

AMPEL

repeatable, scalable, modular **analysis** of data streams

- Use cases
- Motivation and methodology
- [How does it work]

Particles, Universe, NuClei and Hadrons for the NFDI

42 Partners Representing close to 10000 scientists in Germany (KAT, KET, KHuK, RdS)

- Real-time stream analysis
- Modular software development
- Heterogeneous input sources
- Fine grained provenance
- Analysis variants of same data
- Code-to-data in science

Image: https://dbconvert.com/blog/data-stream-processing/

Systematic execution of analysis units while taking care of provenance, data storage & logging.

- Real-time stream analysis
- Modular software development
- Heterogeneous input sources
- Fine grained provenance
- Analysis variants of same data
- Code-to-data in science

4

- Real-time stream analysis
- Modular software development
- Heterogeneous input sources
- Fine grained provenance
- Analysis variants of same data
- Code-to-data in science

- Real-time stream analysis
- Modular software development
- Heterogeneous input sources
- Fine grained provenance
- Analysis variants of same data
- Code-to-data in science

- Real-time stream analysis
- Modular software development
- Heterogeneous input sources
- Fine grained provenance
- Analysis variants of same data
- Code-to-data in science

- Real-time stream analysis
- Modular software development
- Heterogeneous input sources
- Fine grained provenance
- Analysis variants of same data
- Code-to-data in science

Dark Energy accelerated expansion

sciencenotes.org

New energy regime

General Relativity - when does it break?

Different detectors

Different detectors

Tidal Disruption Event

Test of:

- General Relativity
- Structure formation
- Neutrino emission
- [Dark Matter / Energy]

https://doi.org/10.1038/s41550-020-01295-8 https://doi.org/10.1103/PhysRevLett.128.221101

2025

LSST

Needle in a haystack:

- Searching among billions of galaxies every night.
- Multiple telescopes / streams.
- Yield millions of real but "boring" astronomical variables.
- Gravitational waves & neutrinos.

Needle in a haystack:

- Searching among billions of galaxies every night.
- Multiple telescopes / streams.
- Yield millions of real but "boring" astronomical variables.
- Gravitational waves & neutrinos.

LIGO/Virgo Gravitational Wave telescopes.

PUNCH4NFDI outlook

Future radio telescopes produce 157 TB/s

https://zenodo.org/records/10692169

Methods for managing data irreversibility

The promise:

Sensitive real-time detectors allow us to use the Universe to test fundamental physical laws.

The problem:

These create high throughput data streams that are too large for scientists to use for scientific exploration.

AMPEL is a

{methodology, workflow manager, real-time system}

where:

- Scientists develop analysis algorithms.
- Instrument specialists design input feeds.
- Software designers create a scalable system.

Provenance and reproducibility is built in from the start.

Deconstruct workflow into types of operations:

- Add: Select measurements from detectors.
- **Combine**: Aggregate knowledge regarding one object at some time.
- Augment: Derive values, e.g. TDE probability.
- React: Real-time request for detailed observations.

Different detectors

Deconstruct workflow into types of operations:

- Add: Select measurements from detectors.
- **Combine**: Aggregate knowledge regarding one object at some time.
- Augment: Derive values, e.g. TDE probability.
- React: Real-time request for detailed observations.

Deconstruct workflow into types of operations:

- Add, Combine, Augment, React.

Unique input/output, specified by abstract classes

Scientist:

Domain interpretation

System engineer: Task schedule interpretation

A full science workflow constructed through:

✤ Unit libraries (e.g. github repositories)

Analysis schema constructed from units at all tiers (with configuration).

Application agnostic execution of workflows:

- Locally (development, reproduction)
- Parallel (real-time optimized)

AMPEL Core methods, optimized for database storage & provenance, manages input/output.

AMPEL Workers orchestrating unit execution.

Contributed analysis modules from different science groups are automatically detected.

Application agnostic execution of workflows:

- Locally (development, reproduction)
- Parallel (real-time optimized)

AMPEL Core methods, optimized for database storage & provenance, manages input/output.

AMPEL Workers orchestrating unit execution.

Contributed analysis modules from different science groups are automatically detected.

Real-time system: The DESY Live AMPEL Instance

3

Continuously probing alert streams for exciting interest for different science programs, triggering real-time responses. Hosted by DESY Zeuthen Computer Center.

Provenance & FAIR workflows

Records (data, states and results) are immutable objects.

The configuration of every operation (software versions, parameters) is recorded with the data.

A workflow (jobfile) can be published, distributed and executed at a HPC.

Gory details

- Open source Python code: <u>https://github.com/AmpelProject</u>
- NoSQL (Mongo DB) database setup, including provenance-only collections.
- Two execution modes: sequential (local), parallel (at compute center).
- Modular integration through type hints, Pydantic, Renovate/continuous integration.
- Authorization via GitHub (orgs, teams, individual users).
- Rest API for remote access to results / catalogs.

AMPEL Workflow design process

Systematic execution of analysis units while taking care of provenance, data storage & logging.

- Real-time stream analysis
- Modular software development
- Heterogeneous input sources
- Fine grained provenance
- Analysis variants of same data
- Code-to-data in science

27

Install AMPEL locally

Create a python 3.10 environment w. poetry and:

- git clone https://github.com/AmpelAstro/Ampel-HU-astro.git
- cd Ampel-HU-astro/
- poetry install -E "ztf sncosmo extcats notebook elasticc"

Allows to run demo notebooks

- cd notebooks
- poetry run jupyter notebook

Includes accessing archived or new ZTF alerts, running existing ML models and sample AMPEL units.

Summary

Astronomical transients allow us to use the Universe to test fundamental physics & cosmology.

Data streams are large and heterogeneous - AMPEL was constructed to allow FAIR, flexible and scalable analysis of real-time data streams.

AMPEL Core is domain agnostic and open source: Any analysis working with multiple data sources can create their AMPEL interface to allow repeatable, modular analysis schema.

More information:

- Overview: <u>https://doi.org/10.1051/0004-6361/201935634</u>
- Contact: jnordin@physik.hu-berlin.de or ampel-info@desy.de
- PUNCH4NFDI tutorials

Deconstruct workflow into types of operations:

- Add, Combine, Augment, React.

Four separate execution layers, each defined by an input/output interface (in Python).

Domain experts develop fully-specified algorithms at each tier.

class	AbsTiedStateT2Unit(Generic[T], AbsTiedT2Unit, abstract=True):
	A T2 unit bound to a :class:`~ampel.content.TiDocument.TiDocument` (state of a stock),
	as well as the results of other 12 units
	<pre>t2_dependency: Sequence[StateT2Dependency[T]]</pre>
	@abstractmethod
	<pre>def process(self,</pre>
	compound: T1Document,
	<pre>datapoints: Sequence[DataPoint],</pre>
	t2_views: Sequence[T2DocView]
) -> UBson UnitResult:
	Returned object should contain computed science results to be saved into the DB.
	note:: the returned dict must have only string keys and be BSON-encodable

Deconstruct workflow into types of operations:

- Add, Combine, Augment, React.

Four separate execution layers, each defined by an input/output interface (in Python).

Domain experts develop fully-specified algorithms at each tier.

Deconstruct workflow into types of operations:

- Add, Combine, Augment, React.

Four separate execution layers, each defined by an input/output interface (in Python).

Domain experts develop fully-specified algorithms at each tier.

Users construct analysis schema through combining units.

Deconstruct workflow into kinds operations:

- Add, Combine, Augment, React.

Four separate execution layers, each defined by [python] input/output method definitions.

Domain experts develop fully specified algorithms at each tier.

```
class AbsTiedStateT2Unit(Generic[T], AbsTiedT2Unit, abstract=True):
        .....
        A T2 unit bound to a :class: `-ampel.content.T1Document.T1Document` (state of a stock),
        as well as the results of other T2 units
        .....
        t2_dependency: Sequence[StateT2Dependency[T]]
        @abstractmethod
        def process(self,
                compound: T1Document,
                datapoints: Sequence[DataPoint],
                t2 views: Sequence[T2DocView]
        ) -> UBson | UnitResult:
                .....
                Returned object should contain computed science results to be saved into the DB.
                .. note:: the returned dict must have only string keys and be BSON-encodable
                .....
```


Needle in a haystack:

- Searching among billions of galaxies every night.
- Yield millions of real but "boring" astronomical variables.
- Multiple telescopes + streams.
- Gravitational waves & neutrinos.
- Individual scientists.

Software developers design how:

- Data is being provided and read from units.
- Operations are parallelized & scaled.
- Workers orchestrate unit execution.

Provenance & reproducibility by default:

- Schema, configurations & software versions recorded at every run.
- State mechanism records knowledge develop with time.

Any analysis constructed from operations of four different *kinds*.

Any analysis constructed from operations of four different *kinds*.

Any analysis constructed from operations of four different *kinds*.

Any analysis constructed from operations of four different *kinds*.

```
class AbsTiedStateT2Unit(Generic[T], AbsTiedT2Unit, abstract=True):
        .....
       A T2 unit bound to a :class: `-ampel.content.T1Document.T1Document` (state of a stock),
        as well as the results of other T2 units
        .....
        t2_dependency: Sequence[StateT2Dependency[T]]
        @abstractmethod
        def process(self,
                compound: T1Document,
                datapoints: Sequence[DataPoint],
                t2 views: Sequence[T2DocView]
        ) -> UBson | UnitResult:
                .....
                Returned object should contain computed science results to be saved into the DB.
                .. note:: the returned dict must have only string keys and be BSON-encodable
                .....
```


Certain explosive, transient events carry distinct information regarding distances, energies & conditions across space.

Kilonovae Optical counterparts to GWs

Tidal Disruption Events Stars ripped by black holes

Type la supernovae

Standardizable thermal detonations

Optical all-sky surveys

Detector development allows the full sky to be monitored to greater cosmological distances.

The Zwicky Transient Facility detects >100 000 transients / night.

Optical all-sky surveys

Si detector development allows the full sky to be monitored, to ever greater depth.

LSST will starting 2025 deliver >10x more.

Optical all-sky surveys

Si detector development allows the full sky to be monitored, to ever greater depth.

LSST will discover transients from throughout most of our Universe's history.

Gravitational waves & ghost particles

Non-photon based telescopes:

LIGO/Virgo Gravitational Wave telescopes.

IceCube neutrino observatory.

Development continues

Future radio telescopes produce 157 TB/s

NEW TECHNOLOGIES FOR THE HIGH-LUMINOSITY LHC

250 million million proton collisions / yr @ LHC

Workflow management

Modularity / Flexibility

- Model plug-in
- Same setup for offline / online
- Core modules astro "agnostic"

Provenance

- Automatic version/config store
- Built in log classes
- Reproducible workflows
- Deduplication

Operational

- Data archives
- LSST / ZTF / Ultrasat broker
- Dev + cluster workflow environments

Jakob Nordin @ MMA Görlitz 20474

S1: MM 101 - finding Kilonovae

From GW to follow-up with autonomous "kilonovaness" calculation

Jakob Nordin @ MMA Görlitz 2024 -484

S2: Searching for Gravitationally Lensed Supernovae

N. Ahrendse

- Potential key to the Hubble tension.
- Sneak peek into the early Universe
- Now found in systematic, large-volume searches.

Jakob Nordin @ MMA Görlitz 2024 - 5

S3: Tidal Disruption Events and neutrino emission

BERLIN.

Jakob Nordin @ MMA Görlitz 2024 - 6

S4: Bulk flows - where are we going?

Jakob Nordin @ MMA Görlitz 2024 - 7

How does it work:

- An analysis divided into module, each living in a separate tier.
- Instrument specialists design input feeds.
- Software designers create a scalable systems.

Throughout provenance and reproducibility is built in from the ground.

You do

- Encode "your" algorithm as python module, implementing a set of I/O methods.
- Create workflow through a chain of modules.
- Run on test data locally.

```
class T2XgbClassifier(AbsTiedStateT2Unit):
    """
Load a series of xgboost classifier models (distinguished by number
    of detections) and return a classification.
Will test whether the first (null) model of the loaded classifier is
    more likely, P(model 0)>0.5. What this means is determined by the training.
E.g. For the elasticc1v2 model, the null model corresponds to Elasticc class 1
    (and model 1 to class 2.)
"""
```

You do

- Encode "your" algorithm as python module, implementing a set of I/O methods.
- Create workflow through a chain of modules.
- Run on test data locally.

You do

- Encode "your" algorithm as python module, implementing a set of I/O methods.
- Create workflow through a chain of modules.
- Run on test data locally.

AMPEL does

- Access to (field standard) data sources.
- Scaling (local or remote).
- Guaranteed provenance.
- Reproducibility / code sharing.

2 Merging user contributions

AMPEL Core:

- Workers at each tier executes units with requested input, allowing system control and parallelisation.
- Results stored in NoSQL (Mongo) DB.
- Built-in provenance tracking (event journal, logs and jobs)

Execute a job:

- locally to develop,
- at a cluster for large-volume archive runs
- in a live instance to analyze real-time data

Ampelcore

A.-interface

A.-alerts

A.-photometry

A.-ZTF

*Contrib User designed units

Sum up:

- Exciting science goals!
- Need to react fast.
- Multiple, high throughput alert streams.
- A sociology with small, independent research groups each doing their own thing.

A huge information management challenge! Who did what why using which algorithm?

AMPEL design goals:

Let people do what they are best at:

- Scientist tune their detection algorithms.
- Instrument specialists design input feeds.
- Software designers create a scalable systems.

Throughout provenance and reproducibility is built in from the ground.

AMPEL in astrophysics today

- Analysis engine for real-time reactions and multi-messenger astronomical analysis.
- Central hub for current and future large astronomical observatories: ZTF, VRO, Ligo/Virgo, Icecube, Ultrasat, CTA ...
- Hosting parallel sequence of top of the line ML classifiers, critical for high throughput usage.
- Live instance maintained at DESY (Zeuthen)
- Maintained; ~ 10yr mission planning

Astrophysics III

- Iphone: 7.5mm^2
- ZTF: 40cm^2
- Neutrinos ("ghost particles") create in cosmic acceleration.

All explosive transient phenomena which suddenly appears.

ICECUDE

Astrophysics III

New observatories detect gravitational waves and r Module (DOM)

50 m

1450 n

2450 m 2820 m IceCube Digital Optical Module (DOM)

61

trophysics IV

ovae: thermonuclear detonation of a star. tron stars merge to form black hole. ost particles") create in cosmic acceleration.

ient phenomena which suddenly appears.

Vera Rubin Observatory:

- AMPEL one of six LSST endpoints
- Fast response w. ~80% ML classification (ELAsTiCC data challenge)
- Public German interface!

More streams:

• ULTRASAT / LS4 / GOTO / LVK-O4 / SKA / ...

Improved usability.

Jakob Nordin @ MMA Görlitz 2024 - ⁶³1

High Throughput Time-Domain Astronomy

The Zwicky Transient Facility already saturates what human observers can parse, understand & publish (8000+ SNIa, 2000+ other SN).

~	1	million	alerts	per	night
	÷.		aterts	PCI	mgm

~ 10 million alerts per night

~ 1TB / night 🕞 _____ ~ 20TB / night

~ Data rate of 2 TB/s _____ ~ Data rate of 157 TB/s

Cosmic Neutrino Group:

IceCube (see Summer's talk)

- Real-time Multi-Messenger studies.
- Cosmology with Type Ia supernovae.
- **Era of small, robotic telescopes.**
- □ ML classification of transients.
- □ AMPEL platform.

ML classification of transients

ML methods needed to respond to detection "torrent". Current generation based on combined encoder+decoder models, boosted decision trees, domain specific feature extraction and noise augmentation.

Models provided the best scores during the ELaSTiCC data challenge simulation of the LSST survey.

... one more thing

Everything is better in the UV

In principle,

- Sensitivity to hot, fast transients
- Large field of view
- Good resolution

... just need to escape the atmosphere

High Luminosity LHC – advanced resource needs

Developments for reconstruction of

- Increased data rates
- Larger data volumes
- More complex signals

- Resource needs compared to ongoing Run-3 increase be a factor 10 to 60
- CPU capacity can increase
 ~ 10%/year

High-throughput data processing on GPUs – ALICE

Overview of the ALICE detector dataflow. All detector front-end cards are read out and readout nodes are connected to the **EPN farm**. Here **data processing** takes place on **GPUs**. Output is transferred to the CERN distributed storage system, EOS. Credit: ALICE collab.

> Processing of data rates of TB/s on a GPU cluster

Visualisation of a 2 ms time frame of PbPb collisions at 50 kHz interaction rate in ALICE Time Projection Chamber, showing **tracks from different primary collisions in different colours**. Credit: ALICE collab.