From Telescopes to Colliders: Probing Axion-Like Particles

Yan Luo

December 2, 2024

Introduction

Current status of ALP detection

Yan Luo

C. O'Hare. https://cajohare.github.io/AxionLimits/

2

Introduction

Ultralight ALP search strategy C. O'Hare. https://cajohare.github.io/AxionLimits/

the main search strategy: axion-photon conversion

$$\mathscr{L}_{a\gamma} = \frac{1}{2} \partial_{\mu} a \partial^{\mu} a - \frac{1}{2} m_a^2 a^2 + \frac{1}{4} g_{a\gamma\gamma} a F_{\mu\nu} \tilde{F}^{\mu\nu}$$

Searches for heavier ALP

collider searches, beam dump searches

beam dump: high luminosity, can probe smaller coupling

Searching for Ultralight Dark Matter Conversion in Solar Corona using LOFAR Data [arXiv: 2301.03622]

 Investigation of the concurrent effects of ALP-photon and [arXiv: 2304.05435]

ALP-electron couplings in Collider and Beam Dump Searches

Resonant Conversion

$$\mathscr{L}_{a\gamma} = \frac{1}{2} \partial_{\mu} a \partial^{\mu} a - \frac{1}{2} m_a^2 a^2 - g_{a\gamma\gamma} a \mathbf{B_0} \cdot \mathbf{E}$$

photon effective mass in plasma

$$\omega_p = \left(\frac{4\pi\alpha n_e}{m_e}\right)^{1/2} = \left(\frac{n_e}{7.3 \times 10^8 \text{ cm}^{-3}}\right)^{1/2} \mu \text{eV}$$

when $\omega_p \approx m_a$, axions can resonantly convert into photons

• Our neighbor: the Sun

axion DM resonantly converts to radio-frequency EM waves in the solar corona corresponds to $m_a \sim 10^{-7} {\rm eV}$

Yan Luo

• Solar model

van Haarlem et al. 1305.3550

LOFAR: Low Frequency Array telescope High-sensitivity interferometer mainly in Netherland, stations solar observation radio frequency range: LBA: 10 – 80 MHz HBA: 110 – 240 MHz

Yan Luo

K. Gert et al. *Experimental Astronomy*, 56(2), pp.687-714

Coupled equation of motion

$$\begin{bmatrix} \frac{\partial^2}{\partial t^2} - \frac{\partial^2}{\partial r^2} + \begin{pmatrix} \omega_p^2 & -g_{a\gamma\gamma} | \mathbf{B}_T | \omega \\ -g_{a\gamma\gamma} | \mathbf{B}_T | \omega & m_a^2 \end{pmatrix} \begin{bmatrix} A_{//}(r,t) \\ a(r,t) \end{bmatrix} = 0$$

Conversion Probability

solved perturbatively

$$P_{a \to \gamma} = \left| \int_{r_0}^r dr' \frac{-\epsilon m_a^2}{2k_r} e^{i \int_{r_0}^{r'} dr'' \frac{1}{2k_r} \left[\omega_p(r'')^2 - m_a^2 \right]} \right|^2$$

by saddle point approximation

$$P_{a \to \gamma}(v_{rc}) = \pi \frac{g_{a\gamma\gamma}^2 \left| \mathbf{B}_T \right|^2}{m_a} v_{rc}^{-1} \left| \frac{\partial \ln \omega_p^2(r)}{\partial r} \right|_{r=r_c}^{-1}$$

Yan Luo

Conversion Probability

treat it as classical wave WKB approximation to 1st order PDEs $A(r,t) = \tilde{A}(r)\exp(-i\omega t + ik_r r)$ $\partial_t^2 - \partial_r^2 = -\omega^2 - \partial_r^2 \approx -2k_r(k_r + i\partial_r) - m_a^2 - k_T^2$

Radiation power

considering gravitational focusing

$$\frac{d\mathscr{P}}{d\Omega} = \int d\mathbf{v}_0 f_{\rm DM}(\mathbf{v}_0) P_{A' \to \gamma}(v_0) \rho_{\rm DM} v(r_c) r_c^2$$

$$v(r_c) = \sqrt{v_0^2 + 2G_N M_\odot/r_c}$$

Spectral flux density

$$S_{\rm sig} = \frac{1}{\mathscr{B}} \frac{1}{d^2} \frac{d\mathscr{P}}{d\Omega} P_{\rm sur}(f)\beta$$

Smearing

naively speaking, the direction of the outgoing photon from plasma is determined by the rule of refraction

$$\frac{n(r_c)}{n(r)} = \frac{\sin \theta(r)}{\sin \theta(r_c)} \qquad \qquad n(r) = \frac{k}{\omega} = \sqrt{1 - \frac{1}{\omega}}$$

at the position of resonance: $n(r_c) \sim v \sim 10^{-3}$

however, considering the scattering in the inhomogenous plasma, the outgoing angular distribution will be broadened: smearing effect

field of view
$$\sim 10^{-3}$$

Yan Luo

Propagation in Solar Plasma

 $\beta(f)$

bandwidth $\mathscr{B} = 97$ kHz $P_{\rm sur}(f), \beta(f)$ are the suppression factors due to propagation effect

Absorption

mainly through inverse bremsstrahlung, depends on the path

 $P_{\rm sur}(f)$

 θ quickly goes to 0

MC ray-tracing simulation

Applying the ray-tracing numerical code from P. Kontar et al. 2019 to calculate these suppression factors based on the Fokker-Planck equation: describing the evolution of phase-space distribution $N(\mathbf{r}, \mathbf{k}, t)$ of photons

Propagation in Solar Plasma

FWHM =
$$\eta \times \frac{\lambda}{D} \sim 10^{-3}$$
 rad $\eta = 1.02, D \sim 3.$

decreasing smearing factor mainly comes from decreasing FOV for higher frequency

10

Data Analysis

 $g_{a\gamma\gamma} \, [\text{GeV}^{-1}] \times (\rho_{a}/\rho_{\text{DM}})^{0.5}$

magnetic field profile: dipole-like magnetic field, but large fluctuation

 $|\mathbf{B}_T| \sim 1 \text{ Gauss at } 1.05 R_{\odot}$ Z. Yang et al. 2008.03136 $r_c \sim 2.18 - 1.12 R_{\odot}$ for 30 - 80 MHz following R^{-3} decreasing

better than the constraints from Light-Shining-through-a-Wall experiments but does not exceed the CAST or other astrophysical bounds

Results

Large magnetic field uncertainty, overshadow the uncertainty of data.

Average over 20 frequency bins.

Dark Photon Case

Yan Luo

$$\mathscr{L}_{A'\gamma} = -\frac{1}{4} F'_{\mu\nu} F'^{\mu\nu} + \frac{1}{2} m_{A'}^2 A'_{\mu} A'^{\mu} - \frac{1}{2} \epsilon F_{\mu\nu} \left[\frac{\partial^2}{\partial t^2} - \frac{\partial^2}{\partial r^2} + \begin{pmatrix} \omega_p^2 & -\epsilon m_{A'}^2 \\ -\epsilon m_{A'}^2 & m_{A'}^2 \end{pmatrix} \right] \begin{pmatrix} A(r,t) \\ A'(r,t) \end{pmatrix} =$$

 $m_{A'}$: DPDM mass ϵ : kinetic mixing parameter

$$P_{A' \to \gamma}(v_{rc}) = \frac{2}{3} \times \pi \epsilon^2 m_{A'} v_{rc}^{-1} \left| \frac{\partial \ln \omega_p^2(r)}{\partial r} \right|_{r=r_c}^{-1}$$

the upper limit on ϵ is about 10^{-13} in the frequency range 30-80 MHz

about one order of magnitude better than the existing CMB constraint

complementary to other searches for DPDM with higher frequency, such as the Dark E-field experiment

Yan Luo

Dark Photon Case

Searching for Ultralight Dark Matter Conversion in Solar Corona using LOFAR Data [arXiv: 2301.03622]

 Investigation of the concurrent effects of ALP-photon and [arXiv: 2304.05435]

ALP-electron couplings in Collider and Beam Dump Searches

Introduction

• ALP Searches

- previous study: seperately consider the ALP interactions with fermions and gauge bosons
- concurrence of ALP couplings naturally arises \bullet from UV models, and loop corrections
- We investigate the concurrence effect of ALP- γ \bullet and ALP-*e* couplings in e^-e^+ colliders and beam dump experiments

M. Bauer et al. 1708.00443

Belle II Collaboration. 2007.13071

Simplified Model

• Effective Lagrangian

$$\mathscr{L}_{ALP} = \frac{1}{2} \partial_{\mu} a \partial^{\mu} a - \frac{1}{2} m_a^2 a^2 + \frac{1}{2}$$

• Decay

$$\Gamma_{a \to e\bar{e}} = \frac{(g_{a\bar{e}e}^{\text{eff}})^2 m_e^2 m_a}{8\pi} \left(1 - \frac{4m_e^2}{m_a^2}\right)^{\frac{1}{2}}$$

$$\frac{\text{BR}(a \to \gamma \gamma)}{\text{BR}(a \to e\bar{e})} \approx \frac{(g_{a\gamma\gamma}^{\text{eff}})^2 m_a^2}{8(g_{a\bar{e}e}^{\text{eff}})^2 m_e^2}$$

Yan Luo

 $\frac{1}{5}g_{aee}^{\text{eff}}\partial_{\mu}a\bar{e}\gamma^{\mu}\gamma_{5}e - \frac{1}{4}g_{a\gamma\gamma}^{\text{eff}}aF_{\mu\nu}\tilde{F}^{\mu\nu}$

$$\Gamma_{a \to \gamma \gamma} = \frac{(g_{a \gamma \gamma}^{\text{eff}})^2 m_a^3}{64\pi}$$

Favor for diphoton at Ø GeV, but dielectron could be comparable at lower mass (beam dump).

KSVZ-like model

Introduce a global $U(1)_{PQ}$ symmetry, and a heavy vector-like Q + complex singlet Φ

$$\mathcal{L} \supset |\partial^{\mu} \Phi|^{2} + i\bar{Q}D_{\mu}\gamma^{\mu}Q$$
$$-(y\bar{Q}_{L}Q_{R}\Phi + h.c.) - V(\Phi)$$

After symmetry breaking

$$\mathcal{L} \supset -m_{\mathcal{Q}} \overline{\mathcal{Q}}_L \mathcal{Q}_R e^{i\frac{a}{v_a}} + \mathrm{h.c.}$$

After chiral rotation

$$\delta \mathscr{L} = Y^2 \frac{\alpha_{\rm EM}}{4\pi} \frac{a}{v_a} F \tilde{F}$$

Yan Luo

Models

	Q_L	Q_R	Φ
$U(1)_Y$	Y	Y	0
$U(1)_{PQ}$	+1	-1	+2

Loop contribution

M. Bauer et al. 1708.00443

$$g_{a\bar{e}e}^{\text{eff}} = g_{a\bar{e}e}^{0} + \frac{3\alpha_{\text{QED}}}{4\pi} g_{a\gamma\gamma}^{\text{eff}} \left[\ln\left(\frac{f_a^2}{m_e^2}\right) + g\left(\tau_e\right) \right]$$
$$g(\tau_e) = -\frac{1}{6} \left(\ln\left(\frac{m_a^2}{m_e^2}\right) - i\pi \right)^2 + \frac{2}{3} + \mathcal{O}\left(\frac{m_e^2}{m_a^2}\right) - m_a^2 \right]$$

DFSZ-like model

Introduce a global $U(1)_{PO}$ symmetry, and 2HDM Φ_i + complex singlet S $SU(2)_Y \times U(1)_Y \times U(1)_{PO} \rightarrow U(1)_{EM}$ + two pseudoscalar G

the Yukawa terms

$$\mathscr{L} \supset -\bar{L}_L Y_d H_1 e_R + \text{h.c.} = -ic_e \frac{a}{f_a} \bar{e} m_e \gamma_5 e$$

After chiral rotation, due to axial anomaly

$$\mathscr{L} \supset \frac{c_e}{2} \frac{\partial_\mu a}{f_a} \bar{e} \gamma^\mu \gamma_5 e - \frac{e^2}{16\pi^2} \frac{a}{f_a} F_{\mu\nu} \tilde{F}^{\mu\nu}$$

Models Interpretation

KSVZ-like favors for ALP-photon coupling, while DFSZ-like favors for ALP-lepton/electron coupling

Collider and Beam dump Experiments

• For $m_a \sim 0.1 - 10$ GeV, we focus on two electron collider experiments

$$(e^+ + e^- \rightarrow a + \gamma \text{ follows } a \rightarrow e^+ e^- / \gamma \gamma)$$

Babar (Dark photon search) limits g_{aee}^{eff} , two electron + one photon

Belle-II limits $g_{a\nu\nu}^{\text{eff}}$, from three photon final state

• For $m_a \sim \text{MeV}$ - GeV, NA64 and E137 beam dump experiments are investigated

 $(e + \gamma \rightarrow e + a)$

NA64 and E137 beam dump experiments,

both two experiments have constrained g_{aee}^{eff} and $g_{a\gamma\gamma}^{eff}$

- The concurrence effects of two couplings have a greater impact on electron beam dump searches.

Babar and Belle-II Results Reinterpret

- - BR \downarrow when the other coupling is large (survived region relaxed)

Yan Luo

Horizontal(Belle-II) and vertical(BaBar) dashed lines are existing bounds (left bottom region is survived)

Babar and Belle-II Results Reinterpret

E137 and NA64 Results Reinterpret

Production:

Improved Weizsäcker-Williams (IWW) approximation:

the number of detectable ALP:

$$N_a \approx \frac{N_e X}{M_{target}} \int_{E_{min}}^{E_0} dE \int_{x_{min}}^{x_{max}} dx \int_0^T dt I_e(E_0, E, t) \frac{d\sigma}{dx} e^{-\frac{L_{sh}}{l_a}} (1 - e^{-\frac{L_{dec}}{l_a}}) \qquad l_a = \frac{E_a}{m_a} \frac{1}{\Gamma_a}$$

Yan Luo

David McKeen et al. 1609.06781

$$\frac{\sqrt{E^2 x^2 - m_a^2}}{E} \chi \int d\tilde{u} \frac{\mathscr{A}_{2 \to 2}}{\tilde{u}^2} \frac{1 - x}{x}$$

reduce phase space integral $(2 \rightarrow 3 \Rightarrow 2 \rightarrow 2)$

 $x = E_a/E_0$ fraction of energy effective flux of photon:

$$\chi = \int_{t_{\min}}^{m_a^2 + m_e^2} \frac{t - t_{\min}}{t} F^2(t)$$

 I_{ρ} : radiation loss function

E137 and NA64 Results Reinterpret

Experiment	E_e [GeV]	Target	$L_{ m sh}$ [m]	L _{dec} [m]	Year
E137	20	Al	179	204	1988(SLAC)
NA64(Invis)	100	Pb	\sim 4.35	∞	2020(CERN)
KEK	7	W	\sim 0.25	1	2013(KEK linac)
E141	9.0	W	0.12	35	1987(SLAC)
E774	275	W	0.3	28	1989(Fermilab)
Orsay(Higgs)	1.6	W	1	2	1989(LAL)

NA64 (Invis) represents the invisible signature configuration of NA64, where ALPs decay beyond all subdetectors of NA64. Invisible: $L_{\rm sh}$ = one ECAL + three HCAL, and $L_{\rm dec} = \infty$

E137 and NA64 Results Reinterpret J. Liu, YL and M. Song. 2304.05435

Solid line (NA64), dashed line (E137) are recent existing bounds (region inside excluded).

• concurrence effect: σ and τ_a

 $\Gamma_a \uparrow \text{ affects } l_a \downarrow \text{, so } N_a \downarrow \text{ in the large } m_a \text{ coupling region}$ photon in the final state

Yan Luo

 $N_a \uparrow$ in the lower coupling region due to larger cross section, and hard to distinguish electron/

Constraints for DFSZ-like (e) Model

J. Liu, YL and M. Song. 2304.05435

Yan Luo

- Babar constraints are indirectly derived from $g_{a\bar{e}e}^{\text{eff}}$
- downward shift for beam dump constraints lacksquare

10

- converted from axion.
- EM waves from ULDM in solar corona. We delt with data processing and handled the complexity of plasma environment, constraining the ULDM axion or dark photon.
- emerge naturally from radiative corrections and may play an role.
- in concurrence scenario, significantly for beam dump experiments.

Conclusion

The axion ULDM can be searched through radio telescope, by looking for the photon signal

We used the observation data from LOFAR to search for resonantly converted mono-chromatic

For massive axion, existing limits usually consider individual coupling, while multi-coupling

We investigate the collider and beam dump experiments, and the precent limits will be modified

Check: Small-scale Fluctuations

Plasma density fluctuations

$$P_{a \to \gamma}(v_{rc}) = \pi \frac{g_{a\gamma\gamma}^2 \left| \mathbf{B}_T \right|^2}{m_a} v_{rc}^{-1} \left| \frac{\partial \ln \omega_p^2(r)}{\partial r} \right|_{r=r_c}^{-1}$$

may influence the application of approximation $P(q) = C_n q^{-\alpha}$ Kolmogorov spectrum: $\alpha = 11/3$ may modify the conversion probability, by altering $\nabla \omega_p$ G. Thejappa et al. The Astrophysical Journal, Volume 676, Issue 2, pp. 1338-1345 (2008) Check WKB and saddle point approximation

$$\delta l_{e} \simeq \left| \frac{n'_{e}}{n_{e}} \right|^{-1} \simeq \left[\frac{\alpha - 3}{5 - \alpha} \epsilon_{e}^{2} q_{o}^{\alpha - 3} q_{i}^{5 - \alpha} \right]^{-\frac{1}{2}} \approx 10^{-3} q_{o}^{-1} \qquad \text{WKB requirement:} \qquad \delta l_{e} k_{A'} \approx 30 \gg 1$$

$$F(r) \equiv \int^{r} \frac{\omega_{p}^{2}(r') - m_{A'}^{2}}{2k_{A'}} dr' \qquad \qquad \frac{\frac{1}{2!} F''(r)}{\frac{1}{3!} \delta l_{\text{res}} F'''(r)} \simeq \frac{3}{\sqrt{2\pi}} \frac{[F''(r)]^{3/2}}{F'''(r)} = 3\sqrt{\frac{\alpha_{\text{EM}} \epsilon_{e} n_{e}}{k_{A'} m_{e}}} \left(\frac{(\alpha - 3)(7 - \alpha)^{2}}{(5 - \alpha)^{3}} q_{o}^{\alpha - 3} q_{i}^{1 - \alpha} \right)^{\frac{1}{4}} \approx 5$$

$$P_{A' \rightarrow \gamma} = \left| \int_{r_{0}}^{r} dr' \frac{-\epsilon m_{a}^{2}}{2k_{r}} e^{i j_{r_{0}}^{r} dr' \frac{1}{2k_{r}} \left[\omega_{p}(r')^{2} - m_{e}^{2} \right]} \right|^{2}. \qquad \text{fluctuation scale} \quad l_{i} = \frac{684}{\sqrt{n_{e}/\text{cm}^{-3}}} \sim 0.1 \text{ km}, \ l_{o} \sim 10^{6} l_{i} \qquad q = \frac{2\pi}{l}$$

fluctuation

model the density fluctuations through the spatial power spectrum

$$C(\mathbf{d}) \equiv \left\langle \delta n_e(\mathbf{x}) \delta n_e(\mathbf{x} + \mathbf{d}) \right\rangle \qquad C(\mathbf{d}) = \int_{-\infty}^{\infty} e^{-i\mathbf{q} \cdot \mathbf{d}} P(\mathbf{d})$$

scale
$$l_i = \frac{684}{\sqrt{n_e/\text{cm}^{-3}}} \sim 0.1 \text{ km}, l_o \sim 10^6 l_i$$
 $q = \frac{2\pi}{l}$

Check: Small-scale Fluctuations

Check the conversion probability

modeled in discrete Fourier modes:

$$n_e(r) = \frac{r_c^2}{r^2} \left(n_{e,\text{bkg}}(r_c) + \sum_{n=0}^N \delta n_e(q_n) \Delta \cdot \sin\left[q_n(r - \frac{1}{r})\right] \right)$$

may change the conversion probability, explore **numarically**:

$$r_{\rm dn} = \frac{\sum_{n_e(r')=n_e(r_c)} \left| \frac{1}{n_e(r)} \frac{dn_e(r)}{dr} \right|_{r=r'}^{-1}}{\left| \frac{1}{n_{e,\rm bkg}(r)} \frac{dn_{e,\rm bkg}(r)}{dr} \right|_{r=r_c}^{-1}}$$

Increasing resonant points, but decreasing conversion probability for each points.Numerical simulation: fluctuation has minimal impact.

