Laser Systems

Work Packages:

P3 : Pump-probe laser systemsS2: Seed Laser SystemP4: Pump-probe laser deliveryS3: Seed Laser Beamline

Tino Lang, on behalf of WPs P3,P4,S2,S3,A1 FLASH2020+ Progress Review Meeting, Oct. 18, 2024 A1: Photoinjector Lasers and Beamline (and Laser Heater Laser)

WP A1: Photoinjector Lasers, Beamline and Laser Heater

NEPAL was developed as <u>Next generation Photocathode Laser</u>

Status: NEPAL is commissioned at all three facilities (FLASH, PITZ, EuXFEL) in basic version

NEPAL:

- ✓ Common laser platform across several facilities
 - Common spares, operation procedures
- ✓ Fiber-laser front-end: alignment-free, low maintenance
- \checkmark Remote control, ample diagnostics

NEPAL to-do: advanced feature development

• Two laser pulses in same or close RF bucket

Done! (demonstrated at EuXFEL)

Same RF

bucket

770 ps

separation

 Variation of charge along the bunch train using a single NEPAL laser

R&D version: works

currently developing production software. goal: can be used by non-expert (BKR operator)

- Variation of pulse duration
- Advanced shaping, e.g. flat-top

R&D phase ongoing ErUM-data project: OPAL-FEL very promising results

TRISHA (laser heater laser) Status / TODOs

Used for some tests (even user experiments) but not fully commissioned

pulse duration

• Autocorrelation measurement pending (equipment there, staff missing)

 \rightarrow We know that the pulse duration is shorter than the specified value in the FPRD. Is this sufficient?

Beam transport beam stabilization system

- hardware complete, basic version works
- TEM company currently finishing GUI software
 → currently running at R&D system (EuXFEL)
 → needs to be tested and verified on actual system

• beam size control in modulator

- FPRD requires change beam waist size by factor of ~ 5x at LH modulator, in practice factor is limited to about 2x (due to alignment sensitivity)
- todo: re-evaluate requirements. If 2x is not sufficient a design change is required
- pulse energy control (different heating power for FLASH1 and FLASH2)
 - Under development (same software as electron bunch charge variation in NEPAL
- beamline coupling OS0 → LH Undulator
 - not optimal (periscope too coarse, hysteresis)

 improvements required

WP A1 \rightarrow operation (outside FLASH2020+ project)

Currently no staff for photocathode / laser heater laser operation. Situation needs to change for FLASH starting up after shutdown.

WP S2: Seed Laser System

Introduction . Seed laser system

Seeding laser specification for two color tunable EEHG x-ray FEL seeding

FLASH burst timing structure: Allows for high peak power but laser will nether reach thermal equilibrium

Laser System.

Overview

- Commercial pump laser
- Seed 1: Third harmonic generation
- Seed 2: Optical parametric amplifier (OPA) and cascaded UV generation
- Mode-matching and pre pulse compression before transport to the modulators

Laser System. Seed 1

Progress

- Beam stabilization and pulse picking AOM fully operational / read for burst-flattening
- Pulse energy in specs, good beam quality (exact. specs under investigation)
- Long-term crystal degradation currently under investigation (not yet conclusive)

Next steps

- Installation of mode-matching, beam and pulse diagnostic
- Installation of vacuum chambers for beam transport

 TAMC532 TD.xml
 FLASH.LASER/FSLACPUSLASH1.TAMC532DMA/SLASH1/CH2...
 X

 2400
 X

 2000
 X

 1800
 X

 1800

Laser System. Seed 2

Progress

- OPCPA fully operational and in specs
- Excellent stability and long-term performance
- Detailed technical-design of Seed 2 UV conversion ready

Next steps

- Installation UV conversion setup
- Installation of vacuum chambers for beam transport
- Installation of beam diagnostics and mode-matching for beam transport

WP S3: Seed Laser Transport

| FLASH2020+ progress review - Lasers | Tino Lang, 18.10.2024

Status – Beam transport

- Beam Transport Optics
 several review meetings (Sept/ Oct. 2024)
 → design frozen
 - \rightarrow UV coatings ordered, damage tests in Dec. 2024
- - \rightarrow expect to freeze design end of next week
 - \rightarrow drill holes / mount base plates in November

Diagnostics

Diagnostics in laser lab

- \rightarrow conceptual design finished,
- \rightarrow currently working on detailed design
- \rightarrow ordering components

Diagnostics extraction / tunnel

 \rightarrow conceptual design finished

expect to start detailed design end of year

Synchronization / Timing to Electron Bunch

WP T5 (LbSync)

Coarse Timeline....

		2024								2025													2026
		May	June	July	Aug	Sept	Oct	Nov	Dec	Jan	Feb	Mar	r A	pr	Мау	June	July	Aug	Sept	Oct	Nov	Dec	Jan
FLASH1		operation	FLASH Shutdown startup seeding commissioning													operation							
FLASH2		operation		FLASH Shutdown startup operation																			
WP	Seed1	Lasor ropair			Seed 1 development				damaga	set-up optics		tests,				support seeding commissioning							
S2	Seed2				Seed 2 development		ent	chambers	s damage	in vacuum			beam delivery to beamline				advanced controls						
WP				ontion de	eian		ordering	laser lab	10313	dia	agnostics		bemline	(optics	beamlin	e + diag						
S3		opues design				ordening	drilling e	xtraction	tion design & orderin		g i	installation installation co		commis	ssioning	oning							

- Till end of the year:
 - Seed laser ready for beamline installation (initial reduce feature set)
 - Conclusive study about long-term performance of Seed1 and Seed2 (damage tests)
 - Installation the vacuum components in the laser lab
 - Drilling and installation of beamline mounting in the extraction
- Till next year Aug.:
 - Installation diagnostic beamline in-coupling in the laser lab
 - Beamline installation including optics and commissioning
- Till end of next year
 - Seeding commissioning
 - Implementing advanced laser controls (extend the laser feature set)

WP P3: Pump-probe laser systems

WP P4: Pump-probe laser delivery

FLASH2020+ laser delivery concepts

Delivering beams simultaneously to two instruments! Concurrent pump-probe experiment and preparation for the next experiment (applicable to both FLASH1 and FLASH2 FEL's).

A-L. Viotti, S. Alisauskas, M. Seidel, A. Tajalli, B. Manschwetus, H. Cankaya, K. Jurkus, V. Sinkus, I. Hartl, Review of Scientific Instruments, 2023, 94: p 023002. DESY. | FLASH2020+ progress review - Lasers | Tino Lang, 18.10.2024 Page 18

FLASH Pump-Probe Laser Upgrade (Fit-to-Budget Proposal)

Realization of pump-probe lasers under tight budget constraints

Beamline	Fundamental	Harmonics	MIR	UV/VIS
BL1-3 & FL11	0.5 mJ (200kHz), <50 fs	> 10µJ (200kHz) in UV-Vis, <100 fs		\mathbf{X}
PG1	50 μJ, 1.03μm, 60	5 μJ, VIS, (1MHz) <0.5 μJ, UV		
PG2	fs, 1MHz,	(1MHz)	0.8 μμ (1MHz).	Tunable 8 µJ
FL23 FL24	2 mJ (100kHz), <50 fs	> 10µJ (200kHz) in UV-Vis, <100 fs	λ=2-5 μm <150 fs	(200kHz), 0.8 µJ (1M/dz),
	210 JJ (1N dz),	8 μJ (1MHz) VIS,	Burst	λ=200-500 nm
FL26	λ=203cnm <50 fs	0.8 μJ (1MHz), UV		Burst

- FLASH1: PG1/2 keep interims laser (PIGLET)
- FLASH2: Hybrid Operation
 - FL24 & FL26: Existing 800 nm OPCPA at 100 kHz and harmonics
 - FL23 (New beamline): 1 µm technology at 100 kHz, 1 mJ at 1 µm and harmonics (2nd, 3rd and 4th) at target
- FLASH1: 1 µm operation for FL11:

•

- FL11 (New beamline): 1 μm technology at 200 kHz, 0.5 mJ at 1 μm and harmonics (2nd, 3rd and 4th) at target
- Budget is available since June 2024 for minimum version
 - currently starting to setup-up the laser (detailed planning on-going)

Conclusions

• WP A1:

Photocathode laser NEPAL: commissioned – developing advanced features Laser heater laser TRISHA: set-up tested (limited controls) needs to be finalized ISSUE: No operations staff

- WP S2/S3 Set-up ongoing, on target but timeline critical
- WP P3/P4

Received funding for fit-to-budget proposal

- \rightarrow starting developing FLASH1 pump-probe laser DALGA
- → keep FLASH1 PG laser (PIGLET) and FLASH2 pump-probe laser (ULGAN-F2) as is.

Thank you

Ingmar Hartl (WPS3) Ayhan Tajalli (P3) Hüseyin Cankaya (P4) Sebastian Schultz (P5)

Areeb Ahmed, Oender Akcaalan, Skirmantas Alisauskas, Nelvin Blanken, Andreas Bremer, Frank Brinker, Anne-Laure Calendron, Ye Chen, Giovanni Cirmi, Massimo de, Matthias Felber, Christopher Gerth, James Good, Uwe Große-Wortmann, Arne Grünhagen, Marc Guetg, Nhat-Phi Hoang, Denis Ilia, Yujiao Jiang, Mehdi Kazemi, Tomasz Kozak, Nick Kschuev, Thorsten Lamb, Changxiu Li, Chen Li, Christoph Mahnke, Frederik Mey, Christian Mohr, Harsha Panuganti, Dirk Pieper, Federico Pressacco, Hamid Rashtabadi, Maike Roehlin, Sarper Salman, Matthias Schacht, Martin Schäfer, Lucas Schaper, Sebastian Schulz, Maximilian Schütte, David Schwickert, Marcus Seidel, Angad Swiderski, Peter Talkovski, Hamed Tavakol, Henrik Tünnermann, Caterina Vidoli, Anne-Lise Vittoli, Lutz Winkelmann, Jiaan Zheng, Falco Zummack, et al.

Realization: MPC for FLASH2 Pump-Probe laser

Commercial system: cost-effective & less complexity with German safety Regulations (less gas volume) $\rightarrow n_2$ Photonics

Installed in Sep. 2023 & Debugged until Jan. 2024

Input: 3.5 mJ ,100 kHz, 1030 nm, 1 ps

Output: FTL < 60 fs, Transmission >90%

FL23/MOD2.3: First Experiment

Spectral Encoding

<u>Chirped pump-probe laser pulse:</u> ($\lambda = 1030$ nm, $\Delta \lambda = 45$ nm@ -10 dB, $\tau_{TL} = 70$ fs (FWHM), $\tau_P = 2$ -4ps (FWHM))

Change of transmitted laser spectrum

