Dirac mass.

There are also additional mass parameters and mixing angles in a simple extension of the PMNS matrix in
which there are more than three flavors of neutrinos, regardless of the character of neutrino mass. As of
July 2014, scientists studying neutrino oscillation are actively considering fits of the experimental neutrino
oscillation data to an extended PMNS matrix with a fourth, light "sterile" neutrino and four mass
eigenvalues, although the current experimental data tends to disfavor that possibility.[3][4][5]

In general, there are nine degrees of freedom in any unitary three by three matrix. However, in the case of
the PMNS matrix, five of those real parameters can be absorbed as phases of the lepton fields and thus the
PMNS matrix can be fully described by four free parameters.[6] The PMNS matrix is most commonly
parameterized by three mixing angles ( , , and ) and a single phase angle called  related to
charge-parity violations (i.e. differences in the rates of oscillation between two states with opposite starting
points which makes the order in time in which events take place necessary to predict their oscillation rates),
in which case the matrix can be written as:
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Nakagawa–Sakata matrix (MNS matrix), lepton mixing matrix, or neutrino mixing matrix is a
unitary[a] mixing matrix which contains information on the mismatch of quantum states of neutrinos when
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the neutrino oscillations predicted by Bruno Pontecorvo.[2]
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The Standard Model of particle physics contains three generations or "flavors" of neutrinos, , , and ,
each labeled with a subscript showing the charged lepton that it partners with in the charged-current weak
interaction. These three eigenstates of the weak interaction form a complete, orthonormal basis for the
Standard Model neutrino. Similarly, one can construct an eigenbasis out of three neutrino states of definite
mass, , , and , which diagonalize the neutrino's free-particle Hamiltonian. Observations of neutrino
oscillation established experimentally that for neutrinos, as for quarks, these two eigenbases are different –
they are 'rotated' relative to each other.

Consequently, each flavor eigenstate can be written as a combination of mass eigenstates, called a
"superposition", and vice versa. The PMNS matrix, with components  corresponding to the amplitude
of mass eigenstate  in terms of flavor  "e", "μ", "τ"; parameterizes the unitary
transformation between the two bases:

The vector on the left represents a generic neutrino expressed in the flavor-eigenstate basis, and on the right
is the PMNS matrix multiplied by a vector representing that same neutrino in the mass-eigenstate basis. A
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In the simplest case of two-neutrino mixing14 between να, νβ and ν1, ν2, there is only
one squared-mass difference ∆m ≡ ∆m2

21 ≡ m2
2 − m2

1 and the mixing matrix can be
parameterized15 in terms of one mixing angle ϑ,

U =

(
cos ϑ sin ϑ
− sin ϑ cos ϑ

)
. (3.11)

The resulting transition probability between different flavors can be written as

Pνα→νβ
(L) = sin2 2ϑ sin2

(
∆m2L

4E

)
. (3.12)

This expression is historically very important, because the data of neutrino oscillation
experiments have been always analyzed as a first approximation in the two-neutrino
mixing framework using Eq. (3.12). The two-neutrino transition probability can also be
written as

Pνα→νβ
(L) = sin2 2ϑ sin2

(

1.27

(
∆m2/eV2

)
(L/km)

(E/GeV)

)

, (3.13)

where we have used typical units of short-baseline accelerator experiments (see below).
The same numerical factor applies if L is expressed in meters and E in MeV, which are
typical units of short-baseline reactor experiments.

The transition probability in Eq. (3.13) is useful in order to understand the classifi-
cation of different types of neutrino experiments. Since neutrinos interact very weakly
with matter, the event rate in neutrino experiments is low and often at the limit of the
background. Therefore, flavor transitions are observable only if the transition probability
is not too low, which means that it is necessary that

∆m2L

4E
! 0.1 − 1 . (3.14)

Using this inequality we classify neutrino oscillation experiments according to the ratio
L/E which establishes the range of ∆m2 to which an experiment is sensitive:

Short-baseline (SBL) experiments. In these experiments L/E " 1 eV−2. Since the
source-detector distance in these experiment is not too large, the event rate is
relatively high and oscillations can be detected for ∆m2L/4E ! 0.1, leading a
sensitivity to ∆m2 ! 0.1 eV2. There are two types of SBL experiments: reactor ν̄e

disappearance experiments with L ∼ 10 m, E ∼ 1 MeV as, for example, Bugey [64];
accelerator νµ experiments with L " 1 km, E ! 1 GeV, as, for example, CDHS [71]
(νµ → νµ), CCFR [72] (νµ → νµ, νµ → νe and νe → ντ ), CHORUS [73] (νµ → ντ

and νe → ντ ), NOMAD [74] (νµ → ντ and νµ → νe), LSND [75] (ν̄µ → ν̄e and
νµ → νe), KARMEN [76] (ν̄µ → ν̄e).

Long-baseline (LBL) and atmospheric experiments. In these experiments L/E "
104 eV−2. Since the source-detector distance is large, these are low-statistics ex-
periments in which flavor transitions can be detected if ∆m2L/4E ! 1, giving a

14This is a limiting case of three-neutrino mixing obtained if two mixing angles are negligible.
15Here we neglect a possible Majorana phase, which does not have any effect on oscillations (see the

end of Section 3.2).

16

.
[

να
νs

]
=

[
cos θ sin θ
− sin θ cos θ

] [
ν1
ν4

]
.

<latexit sha1_base64="pk1MCMTwkqWOUgsL0CFvoIfUUOU="></latexit>

.
[

να
νs

]
=

[
cos θ sin θ
− sin θ cos θ

] [
ν1
ν4

]
.

<latexit sha1_base64="pk1MCMTwkqWOUgsL0CFvoIfUUOU="></latexit>

.

ν4 = cos θ νs + sin θ να

.
<latexit sha1_base64="UtPAlZwS0ZgTD2+1AtEf+7nlB98="></latexit>

INTRODUCTION - STERILE NEUTRINOS

8 12th December 2023 Cristina Benso, cristina.benso@kit.edu
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Wishlist:
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Wishlist:
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    massless vector-like dark fields  to deplete  after their decoupling from the thermal bath

   one DM candidate 

They can all be accommodated in a dark sector that is mainly an extension of the SM neutrino sector,   
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Wishlist:

   3 heavy RH Majorana neutrinos  to give mass to  via seesaw mechanism

    massless vector-like dark fields  to deplete  after their decoupling from the thermal bath

   one DM candidate 

They can all be accommodated in a dark sector that is mainly an extension of the SM neutrino sector,   
complemented with  
 - a new gauge boson  that mediates the interactions between ,  and  
 - a new singlet scalar , whose VEV breaks the new  and gives mass to  and to dark neutrinos  

Bonus: 

    one lighter copy  of the heavy RH Majorana neutrinos ,  
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New symmetries:

•  gauge symmetry U(1)′ 
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New symmetries:

•  gauge symmetry 

•  symmetry, under which all fields but  and  are even          forbids vector-like mass terms
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ℤ2 ψR χR
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New symmetries:

•  gauge symmetry 

•  symmetry, under which all fields but  and  are even          forbids vector-like mass terms

New interactions:

• Yukawa interactions 

U(1)′ 

ℤ2 ψR χR

−ℒint = YνN̄lLH̃† + YχN̄χLϕ + Yψ N̄ψLϕ + Y′ νN̄′ lLH̃† + Y′ χN̄′ χLϕ + Y′ ψ N̄′ ψLϕ +
1
2

MN̄Nc +
1
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M′ N̄′ N′ 
c + H . c .
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New symmetries:

•  gauge symmetry 

•  symmetry, under which all fields but  and  are even          forbids vector-like mass terms

New interactions:

• Yukawa interactions 

• Gauge interactions: 

          with   

U(1)′ 

ℤ2 ψR χR

−ℒint = YνN̄lLH̃† + YχN̄χLϕ + Yψ N̄ψLϕ + Y′ νN̄′ lLH̃† + Y′ χN̄′ χLϕ + Y′ ψ N̄′ ψLϕ +
1
2

MN̄Nc +
1
2

M′ N̄′ N′ 
c + H . c .

ℒ = ∑
f

Qf gZ′ μ f̄γμ f f = {χL, χR, ψL, ψR}
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New symmetries:

•  gauge symmetry 

•  symmetry, under which all fields but  and  are even          forbids vector-like mass terms

New interactions:

• Yukawa interactions 

• Gauge interactions: 

          with   

Parameters of interest:        

U(1)′ 

ℤ2 ψR χR

−ℒint = YνN̄lLH̃† + YχN̄χLϕ + Yψ N̄ψLϕ + Y′ νN̄′ lLH̃† + Y′ χN̄′ χLϕ + Y′ ψ N̄′ ψLϕ +
1
2

MN̄Nc +
1
2

M′ N̄′ N′ 
c + H . c .

ℒ = ∑
f

Qf gZ′ μ f̄γμ f f = {χL, χR, ψL, ψR}

{mψ, mZ′ 
, vϕ, θνχ, Nχ}
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• At early times, DM produced from decay of  and  (little abundance)N N′ 
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• At early times, DM produced from decay of  and  (little abundance)

• Once the population of  becomes relevant, DM mainly produced from  decays, or , and   
(reaches equilibrium abundance thermalising in the dark sector)

N N′ 

Z′ Z′ Z′ Z′ ↔ ψψ χχ ↔ ψψ
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• At early times, DM produced from decay of  and  (little abundance)

• Once the population of  becomes relevant, DM mainly produced from  decays, or , and   
(reaches equilibrium abundance thermalising in the dark sector)

• At late times, DM freezes-out via annihilations   (possibly avoiding DM overproduction)

N N′ 

Z′ Z′ Z′ Z′ ↔ ψψ χχ ↔ ψψ

ψψ → χχ

DARK MATTER PRODUCTION
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100 keV 10 keV 1 keV

mailto:cristina.benso@kit.edu


                                                                 Suppression of cosmological bound on :

is the factor  by which the limit on  is relaxed in 

 eV

Deviation from standard value of effective number of neutrino species : 

 

         

Σ mν

( nν

nSM
ν ) < 1 Σ mν

Σ mν ( nν

nSM
ν ) ( n0

ν

56cm−3 ) < 0.12

ΔNeff =
8
7 ( 11

4 )
4/3 ρdark

ργ
=

gν + g̃
2 ( Tdark

TSM
ν )

4

=

=
gν

2

(gν + g̃ + gψ + 8
7 gZ′ 

)1/3

(gν + g̃)1/3

43

PREDICTIONS

MU Days 2024 - 12.12.2024, DESY Hamburgcristina.benso@kit.edu

CB, T. Schwetz, D. Vatsyayan, [2410.23926 [hep-ph]]

mailto:cristina.benso@kit.edu


                                                                 Suppression of cosmological bound on :

is the factor  by which the limit on  is relaxed in 

 eV

Deviation from standard value of effective number of neutrino species : 

 

         

Σ mν

( nν

nSM
ν ) < 1 Σ mν

Σ mν ( nν

nSM
ν ) ( n0

ν

56cm−3 ) < 0.12

ΔNeff =
8
7 ( 11

4 )
4/3 ρdark

ργ
=

gν + g̃
2 ( Tdark

TSM
ν )

4

=

=
gν

2

(gν + g̃ + gψ + 8
7 gZ′ 

)1/3

(gν + g̃)1/3

44

PREDICTIONS

MU Days 2024 - 12.12.2024, DESY Hamburgcristina.benso@kit.edu

CB, T. Schwetz, D. Vatsyayan, [2410.23926 [hep-ph]]

mailto:cristina.benso@kit.edu


45

• We considered an extension of the SM neutrino sector, by addition of  
 - 4 copies of heavy RH neutrinos,  and , that participate in two separate seesaw mechanisms, 
 - 1 sterile neutrino DM candidate , 
 -  families of massless dark fermions ,  

 - 1 gauge boson  relative to a new  symmetry + 1 scalar singlet  that breaks the new symmetry.

N N′ 

ψ
Nχ χ

Z′ U(1) ϕ
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• We considered an extension of the SM neutrino sector, by addition of  
 - 4 copies of heavy RH neutrinos,  and , that participate in two separate seesaw mechanisms, 
 - 1 sterile neutrino DM candidate , 
 -  families of massless dark fermions ,  

 - 1 gauge boson  relative to a new  symmetry + 1 scalar singlet  that breaks the new symmetry.

• The  species of  fermions are produced at the expenses of active neutrinos after their decoupling from the 

SM bath, depleting  and subsequently noticeably relaxing the cosmological bound on .

N N′ 
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Nχ χ

Z′ U(1) ϕ

Nχ χ
n0

ν Σ mν
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• We considered an extension of the SM neutrino sector, by addition of  
 - 4 copies of heavy RH neutrinos,  and , that participate in two separate seesaw mechanisms, 
 - 1 sterile neutrino DM candidate , 
 -  families of massless dark fermions ,  

 - 1 gauge boson  relative to a new  symmetry + 1 scalar singlet  that breaks the new symmetry.

• The  species of  fermions are produced at the expenses of active neutrinos after their decoupling from the 

SM bath, depleting  and subsequently noticeably relaxing the cosmological bound on .

• The DM candidate  is produced in the correct abundance via freeze-out after thermalisation of the dark sector 
that is efficiently populated via interactions with active neutrinos in the interval of time within BBN and 
recombination.

N N′ 

ψ
Nχ χ

Z′ U(1) ϕ

Nχ χ
n0

ν Σ mν

ψ
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• We considered an extension of the SM neutrino sector, by addition of  
 - 4 copies of heavy RH neutrinos,  and , that participate in two separate seesaw mechanisms, 
 - 1 sterile neutrino DM candidate , 
 -  families of massless dark fermions ,  

 - 1 gauge boson  relative to a new  symmetry + 1 scalar singlet  that breaks the new symmetry.

• The  species of  fermions are produced at the expenses of active neutrinos after their decoupling from the 

SM bath, depleting  and subsequently noticeably relaxing the cosmological bound on .

• The DM candidate  is produced in the correct abundance via freeze-out after thermalisation of the dark sector 
that is efficiently populated via interactions with active neutrinos in the interval of time within BBN and 
recombination.

• Our model predicts a sizable deviation of  from the SM value at recombination, that may be observable by 
future CMB missions.

N N′ 

ψ
Nχ χ

Z′ U(1) ϕ

Nχ χ
n0

ν Σ mν

ψ

Neff
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CONSTRAINTS AND PREDICTIONS
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Remember: 
Relevant parameters for phenomenology

here 

Majority of constraints from  
requirement of equilibrium or non-equilibrium 
of various processes within the dark sector  
or involving also active neutrinos

{mψ, mZ′ 
, vϕ, θνχ, Nχ}

Nχ = 10
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CONSTRAINTS AND PREDICTIONS
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Thermalization: 
•  must thermalise with  in the interval 100 keV > T > 10 eV

condition:  ;
ν Z′ 

⟨Γ(Z′ ↔ νν)⟩ > H(T ∼ mZ′ 
/3)

BBN: 
•  should not be in thermal equilibrium with  at T > 0.7 MeV

       condition:  ;

• an existing abundance of  must not grow exponentially before BBN
  condition:  ;

ν Z′ 

⟨Γ(Z′ ↔ νν)⟩ < H(T = 0.7 MeV)
χ

⟨Γ(νχ ↔ χχ)⟩ < H(T = 0.7 MeV)

CMB: 
• CMB must not be distorted by  and  at 

       and ;

• CMB must not be perturbed by  free-streaming at 
  

νν ↔ Z′ Z′ ↔ χχ z < 105

⟨Γ(νν ↔ Z′ )⟩ < H(T = 23 eV) ⟨Γ(Z′ ↔ χχ)⟩ < H(T = 23 eV)
χ z < 105

⟨Γ(χχ ↔ χχ)⟩ < H(T = 23 eV)

  due to  oscillations: 

• Production of  via oscillations contributing to  must be small

    .

ΔNeff ν − χ
χ ΔNeff

ΔNeff ≃ 0.014
Nχ

∑
χ=1

|θeχ |2 + 0.8( |θμχ |2 + |θτχ |2 )
10−6 ( mν

0.1eV ) < 0.3

CB, T. Schwetz, D. Vatsyayan, [hep-ph[2410.23926]]
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• Standard Model is great but it does not explain (at least) two puzzles of Nature:  
- active neutrino masses          seesaw mechanism (3 heavy RH Majorana neutrinos ) 
- dark matter           sterile neutrino DM (  )

• Lab. experiments aim to measure directly the small value of active neutrino masses:  

N
ψ

INTRODUCTION & MOTIVATIONS

MU Days 2024 - 12.12.2024, DESY Hamburgcristina.benso@kit.edu
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• Standard Model is great but it does not explain (at least) two puzzles of Nature:  
- active neutrino masses          seesaw mechanism (3 heavy RH Majorana neutrinos ) 
- dark matter           sterile neutrino DM (  )

• Lab. experiments aim to measure directly the small value of active neutrino masses:  

 - KATRIN aims to measure the effective electron antineutrino mass  

   current upper limit  eV *, expected final reach  eV;  

N
ψ

mνe
= Σ |Uei |

2 m2
νi

mνe
< 0.45 mνe

= 0.2
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• Standard Model is great but it does not explain (at least) two puzzles of Nature:  
- active neutrino masses          seesaw mechanism (3 heavy RH Majorana neutrinos ) 
- dark matter           sterile neutrino DM (  )

• Lab. experiments aim to measure directly the small value of active neutrino masses:  

 - KATRIN aims to measure the effective electron antineutrino mass  

   current upper limit  eV *, expected final reach  eV;  
 - Oscillation data put a lower limit on the sum of neutrino masses:  
    eV for normal (inverted) neutrino mass ordering. **
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• Standard Model is great but it does not explain (at least) two puzzles of Nature:  
- active neutrino masses          seesaw mechanism (3 heavy RH Majorana neutrinos ) 
- dark matter           sterile neutrino DM (  )

• Lab. experiments aim to measure directly the small value of active neutrino masses:  

 - KATRIN aims to measure the effective electron antineutrino mass  

   current upper limit  eV *, expected final reach  eV;  
 - Oscillation data put a lower limit on the sum of neutrino masses:  
    eV for normal (inverted) neutrino mass ordering. **

• Cosmological observations set stringent constraints on the sum of active neutrino masses, assuming CDM: 
for example, DESI established an upper bound of  eV ***

N
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mνe
= Σ |Uei |

2 m2
νi

mνe
< 0.45 mνe

= 0.2

Σ mν > 0.058 (0.098)

Λ
Σ mν < 0.072
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• Standard Model is great but it does not explain (at least) two puzzles of Nature:  
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 - KATRIN aims to measure the effective electron antineutrino mass  

   current upper limit  eV *, expected final reach  eV;  
 - Oscillation data put a lower limit on the sum of neutrino masses:  
    eV for normal (inverted) neutrino mass ordering. **

• Cosmological observations set stringent constraints on the sum of active neutrino masses, assuming CDM: 
for example, DESI established an upper bound of  eV ***

• What if KATRIN measures something? How could laboratory results be reconciled with cosmological limits?
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• Standard Model is great but it does not explain (at least) two puzzles of Nature:  
- active neutrino masses          seesaw mechanism (3 heavy RH Majorana neutrinos ) 
- dark matter           sterile neutrino DM (  )

• Lab. experiments aim to measure directly the small value of active neutrino masses:  

 - KATRIN aims to measure the effective electron antineutrino mass  

   current upper limit  eV *, expected final reach  eV; 
 - Oscillation data put a lower limit on the sum of neutrino masses:  
    eV for normal (inverted) neutrino mass ordering. **

• Cosmological observations set stringent constraints on the sum of active neutrino masses, assuming CDM: 
for example, DESI established an upper bound of  eV ***

• What if KATRIN measures something? How could laboratory results be reconciled with cosmological limits?

• Is it possible that the same dark sector that makes laboratory measurement compatible with cosmological limits 
provides also a viable dark matter candidate? 
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