





## **VBF-HH at NLO QCD in HEFT**

#### **DESY** theory seminar

Marius Höfer | 27 January 2025

with Jens Braun, Pia Bredt, Gudrun Heinrich







## Outline

#### 1. Introduction

- 2. EFTs for VBF-HH
- 3. Framwork: Whizard+GoSam
- 4. Process setup and validation
- 5. Phenomenology
- 6. Summary and Outlook

Introduction<br/>0000EFTs for VBF-HH<br/>00000000Framwork: Whizard+GoSam<br/>000Process setup and validation<br/>000Phenomenology<br/>0000000000Summary and Outlook<br/>000

# Karlsruhe Institute of Technology

## We found the Higgs ...

Introduction EFTs for VBF-HH

Framwork: Whizard+GoSam

Process setup and validation

Phenomenology

 $\underset{\circ}{\text{Summary and Outlook}}$ 



## We found the Higgs ... Now we have to understand it!

#### Many parameters of the Higgs sector still poorly contrained

→ relates to many open questions: origin of the Higgs mass, hierarchy problem, vacuum stability, ...

HL-LHC: exploring parameters of the Higgs sector, theory has to keep up



## We found the Higgs ... Now we have to understand it!

#### Many parameters of the Higgs sector still poorly contrained

→ relates to many open questions: origin of the Higgs mass, hierarchy problem, vacuum stability, ...

HL-LHC: exploring parameters of the Higgs sector, theory has to keep up

### Multi-Higgs couplings

Current bounds provide ample room for New Physics! How to measure?

- Single Higgs production at (at least) NLO EW
- $\blacksquare$  Double and triple Higgs production at LO  $\rightarrow$  cross section is extremely small



Most relevant channels: gluon fusion (ggF) and vector boson fusion (VBF)

| ggF                     |       |
|-------------------------|-------|
| Main production channel | etter |
| Loop induced            | eeeee |





Most relevant channels: gluon fusion (ggF) and vector boson fusion (VBF)



#### VBF

- Relatively clean wrt. QCD background
- Sensitive to  $g_{hhvv} g_{hvv}^2$ : unitarity, HEFT vs SMEFT
- In SM:  $\sigma_{VBF} \approx 1.7 \text{fb} \approx 5\%$  of  $\sigma_{ggF}$  (at 13 TeV)





Most relevant channels: gluon fusion (ggF) and vector boson fusion (VBF)



- Relatively clean wrt. QCD background
- Sensitive to  $g_{hhvv} g_{hvv}^2$ : unitarity, HEFT vs SMEFT
- In SM:  $\sigma_{VBF} \approx 1.7 \text{fb} \approx 5\%$  of  $\sigma_{aaF}$  (at 13 TeV)



• "new" couplings in HH production

Introduction Framwork: Whizard+GoSam Process setup and validation Phenomenology Summary and Outlook FFTs for VBF-HH 0000



Most relevant channels: gluon fusion (ggF) and vector boson fusion (VBF)



#### VBF

- Relatively clean wrt. QCD background
- Sensitive to  $g_{hhvv} g_{hvv}^2$ : unitarity, HEFT vs SMEFT
- In SM:  $\sigma_{VBF} \approx 1.7 \text{fb} \approx 5\%$  of  $\sigma_{ggF}$  (at 13 TeV)



• "new" couplings in HH production

Introduction •••••
EFTs for VBF-HH •••••
Framwork: Whizard+GoSam ••••
Process setup and validation ••••
Phenomenology ••••
Summary and Outlook



## Status of VBF-HH

#### Experiment

Bounds on prod. cross sec.:  $\sigma_{VBF-HH}^{exp.} \lesssim \sigma_{VBF-HH}^{SM} \times \begin{cases} 50 & [ATLAS @ LHC-HWG'24] \\ 91 & [CMS PAS '24] \end{cases}$ 

Process setup and validation

**Rather loose constraints on**  $g_{hvv}$ ,  $g_{hhvv}$  and  $g_{hhh}$  [ATLAS 2024][CMS 2024]

#### Theory

| Introduction | EFTs for VBF-HH | Framwork: Whizard+GoSam |
|--------------|-----------------|-------------------------|
| 0000         | 0000000         | 000                     |

5/31 27.1.2025 Marius Höfer: VBF-HH at NLO QCD in HEFT

Institute for Theoretical Physics (ITP)

Summary and Outlook

Phenomenology



beyond HL-LHC, but NP might change this

## Status of VBF-HH

#### Experiment

- Bounds on prod. cross sec.:  $\sigma_{VBF-HH}^{exp.} \lesssim \sigma_{VBF-HH}^{SM} \times \begin{cases} 50 & [ATLAS @ LHC-HWG'24] \\ 91 & [CMS PAS '24] \end{cases}$
- **Rather loose constraints on**  $g_{hvv}$ ,  $g_{hhvv}$  and  $g_{hhh}$  [ATLAS 2024][CMS 2024]

#### Theory

| Introduction EFTs for VBF-HH Framwork: Whizard+GoSam Process setup and validatio | ſ |
|----------------------------------------------------------------------------------|---|
|----------------------------------------------------------------------------------|---|

Phenomenology

 $\underset{\circ}{\text{Summary and Outlook}}$ 

| Status of VBF-HH                                                                                                             | Karlsruhe Institute of Technology                                       |  |  |
|------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|--|--|
|                                                                                                                              | full <i>HH</i> production looks better:                                 |  |  |
| Experiment                                                                                                                   | factor 2.9 [ATLAS 2024], 3.5 [CMS PAS '24]                              |  |  |
| Bounds on prod. cross sec.: $\sigma_{VBF-HH}^{exp.} \lesssim \sigma_{VBF-HH}^{SM} \times \begin{cases} 50 \\ 91 \end{cases}$ | [ATLAS @ LHC-HWG'24]beyond HL-LHC, but[CMS PAS '24]NP might change this |  |  |
| • Rather loose constraints on $g_{hvv}$ , $g_{hhvv}$ and $g_{hhh}$ [ATLAS 2024][CI                                           | MS 2024]                                                                |  |  |
| Theory                                                                                                                       |                                                                         |  |  |
|                                                                                                                              |                                                                         |  |  |
|                                                                                                                              |                                                                         |  |  |
|                                                                                                                              |                                                                         |  |  |
| Introduction EFTs for VBF-HH Framwork: Whizard+GoSam Process setup a                                                         | and validation Phenomenology Summary and Outlook                        |  |  |

#### 5/31 27.1.2025 Marius Höfer: VBF-HH at NLO QCD in HEFT

Institute for Theoretical Physics (ITP)

| Status of VBF-HH<br>Experiment                                             |                                                                                      | Karlsruhe Institute of Technology                                                                               |                                                                      |                                                  |                                            |
|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------|--------------------------------------------|
|                                                                            |                                                                                      | full <i>HH</i> production looks better:<br>factor 2.9 [ATLAS 2024], 3.5 [CMS PAS '24]                           |                                                                      |                                                  |                                            |
| <ul><li>Bour</li><li>Rath</li></ul>                                        | nds on prod. cros<br>er loose constrai                                               | s sec.: $\sigma_{\it VBF-HH}^{\it exp.}\lesssim\sigma_{\it VB}^{ m SM}$ nts on $g_{hvv},g_{hhvv}$ and $g_{hht}$ | $F_{-HH} 	imes \begin{cases} 50\\ 91 \end{cases}$ , [ATLAS 2024][CMS | [ATLAS @ LHC-HWG'24]<br>[CMS PAS '24]<br>: 2024] | beyond HL-LHC, but<br>NP might change this |
| Theory                                                                     |                                                                                      |                                                                                                                 |                                                                      |                                                  |                                            |
| <ul> <li>NNL</li> <li>N<sup>3</sup>L0</li> <li>NNL</li> <li>NLO</li> </ul> | O QCD + NLO E<br>O QCD [Dreyer et al.<br>O QCD [Dreyer et al.<br>QCD [Fidgy 2008][Ba | ₩ [Dreyer et al. 2020]<br>2018]<br>2019][Ling et al. 2014]<br>aglio et al. 2013][Frederix et al. 2014           | Standard M                                                           | lodel                                            |                                            |
| Introduction                                                               | EFTs for VBF-HH                                                                      | Framwork: Whizard+GoSam                                                                                         | Process setup and                                                    | d validation Phenome                             | nology Summary and Outlook                 |

#### 5/31 27.1.2025 Marius Höfer: VBF-HH at NLO QCD in HEFT

| Status of VBF-HH                                                                                                                                                                                                                                                                                                               | Karlsruhe Institute of Technology                                                                                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Experiment                                                                                                                                                                                                                                                                                                                     | full <i>HH</i> production looks better:<br>factor 2.9 [ATLAS 2024], 3.5 [CMS PAS '24]                                                                       |
| Bounds on prod. cross sec.: $\sigma_{VBF-HH}^{exp.} \lesssim \sigma_{VBF}^{SM}$<br>Rather loose constraints on $g_{hvv}$ , $g_{hhvv}$ and $g_{hhh}$                                                                                                                                                                            | $-HH \times \begin{cases} 50 & [ATLAS @ LHC-HWG'24] \\ 91 & [CMS PAS '24] \end{cases}$ beyond HL-LHC, but<br>NP might change this<br>[ATLAS 2024][CMS 2024] |
| Theory                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                             |
| <ul> <li>NNLO QCD + NLO EW [Dreyer et al. 2020]</li> <li>N<sup>3</sup>LO QCD [Dreyer et al. 2018]</li> <li>NNLO QCD [Dreyer et al. 2019][Ling et al. 2014]</li> <li>NLO QCD [Fidgy 2008][Baglio et al. 2013][Frederix et al. 2014]</li> <li>In FET context, at tree-level: <i>Others</i> Only [Bishara et al. 2014]</li> </ul> | Standard Model                                                                                                                                              |
| Introduction EFTs for VBF-HH Framwork: Whizard+GoSam                                                                                                                                                                                                                                                                           | Process setup and validation Phenomenology Summary and Outloo                                                                                               |

#### 5/31 27.1.2025 Marius Höfer: VBF-HH at NLO QCD in HEFT

New Physics hiding in VBF-HH?

Introduction cooo

6/31 27.1.2025 Marius Höfer: VBF-HH at NLO QCD in HEFT



 Introduction oco
 EFTs for VBF-HH
 Framwork: Whizard+GoSam
 Process setup and validation
 Phenomenology
 Summary and Outlook









## The EFT approach to New Physics



#### The SM as an EFT at the EW scale

General requirements:

- Obey (gauge and global) symmetries of the SM
- Field content = SM fields

Introduction EFTs for VBF-HH Framwork: Whizard+GoSam Process setup and validation Phenomenology Summary and Outlook

## The EFT approach to New Physics



#### The SM as an EFT at the EW scale

General requirements:

- Obey (gauge and global) symmetries of the SM
- Field content = SM fields

#### Construction

$$\mathcal{L}_{\textit{eff}} = \mathcal{L}_{\textit{SM}} + \sum_i \textit{C}_i \mathcal{O}_i$$

#### Coefficients *C<sub>i</sub>* absorb unknown UV dynamics

Systematic power counting organizes terms according to relevance (e.g. dim-6, dim-8, ... in SMEFT)

Introduction<br/>occoEFTs for VBF-HH<br/>•occocoFramwork: Whizard+GoSam<br/>occocoProcess setup and validation<br/>occococoPhenomenology<br/>occococoSummary and Outlook<br/>occococo



## **Two common EFT realizations**

#### SMEFT

- EWSB realized as in SM, have ordinary Higgs doublet Φ
- Must have weakly coupled NP, NP decouples from EW scale physics
- Organization of power counting according to canonical dimension

Introduction oco FFTs for VBF-HH oco Sam Process setup and validation oco Summary and Outlook



## **Two common EFT realizations**

#### SMEFT

- EWSB realized as in SM, have ordinary Higgs doublet Φ
- Must have weakly coupled NP, NP decouples from EW scale physics
- Organization of power counting according to canonical dimension

#### HEFT

- EWSB not necessarily SM-like, split Goldstone modes U and Higgs scalar h
- Can have strongly coupled NP in Higgs sector, does not decouple
- Organization of power counting in chiral dimension (loop counting)

Introduction ooo ooo Pramwork: Whizard+GoSam Process setup and validation Ooo Summary and Outlook



## **Two common EFT realizations**

#### SMEFT

- EWSB realized as in SM, have ordinary Higgs doublet Φ
- Must have weakly coupled NP, NP decouples from EW scale physics
- Organization of power counting according to canonical dimension

#### HEFT

- EWSB not necessarily SM-like, split Goldstone modes U and Higgs scalar h
- Can have strongly coupled NP in Higgs sector, does not decouple
- Organization of power counting in chiral dimension (loop counting)
- Note: sometimes called the "Electroweak Chiral Lagrangian" (EWChL)

## The HEFT-Lagrangian at LO

$$\begin{split} \mathcal{L}_{SM} &= -\frac{1}{2} \left\langle G_{\mu\nu} G^{\mu\nu} \right\rangle - \frac{1}{2} \left\langle W_{\mu\nu} W^{\mu\nu} \right\rangle - \frac{1}{4} B_{\mu\nu} B^{\mu\nu} + \bar{\psi} i \not{D} \psi \\ &+ \frac{1}{2} \partial_{\mu} h \partial^{\mu} h - v^2 \left[ \frac{m_h^2}{2} \left( \frac{h}{v} \right)^2 + \frac{m_h^2}{2} \left( \frac{h}{v} \right)^3 + \frac{m_h^2}{8} \left( \frac{h}{v} \right)^4 \right] \\ &+ \frac{v^2}{4} \left\langle D_{\mu} U^{\dagger} D^{\mu} U \right\rangle \left[ 1 + 2 \frac{h}{v} + \left( \frac{h}{v} \right)^2 \right] \\ &- v \left[ \bar{q}_L \left( Y_u + Y_u \frac{h}{v} \right) U \begin{pmatrix} u_R \\ 0 \end{pmatrix} + \text{h.c.} + \dots \right] \end{split}$$



Goldstone bosons of EWSB:

$$U = \exp\left(2irac{arphi_lpha t^lpha}{v}
ight)$$

• Higgs doublet:

$$\Phi = U \begin{pmatrix} 0 \\ \frac{\nu+h}{\sqrt{2}} \end{pmatrix}$$

- $\Rightarrow$  correlations between *h*-couplings
- Renormalizable in the classical sense

## The HEFT-Lagrangian at LO

$$\begin{split} \mathcal{L}_{SM} &= -\frac{1}{2} \left\langle G_{\mu\nu} G^{\mu\nu} \right\rangle - \frac{1}{2} \left\langle W_{\mu\nu} W^{\mu\nu} \right\rangle - \frac{1}{4} B_{\mu\nu} B^{\mu\nu} + \bar{\psi} i \not{\!D} \psi \\ &+ \frac{1}{2} \partial_{\mu} h \partial^{\mu} h - v^{2} \left[ \frac{m_{h}^{2}}{2} \left( \frac{h}{v} \right)^{2} + \frac{m_{h}^{2}}{2} \left( \frac{h}{v} \right)^{3} + \frac{m_{h}^{2}}{8} \left( \frac{h}{v} \right)^{4} \right] \\ &+ \frac{v^{2}}{4} \left\langle D_{\mu} U^{\dagger} D^{\mu} U \right\rangle \left[ 1 + 2 \frac{h}{v} + \left( \frac{h}{v} \right)^{2} \right] \\ &- v \left[ \bar{q}_{L} \left( Y_{u} + Y_{u} \frac{h}{v} \right) U \begin{pmatrix} u_{R} \\ 0 \end{pmatrix} + \text{h.c.} + \dots \right] \end{split}$$



Goldstone bosons of EWSB:

$$U = \exp\left(2i\frac{\varphi_{\alpha}t^{\alpha}}{v}\right)$$

• Higgs doublet:

$$\Phi = U \begin{pmatrix} 0 \\ \frac{v+h}{\sqrt{2}} \end{pmatrix}$$

- ⇒ correlations between h-couplings
- Renormalizable in the classical sense

Introduction EFTs for VBF-HH oco

## The HEFT-Lagrangian at LO

 $\mathcal{L}_{2} = -\frac{1}{2} \langle G_{\mu\nu} G^{\mu\nu} \rangle - \frac{1}{2} \langle W_{\mu\nu} W^{\mu\nu} \rangle - \frac{1}{4} B_{\mu\nu} B^{\mu\nu} + \bar{\psi} i \not\!\!{D} \psi$ 

 $+\frac{1}{2}\partial_{\mu}h\partial^{\mu}h-v^{2}\left[\frac{m_{h}^{2}}{2}\left(\frac{h}{v}\right)^{2}+\sum_{i=2}^{\infty}V^{(i)}\left(\frac{h}{v}\right)^{i}\right]$ 

 $-v\left[\bar{q}\left(Y_{u}+\sum_{i=1}^{\infty}Y_{u}^{(i)}\left(\frac{h}{v}\right)^{i}\right)U\left(\frac{u_{R}}{0}\right)+\text{h.c.}+\dots\right]$ 

 $+ \frac{v^2}{4} \left\langle D_{\mu} U^{\dagger} D^{\mu} U \right\rangle \left| 1 + \sum_{i=1}^{\infty} f_{U}^{(i)} \left( \frac{h}{v} \right)^{i} \right|$ 



Goldstone bosons of EWSB:

$$U = \exp\left(2irac{arphi_lpha t^lpha}{v}
ight)$$

- *h* not part of a doublet  $\Rightarrow$  no correlations
- *h* couples strongly to Goldstone sector ⇒ arbitrary powers of *h*
- Non-renormalizable in the classical sense



## **HEFT** power counting

- Characteristic scale of HEFT: v
  - $\,\,\mapsto\,\,$  LO Lagrangian contains all terms of order  $\sim v^4$
- Strong dynamics in scalar sector implies EFT cutoff:  $\Lambda \sim 4\pi v$
- HEFT is constructed as an expansion in  $\frac{v^2}{\Lambda^2} \sim \frac{1}{16\pi^2} \Rightarrow$  loop expansion

Introduction<br/>oooEFTs for VBF-HH<br/>oooFramwork: Whizard+GoSam<br/>oooProcess setup and validation<br/>oooPhenomenology<br/>oooocooooSummary and Outlook<br/>oo



## **HEFT** power counting

- Characteristic scale of HEFT: v
  - $\,\,\mapsto\,\,$  LO Lagrangian contains all terms of order  $\sim v^4$
- Strong dynamics in scalar sector implies EFT cutoff:  $\Lambda \sim 4\pi v$
- HEFT is constructed as an expansion in  ${v^2\over \Lambda^2} \sim {1\over 16\pi^2} \Rightarrow$  loop expansion

#### Chiral dimension $d_{\chi}$

$$[A_{\mu}, \varphi, h]_{\chi} = 0, \quad [\partial, \bar{\psi}\psi, g, y]_{\chi} = 1 \quad \Rightarrow \quad [\mathcal{O}]_{\chi} = 2L + 2$$
 (*L*: loop order  $\mapsto$  LO Lagrangian  $\mathcal{L}_2$  has  $d_{\chi} = 2$  (0-loop order / tree level)



## **HEFT** power counting

- Characteristic scale of HEFT: v
  - $\,\,\mapsto\,\,$  LO Lagrangian contains all terms of order  $\sim \nu^4$
- Strong dynamics in scalar sector implies EFT cutoff:  $\Lambda \sim 4\pi v$
- HEFT is constructed as an expansion in  ${v^2\over \Lambda^2} \sim {1\over 16\pi^2} \Rightarrow$  loop expansion

#### Chiral dimension $d_{\chi}$

$$[A_{\mu}, \varphi, h]_{\chi} = 0, \quad [\partial, \bar{\psi}\psi, g, y]_{\chi} = 1 \quad \Rightarrow \quad [\mathcal{O}]_{\chi} = 2L + 2 \ (L: \text{ loop order})$$

 $\mapsto$  LO Lagrangian  $\mathcal{L}_2$  has  $d_{\chi} =$  2 (0-loop order / tree level)

Note: custodial symmetry breaking operator at  $d_{\chi} = 2$ :  $\mathcal{O}_{\beta_1} \sim v^2 \langle U^{\dagger} D_{\mu} U t^3 \rangle^2 F_{\beta_1}(h)$ 

• Highly constrained from EW T-parameter  $\Rightarrow$  loop-suppressed  $\Rightarrow$  NLO term

| Introduction | EFTs for VBF-HH<br>○○○●○○○○ | Framwork: Whizard+GoSam | Process setup and validation | Phenomenology | $\underset{\circ}{\text{Summary and Outlook}}$ |
|--------------|-----------------------------|-------------------------|------------------------------|---------------|------------------------------------------------|
|              |                             |                         |                              |               |                                                |

## The HEFT Lagrangian at NLO



### Construction of the NLO Lagrangian

- $\mathcal{L}_2$  renormalizable in the modern sense: introduction of counterterms order by order in loop expansion
- At NLO ( $d_{\chi} = 4$ ): terms needed as counterterms for 1-loop diagrams constructed from  $\mathcal{L}_2$
- From (momentum) power counting arguments: finite number of divergent diagrams at each order

## The HEFT Lagrangian at NLO



### Construction of the NLO Lagrangian

- $\mathcal{L}_2$  renormalizable in the modern sense: introduction of counterterms order by order in loop expansion
- At NLO ( $d_{\chi} = 4$ ): terms needed as counterterms for 1-loop diagrams constructed from  $\mathcal{L}_2$
- From (momentum) power counting arguments: finite number of divergent diagrams at each order

#### **Operator classes**

 $UhD^4$ ,  $g^2X^2Uh$ ,  $gXUhD^2$ ,  $y^2\psi^2UhD$ ,  $y\psi^2UhD^2$ ,  $y^2\psi^4Uh$ 



## The HEFT Lagrangian at NLO



### Construction of the NLO Lagrangian

- $\mathcal{L}_2$  renormalizable in the modern sense: introduction of counterterms order by order in loop expansion
- At NLO ( $d_{\chi} = 4$ ): terms needed as counterterms for 1-loop diagrams constructed from  $\mathcal{L}_2$
- From (momentum) power counting arguments: finite number of divergent diagrams at each order

#### **Operator classes**

 $UhD^4$ ,  $g^2X^2Uh$ ,  $gXUhD^2$ ,  $y^2\psi^2UhD$ ,  $y\psi^2UhD^2$ ,  $y^2\psi^4Uh$ 

Full set of 1-loop RGEs available since 2020 [Buchalla et al. 2020]

11/31 27.1.2025 Marius Höfer: VBF-HH at NLO QCD in HEFT



### HEFT for the practitioner

Not all Operators relevant for given processes: e.g. (double) Higgs production, Higgs decays

- Assumptions:
- CP conservation
  - Custodial symmetry conserved at LO (Wh couplings = Zh couplings)

$$\mathcal{L}_{eff} \supset \left(2c_V \frac{h}{v} + c_{2V} \frac{h^2}{v^2}\right) \left(m_W^2 W_\mu^+ W^{-\mu} + \frac{1}{2}m_Z^2 Z_\mu Z^\mu\right) - \sum_f m_f \left(c_f \frac{h}{v} + c_{2f} \frac{h^2}{v^2}\right) \overline{f} f + c_\lambda \frac{m_h^2}{2v} h^2 + \frac{\alpha_s}{8\pi} \left(c_{gg} \frac{h}{v} + c_{2gg} \frac{h^2}{v^2}\right) G_{\mu\nu}^a G^{a\mu\nu}$$

SM: 
$$c_V = c_{2V} = c_f = c_\lambda = 1$$
,  $c_{2f} = c_{\gamma\gamma} = c_{2\gamma\gamma} = c_{gg} = c_{2gg} = 0$ 

Introduction cool book for VBF-HH cool book for VBF-HH cool book c

12/31 27.1.2025 Marius Höfer: VBF-HH at NLO QCD in HEFT



### HEFT for the practitioner

Not all Operators relevant for given processes: e.g. (double) Higgs production, Higgs decays

- Assumptions:
- CP conservation
  - Custodial symmetry conserved at LO (Wh couplings = Zh couplings)

$$\mathcal{L}_{eff} \supset \left(2c_V \frac{h}{v} + c_{2V} \frac{h^2}{v^2}\right) \left(m_W^2 W_\mu^+ W^{-\mu} + \frac{1}{2}m_Z^2 Z_\mu Z^\mu\right) - \sum_f m_f \left(c_f \frac{h}{v} + c_{2f} \frac{h^2}{v^2}\right) \overline{f} f + c_\lambda \frac{m_h^2}{2v} h^3 \quad \leftarrow \quad \mathcal{L}_2 + \frac{\alpha}{8\pi} \left(c_{\gamma\gamma} \frac{h}{v} + c_{2\gamma\gamma} \frac{h^2}{v^2}\right) F_{\mu\nu} F^{\mu\nu} + \frac{\alpha_s}{8\pi} \left(c_{gg} \frac{h}{v} + c_{2gg} \frac{h^2}{v^2}\right) G_{\mu\nu}^a G^{a\mu\nu} \qquad \leftarrow \quad \mathcal{L}_4$$

SM: 
$$c_V = c_{2V} = c_f = c_\lambda = 1$$
,  $c_{2f} = c_{\gamma\gamma} = c_{2\gamma\gamma} = c_{gg} = c_{2gg} = 0$ 

Introduction cooperation before the set of t

12/31 27.1.2025 Marius Höfer: VBF-HH at NLO QCD in HEFT



### HEFT for the practitioner

Not all Oper Assumption hWW and hZZ couplings affected at tree level  $(d_{\chi} = 2)$   $\Rightarrow$  operators  $\sim h \langle W \mu \nu W^{\mu\nu} \rangle$  from  $\mathcal{L}_4$  subleading  $\mathcal{L}_{eff} \supset \left(2c_V \frac{h}{v} + c_{2V} \frac{h^2}{v^2}\right) \left(m_W^2 W_{\mu}^+ W^{-\mu} + \frac{1}{2}m_Z^2 Z_{\mu} Z^{\mu}\right) - \sum_f m_f \left(c_f \frac{h}{v} + c_{2f} \frac{h^2}{v^2}\right) \overline{f} f + c_{\lambda} \frac{m_h^2}{2v} h^3 \leftarrow \mathcal{L}_2$   $+ \frac{\alpha}{8\pi} \left(c_{\gamma\gamma} \frac{h}{v} + c_{2\gamma\gamma} \frac{h^2}{v^2}\right) F_{\mu\nu} F^{\mu\nu} + \frac{\alpha_s}{8\pi} \left(c_{gg} \frac{h}{v} + c_{2gg} \frac{h^2}{v^2}\right) G_{\mu\nu}^a G^{a\mu\nu} \leftarrow \mathcal{L}_4$ SM:  $c_V = c_{2V} = c_f = c_{\lambda} = 1, c_{2f} = c_{\gamma\gamma} = c_{2g\gamma} = c_{2g\gamma} = 0$ 

Introduction coco

12/31 27.1.2025 Marius Höfer: VBF-HH at NLO QCD in HEFT



### HEFT for the practitioner




# Parametrization of anomalous Higgs couplings

#### HEFT for the practitioner

Not all Operators relevant for given processes: VBF-HH

Assumptions:

- CP conservation
- Custodial symmetry conserved at LO (Wh couplings = Zh couplings)

$$\mathcal{L}_{eff} \supset \left(2c_V \frac{h}{v} + c_{2V} \frac{h^2}{v^2}\right) \left(m_W^2 W_\mu^+ W^{-\mu} + \frac{1}{2} m_Z^2 Z_\mu Z^\mu\right) - \sum_f m_f \left(c_f \frac{h}{v} + c_{2f} \frac{h^2}{v^2}\right) \overline{f} f + c_\lambda \frac{m_h^2}{2v} h^3 \quad \leftarrow \quad \mathcal{L}_2$$

$$+ \frac{\alpha}{8\pi} \left(c_{\gamma\gamma} \frac{h}{v} + c_{2\gamma\gamma} \frac{h^2}{v^2}\right) F_{\mu\nu} F^{\mu\nu} + \frac{\alpha_s}{8\pi} \left(c_{gg} \frac{h}{v} + c_{2gg} \frac{h^2}{v^2}\right) G_{\mu\nu}^a G^{a\mu\nu} \qquad \leftarrow \quad \mathcal{L}_4$$

SM:  $c_V = c_{2V} = c_\lambda = 1$ 



# Parametrization of anomalous Higgs couplings

#### HEFT for the practitioner

Not all Operators relevant for given processes: VBF-HH

Assumptions:

- CP conservation
- Custodial symmetry conserved at LO (Wh couplings = Zh couplings)

$$\mathcal{L}_{eff} \supset \left(2c_{V}\frac{h}{v} + c_{2V}\frac{h^{2}}{v^{2}}\right) \left(m_{W}^{2}W_{\mu}^{+}W^{-\mu} + \frac{1}{2}m_{Z}^{2}Z_{\mu}Z^{\mu}\right) - \sum_{t}m_{t}\left(c_{t}\frac{h}{v} + c_{2t}\frac{h^{2}}{v^{2}}\right)\overline{t}f + c_{\lambda}\frac{m_{h}^{2}}{2v}h^{3} \leftarrow \mathcal{L}_{2}$$

$$+ \frac{\alpha}{8\pi}\left(c_{\gamma\gamma}\frac{h}{v} + c_{2\gamma\gamma}\frac{h^{2}}{v^{2}}\right)F_{\mu\nu}F^{\mu\nu} + \left[ \begin{array}{c} \text{At NLO QCD: No additional vertex structures!} \\ \Rightarrow \text{ corresponds to }\kappa\text{-framework} \\ \hline \mathcal{L}_{4} \text{ becomes relevant at NLO EW} \end{array} \right) \leftarrow \mathcal{L}_{4}$$

Introduction<br/>occoEFTs for VBF-HH<br/>occoFramwork: Whizard+GoSam<br/>occoProcess setup and validation<br/>occoPhenomenology<br/>occoSummary and Outlook<br/>occo



# **VBF-HH in HEFT: LO**

$$\mathcal{L}_{eff} \supset \left( 2 rac{c_V rac{h}{v} + c_{2V} rac{h^2}{v^2}}{\sqrt{v}} 
ight) \left( m_W^2 W_\mu^+ W^{-\mu} + rac{1}{2} m_Z^2 Z_\mu Z^\mu 
ight) + rac{c_\lambda}{2v} rac{m_h^2}{2v} h^3$$





Introduction cooo

13/31 27.1.2025 Marius Höfer: VBF-HH at NLO QCD in HEFT



# VBF-HH in HEFT: LO

$$\mathcal{L}_{eff} \supset \left( 2 \frac{c_V h}{v} + \frac{c_{2V} h^2}{v^2} \right) \left( m_W^2 W_\mu^+ W^{-\mu} + \frac{1}{2} m_Z^2 Z_\mu Z^\mu \right) + \frac{c_\lambda}{2v} h^3$$



Same coupling order  $\mathcal{O}(g^4_{ew})$  $\Rightarrow$  included in our calculation, suppressed by VBF-cuts: large rapidity separation and invariant mass in jet-system



Introduction cooo

13/31 27.1.2025 Marius Höfer: VBF-HH at NLO QCD in HEFT

# Karlsruhe Institute of Technology

# **VBF-HH in HEFT: NLO QCD**

#### **Real corrections:**



- + *u* and *s*-channel crossings
- + process with gluon crossed into inital state



No QCD loop corrections to  $\textcircled{}{}$   $\Rightarrow$  renormalization as in SM

Introduction E

EFTs for VBF-HH ○○○○○○○● Framwork: Whizard+GoSam

Process setup and validation

Phenomenology

 $\underset{\circ}{\text{Summary and Outlook}}$ 



# **VBF-HH in HEFT: NLO QCD**

#### Real corrections:



- + *u* and *s*-channel crossings
- + process with gluon crossed into inital state



No QCD loop corrections to  $\textcircled{}{}$   $\Rightarrow$  renormalization as in SM

| Virtual corrections: |  |  |                              |  |  |  |  |  |
|----------------------|--|--|------------------------------|--|--|--|--|--|
|                      |  |  | + u- and s-channel crossings |  |  |  |  |  |
|                      |  |  |                              |  |  |  |  |  |



# **VBF-HH in HEFT: NLO QCD**



# **Real corrections:** Same coupling order $\mathcal{O}(g_s^2 g_{ew}^4)$ + u- and s-channel crossings $\Rightarrow$ included in our calculation, + process with gluon crossed into suppressed by VBF-Cuts. inital state Virtual corrections: 02200 + u- and s-channel crossings





## Framework: Whizard + GoSam

- Use GoSam to generate amplitudes based on custom HEFT UFO model
- Whizard as Monte Carlo generator
- Implement flexible interface, usable for other processes

Introduction EFTs for VBF-HH ococo





27.1.2025 Marius Höfer: VBF-HH at NLO QCD in HEFT





 0000
 00000000
 0€0
 000

 16/31
 27.1.2025
 Marius Höfer: VBF-HH at NLO QCD in HEFT

Summary and Outlook

Institute for Theoretical Physics (ITP)

Phenomenology











# **VBF-HH: Process setup**





- √s = 13.6TeV
- PDF set: PDF4LHC21\_mc

• Central renormalization and factorization scale:  $\mu_0 = \left(\frac{m_h^2}{4}\left(\frac{m_h^2}{4} + p_{T,hh}^2\right)\right)^{\frac{1}{4}}$ 

- 3-point scale variation  $\mu_{B} = \mu_{F} = a\mu_{0}$  with a = 0.5, 1, 2
- Jets: anti- $k_t$  with R = 0.4, at least two jets with  $p_{T,j} > 20$ GeV and  $|y_j| < 4.5$

• VBF cuts:  $m_{j_1 j_2} > 600 \text{GeV}$  and  $\Delta \eta(j_1, j_2) > 4.0$ 

# **VBF-HH: Process setup**





# $pp \rightarrow hh + 2jets at \mathcal{O}(\alpha_{ew}^4, \alpha_{ew}^4 \alpha_s) + c_V, c_{2V}, c_{\lambda}$

- $\sqrt{s} = 13.6 \text{TeV}$
- PDF set: PDF4LHC21\_mc

• Central renormalization and factorization scale:  $\mu_0 = \left(\frac{m_h^2}{4}\left(\frac{m_h^2}{4} + p_{T,hh}^2\right)\right)^{\frac{1}{4}}$ 

- 3-point scale variation  $\mu_{B} = \mu_{F} = a\mu_{0}$  with a = 0.5, 1, 2
- Jets: anti- $k_t$  with R = 0.4, at least two jets with  $p_{T,j} > 20$ GeV and  $|y_j| < 4.5$

• VBF cuts:  $m_{j_1 j_2} > 600 \text{GeV}$  and  $\Delta \eta(j_1, j_2) > 4.0$ 

For Validation:  $c_V = c_{2V} = c_{\lambda} = 1$  (SM)  $\mu_R = \mu_F = 2m_h$ 

Introduction EFTs for VBF-HH Framwork: Whizard+GoSam Process setup and validation Phenomenology Summary and Outlook



SM case ( $c_V = c_{2V} = c_{\lambda} = 1$ ) can be validated against other tools.

Matrix elements: check against OpenLoops2 for 10<sup>6</sup> random phase space points
 → avg. 13 (8) digit agreement for tree (1-loop)





SM case ( $c_V = c_{2V} = c_{\lambda} = 1$ ) can be validated against other tools.

- Matrix elements: check against OpenLoops2 for 10<sup>6</sup> random phase space points

   → avg. 13 (8) digit agreement for tree (1-loop)
- Distributions:

|                    | LO | NLO |                    |
|--------------------|----|-----|--------------------|
| Whizard+OpenLoops2 | 1  | 1   | Checks OL provider |
| VBFNLO             | 1  | _   | VBF-approximation  |
| MadGraph5_aMCNLO   | 1  | _   |                    |





SM case ( $c_V = c_{2V} = c_{\lambda} = 1$ ) can be validated against other tools.

- Matrix elements: check against OpenLoops2 for 10<sup>6</sup> random phase space points

   → avg. 13 (8) digit agreement for tree (1-loop)
- Distributions:







SM case ( $c_V = c_{2V} = c_{\lambda} = 1$ ) can be validated against other tools.



20/31 27.1.2025 Marius Höfer: VBF-HH at NLO QCD in HEFT

# Phenomenology

Introduction EFTs for VBF-HH

Framwork: Whizard+GoSam

Process setup and validation

Phenomenology

 $\underset{\circ}{\text{Summary and Outlook}}$ 

21/31 27.1.2025 Marius Höfer: VBF-HH at NLO QCD in HEFT

# Parametrization of the total cross section





$$\Rightarrow \quad \frac{\sigma}{\sigma_{\rm SM}} = A_0 \ c_{\lambda}^2 c_V^2 + A_1 \ c_V^4 + A_2 \ c_{2V}^2 + A_3 \ c_{\lambda} c_V^3 + A_4 \ c_{\lambda} c_V c_{2V} + A_5 \ c_V^2 c_{2V}$$

- Coefficients  $A_i$  can be determined by fit after calculating  $\sigma$  for different values of  $c_i$
- No new A<sub>i</sub> at NLO QCD, but different numerical values
- Note:  $\sum_{i} A_{i} = 1$  by construction

# Parametrization of the total cross section



$$\frac{\sigma}{\sigma_{\rm SM}} = A_0 \ c_{\lambda}^2 c_V^2 + A_1 \ c_V^4 + A_2 \ c_{2V}^2 + A_3 \ c_{\lambda} c_V^3 + A_4 \ c_{\lambda} c_V c_{2V} + A_5 \ c_V^2 c_{2V}$$

| NLO coeff.            | $\mu_{	extsf{F}}=\mu_{	extsf{r}}=\mu_{	extsf{0}}/2$ | $\mu_{\rm F}=\mu_{\rm r}=\mu_{\rm 0}$ | $\mu_{	extsf{F}}=\mu_{	extsf{r}}=2\mu_{	extsf{0}}$ |
|-----------------------|-----------------------------------------------------|---------------------------------------|----------------------------------------------------|
| $A_0$                 | 0.7011(46)                                          | 0.6889(35)                            | 0.6830(30)                                         |
| <i>A</i> <sub>1</sub> | 22.15(12)                                           | 21.71(9)                              | 21.55(8)                                           |
| $A_2$                 | 11.86(7)                                            | 11.59(5)                              | 11.55(4)                                           |
| $A_3$                 | -6.139(42)                                          | -6.025(33)                            | -5.984(27)                                         |
| $A_4$                 | 3.865(29)                                           | 3.786(23)                             | 3.773(19)                                          |
| $A_5$                 | -31.44(18)                                          | -30.75(14)                            | -30.56(11)                                         |

Introduction EFTs for VBF-HH Sector S

23/31 27.1.2025 Marius Höfer: VBF-HH at NLO QCD in HEFT

# Parametrization of the total cross section



$$\frac{\sigma}{\sigma_{\rm SM}} = A_0 \ c_{\lambda}^2 c_V^2 + A_1 \ c_V^4 + A_2 \ c_{2V}^2 + A_3 \ c_{\lambda} c_V^3 + A_4 \ c_{\lambda} c_V c_{2V} + A_5 \ c_V^2 c_{2V}$$

| NLO coeff.            | $\mu_{	extsf{F}}=\mu_{	extsf{r}}=\mu_{	extsf{0}}/2$ | $\mu_{\rm F}=\mu_{\rm r}=\mu_{\rm 0}$ | $\mu_{F}=\mu_{r}=2\mu_{0}$ |                                 |
|-----------------------|-----------------------------------------------------|---------------------------------------|----------------------------|---------------------------------|
| A                     | 0.7011(46)                                          | 0.6889(35)                            | 0.6830(30)                 |                                 |
| $A_1$                 | 22.15(12)                                           | 21.71(9)                              | 21.55(8)                   |                                 |
| A <sub>2</sub>        | 11.86(7)                                            | 11.59(5)                              | 11.55(4)                   |                                 |
| $A_3$                 | -6.139(42)                                          | -6.025(33)                            | -5.984(27) 🔸               | Destructive interferences:      |
| $A_4$                 | 3.865(29)                                           | 3.786(23)                             | 3.773(19)                  |                                 |
| <i>A</i> <sub>5</sub> | -31.44(18)                                          | -30.75(14)                            | -30.56(11) 🔫               | Note: depends on signs of $c_i$ |

Introduction EFTs for VBF-HH occose Process setup and validation occose Setup and Vali

23/31 27.1.2025 Marius Höfer: VBF-HH at NLO QCD in HEFT

# **Total cross section**



Parameter ranges are chosen roughly like current experimental bounds [ATLAS 2024][CMS 2024]

 $c_V \in [0.9, 1.1], \qquad c_{2V} \in [0.5, 1.5], \qquad c_\lambda \in [-1, 6]$ 



Can have increase of cross section by more than a factor of 20.

#### Current best exp. bound: $\sigma_{VBF-HH}^{exp.} \lesssim 50 \sigma_{VBF-HH}^{SM}$ [ATLAS @ LHC-HWG'24] Introduction EFTs for VBF-HH Framwork: Whizard+GoSam Process setup and validation Phenomenology Summary and Outlook

# **Total cross section**



Parameter ranges are chosen roughly like current experimental bounds [ATLAS 2024][CMS 2024]

$$c_V \in [0.9, 1.1], \qquad c_{2V} \in [0.5, 1.5], \qquad c_\lambda \in [-1, 6]$$



# **Total cross section: K-factors**



Parameter ranges are chosen roughly like current experimental bounds [ATLAS 2024][CMS 2024]

 $c_V \in [0.9, 1.1], \qquad c_{2V} \in [0.5, 1.5], \qquad c_\lambda \in [-1, 6]$ 



NLO QCD K-factor mostly flat: structure of EFT contributions unaffected by QCD



# Karlsruhe Institute of Technology

# Distributions

Parametrization with  $A_i$  in principle possible with distributions, but:

- Requires very high statistics in each bin
- Detailed analysis of correlations for uncertainty estimation

Introduction EFTs for VBF-HH Framwork: Whizard+GoSam Process setup and validation Ococoeoooo Summary and Outlook

# Karlsruhe Institute of Technology

# Distributions

Parametrization with  $A_i$  in principle possible with distributions, but:

- Requires very high statistics in each bin
- Detailed analysis of correlations for uncertainty estimation

Alternative: distributions for 12 benchmark points  $(c_{\lambda}, c_{V}, c_{2V})$  incl. SM

| $c_\lambda$ | 1 | 0 | 1   | 1   | 1   | 2 | -1  | -1   | 2   | 3   | 4    | 6   |
|-------------|---|---|-----|-----|-----|---|-----|------|-----|-----|------|-----|
| $C_V$       | 1 | 1 | 0.9 | 1   | 1   | 1 | 0.9 | 1.05 | 0.9 | 1.1 | 0.95 | 1.1 |
| $C_{2V}$    | 1 | 1 | 1   | 0.5 | 1.5 | 1 | 1.5 | 1.3  | 1.4 | 0.5 | 0.5  | 1   |



# **Distributions: Higgs-** $p_T$





Introduction EFTs for VBF-HH Framwork: Whizard+GoSam

Note:  $p_T$  of any Higgs  $\Rightarrow$  two histrogram entries per event

- SM: Max. around 100 GeV, exponentially falling tail.
- Doubling  $c_{\lambda}$  has no significant effect, slight reduction for low  $p_T$ .
- $c_{2V} = 1.5$  (upper exp. bound) enhances tail drastically. Reduction in low  $p_T$ . Shifts maximum.
- $c_V = 0.9$  (lower exp. bound) similar as previous, does not shift maximum.
- All c<sub>i</sub> at exp. boundaries: enhancements in tail and in first bin, reduction in second and third bin.

Process setup and validation

Phenomenology

Summary and Outlook

# Distributions: Higgs pair invariant mass





- SM: broad max. around 400 GeV, exponentially falling tail.
- Switching of triple *h* coupling has almost no effect on tail. Increases low *m<sub>hh</sub>* significantly.
- $c_{2V} = 1.5$  (upper exp. bound) flattens distribution. Large enhancements in the tail.
- $c_V = 0.9$  (lower exp. bound) similar as previous, but ovearll reduction of the cross-section, except for high  $m_{hh}$
- All  $c_i$  at exp. boundaries: enhancements for low and high  $m_{hh}$ . Dip around 400 GeV.

Introduction EFTs for VBF-HH occose Process setup and validation occose occose

# Distributions: Higgs pair rapidity separation





- SM: low rap.-separation suppressed, peaks around ±2.5.
- $c_V = 0.9$  (lower exp. bound) very different from SM. Low rapidity-separation favoured.
- Larger  $c_{\lambda}$ , smaller  $c_V$ ,  $c_{2V}$ : similar as previous, much larger peak.
- $c_{2V} = 0.5$  (lower exp. bound) even larger shape distortions, large overall enhancement.



# **Distributions: Higgs pair separation**



$$\Delta R = \sqrt{\Delta \eta^2 + \Delta \Phi^2}$$

- = SM: form of  $\Delta \eta$  distr. decisive: low  $\Delta R$  suppressed, peak at  $\Delta R \approx 3.5$ .
- =  $c_V = 0.9$  (lower exp. bound): clear peak at  $\Delta R \approx 3$ , overall suppression.
- $c_{2V} = 1.5$  (upper exp. bound) clear peak at  $\Delta R \approx 3$ , enhancement for low  $\Delta R$ , suppression for high  $\Delta R$ .
- = Larger  $c_{\lambda}$ , smaller  $c_{V}$ ,  $c_{2V}$ : high  $\Delta R$  comparable to SM, but low  $\Delta R$  region enhanced.

Introduction EFTs for VBF-HH concerned to the set of th

# **Distributions: Higgs pair separation**




## Conclusions



- Identified leading HEFT operators for VBF-HH at NLO QCD
  - $\mapsto$  Three anomalous couplings  $c_{\lambda}$ ,  $c_{V}$ ,  $c_{2V}$  (corresponds to  $\kappa$ -framework)
  - $\mapsto$  Sub-leading operators will be relevant at NLO EW
- Updated Whizard-GoSam interface to investigate HEFT effects
- Determined set of coefficients A<sub>i</sub>: total cross section for arbitrary values of the anom. couplings → Large enhancements wrt. SM cross section possible
- Observe significant shape distortions in distributions for anomalous couplings within allowed range

### Conclusions



- Identified leading HEFT operators for VBF-HH at NLO QCD
  - $\mapsto$  Three anomalous couplings  $c_{\lambda}$ ,  $c_{V}$ ,  $c_{2V}$  (corresponds to  $\kappa$ -framework)
  - $\mapsto$  Sub-leading operators will be relevant at NLO EW
- Updated Whizard-GoSam interface to investigate HEFT effects
- Determined set of coefficients A<sub>i</sub>: total cross section for arbitrary values of the anom. couplings → Large enhancements wrt. SM cross section possible
- Observe significant shape distortions in distributions for anomalous couplings within allowed range

### Possible further studies

- Consider possible constraints from unitarity
- Add Higgs decays

### Add NLO EW (a lot of work...)

Introduction oco EFTs for VBF-HH oco oco oco Framwork: Whizard+GoSam oco Process setup and validation oco oco Summary and Outlook

# Conclusions



- Identified leading HEFT operators for VBF-HH at NLO QCD
  - $\mapsto$  Three anomalous couplings  $c_{\lambda}$ ,  $c_{V}$ ,  $c_{2V}$  (corresponds to  $\kappa$ -framework)
  - ightarrow Sub-leading operators will be relevant at NLO EW
- Updated Whizard-GoSam interface to investigate HEFT effects
- Determined set of coefficients A<sub>i</sub>: tota → Large enhancements wrt. SM cros

# Thank you!

values of the anom. couplings

Observe significant shape distortions in distributions for anomalous couplings within allowed range

### Possible further studies

- Consider possible constraints from unitarity
- Add Higgs decays

#### Add NLO EW (a lot of work...)

Introduction Constraints EFTs for VBF-HH Constraints Whizard+GoSam Constraints Constraints

Institute for Theoretical Physics (ITP)