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Outline

Two questions for today

What does the concept of probability mean for you as a person?

→ Scientific reasoning

→ Probability and Bayes Theorem

How can Bayesian quantities be computed?

→ Markov Chain Monte Carlo

→ A concrete example
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What do you conclude?
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Source: ATLAS 
collaboration



What do you conclude?
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The Standard Model describes the
data over ca. 14 orders of magnitude

Source: ATLAS 
collaboration



What do you conclude?
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2011 2015 2016/17
Phys. Lett. B 713 (2012) 17 ATLAS-CONF-2015-081 Source: LHCb

Standard
Model



What do you conclude?
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2011

“No, can't be...”
“Could have been, but
wasn't confirmed”

“Mh, really?”

2015 2016/17
Phys. Lett. B 713 (2012) 17 ATLAS-CONF-2015-081 Source: LHCb



Scientific reasoning
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Scientific reasoning

Typical questions (and tasks) in (HEP) data analysis:

Given a model, what are the values of its free parameters?

→ Parameter estimation

Is the given model consistent with the data?

→ Goodness-of-fit

Which of the many models available describes the data best?

→ Model comparison

➔ All three tasks are associated with meaningful probabilities 
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Scientific reasoning

Deductive reasoning

• Used when making predictions from a model

• Application in HEP:
• Premise: model with parameters → Conclusion: predictions of observables

• Example:
• Premise: The SM is correct (Lagrangian, perturbation theory, Fermis Golden rule, …)

• Conclusion: a clear prediction for the cross section of a process, e.g. pp → Higgs

• Comments:
• Given a model, the outcome is uniquely specified

• No need to argue, it’s math!
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Scientific reasoning

Inductive reasoning

• Used when choosing a model

• Application in HEP:
• Premise: model A with parameters → Conclusion: predictions of observables O

• Revise the logic: Starting from a measurement O, what does it say about the model? 
Not much since it could have been A → O, A’ → O, A’’ → O, ...

• Validity of model A?
• If we know all models, and only A results in O, then we know that A is true.

• Otherwise, we can not verify the model.

• Can try to falsify the model: if we observe something that contradicts the model, it 
can not be true

• Can we know which model is true? No!
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Scientific reasoning

Inductive reasoning

Are you sure it is the Higgs boson?
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Scientific reasoning

Knowledge

• Analytical philosophy (Plato?): knowledge
is justified true belief.

• S knows that P if and only if
• P is true,

• S believes P to be true, and

• this belief is justified.

• Discussion known as the Gettier problem

• Justification comes from observations:
• Test model predictions

• The more tests are passed, the greater the 
belief in the model...
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Scientific reasoning

Knowledge
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is justified true belief.
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“A particle consistent with the Higgs 
boson” → “The Higgs boson”



Scientific reasoning

Knowledge

• How do we gain knowledge?
• Set up models and specify their parameters (check arXiv.org!)

• Derive (deductively) predictions from the models

• Good model: falsifiable, make predictions which can be proven wrong (Z' vs. SUSY vs. 
string theory)

• Use data to gain knowledge about the models and their parameters

• Examples:
• Special relativity predicts time dilation. Atmospheric muons can thus be observed on 

the earth’s surface.

• Neutrino postulation: Pauli was hesitant to publish his neutrino idea because he 
thought it would be difficult to discover.

• Can we quantify the knowledge about a model? Yes, use probabilities
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Probability and Bayes Theorem
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Probability and Bayes Theorem

Axioms and interpretations

Kolmogorov axioms: start from a set S
1. For each subset A, assign probability P(A) between 0 and 1

2. Probability P(S)=1

3. For disjunct subsets A and B:

Nice mathematic formulation, but meaningless!

Law of total probability:
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𝑃 𝐴 ∪ 𝐵 = 𝑃 𝐴 + 𝑃(𝐵)

𝑃 𝐵 =𝑃(𝐵|𝐴𝑖) ∙ 𝑃(𝐴𝑖)



Probability and Bayes Theorem

Kolmogorov axioms
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𝑃 𝐴 ≥ 0,… 𝐴 ∩ 𝐵 = ∅,…

𝑆 = 𝐴 ∪ 𝐵 ∪ 𝐶 ∪ 𝐷

𝑃 𝑆 = 𝑃 𝐴 + 𝑃 𝐵 + 𝑃 𝐶 + 𝑃 𝐷 = 1

𝑃 𝐵 =𝑃(𝐵|𝐴𝑖) ∙ 𝑃(𝐴𝑖)

= 𝑃 𝐵 𝐴1 ∙ 𝑃 𝐴2 + …+ 𝑃(𝐵|𝐴5) ∙ 𝑃(𝐴5)

= 0



Probability and Bayes Theorem

Bayesian interpretation

• Subsets correspond to hypotheses, i.e. a model with a particular value of the 
parameter.

• Probability is understood as degree-of-belief (or state-of-knowledge) for 
this hypothesis to be true

• Interpretation fully consistent with Kolmogorov axioms.

• Gives meaning to the term probability.

• Examples:
• Probability that it will rain tomorrow

• SM and the masses of particles
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Probability and Bayes Theorem

Bayes Theorem
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A

B

S

AB

𝑃 𝐴|𝐵 ∙ 𝑃 𝐵 = 𝑃 𝐴 ∩ 𝐵 = 𝑃 𝐵 𝐴 ∙ 𝑃 𝐴

 𝑃 𝐴 𝐵 =
𝑃(𝐵|𝐴)∙𝑃(𝐴)

𝑃(𝐵)

 𝑃 𝐴 𝐵 =
𝑃(𝐵|𝐴)∙𝑃(𝐴)

σ 𝑃(𝐵|𝐴𝑖)∙𝑃(𝐴𝑖)



Probability and Bayes Theorem

Bayes Theorem

Here:

P(model | data): posterior probability (induction)

P(data | model): probability of the data, likelihood (deduction)

P(model): prior probability

In words: “My degree-of-belief of the model (given the data) is x%”
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𝑃 𝐴|𝐵 ∙ 𝑃 𝐵 = 𝑃 𝐴 ∩ 𝐵 = 𝑃 𝐵 𝐴 ∙ 𝑃 𝐴

 𝑃 𝐴 𝐵 =
𝑃(𝐵|𝐴)∙𝑃(𝐴)

𝑃(𝐵)

 𝑃 𝐴 𝐵 =
𝑃(𝐵|𝐴)∙𝑃(𝐴)

σ 𝑃(𝐵|𝐴𝑖)∙𝑃(𝐴𝑖)

𝑃(model│data)~𝑃(data|model) ∙ 𝑃(model)



Probability and Bayes Theorem

Bayes Theorem – An example: counting experiment

• Consider the search for a rare process,
e.g. two-Higgs-production

• Assume that there is no background

• The number of observed events N is
Poisson-distributed around the
expected number λ:

• The expected number of events can
be estimated using Bayes’ Theorem.

• Since λ is continuous, so is the
probability (density):
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𝑃 𝑁 λ =
λ𝑁

𝑁!
𝑒−λ

𝑃(λ|𝑁) =

λ𝑁

𝑁!
𝑒−λ ∙ 𝑝(λ)

0
λmax λ𝑁

𝑁!
𝑒−λ ∙ 𝑝 λ dλ



Probability and Bayes Theorem

Bayes Theorem – An example: counting experiment

• Assume further N=5 observed events

• What can we put as prior for λ?

• For now: assume all values to be
equally likely (uniform prior)

• Result: “The parameter value lies in
an interval [3, 7.5] with 68.3%
probability.”

Pro: there is no funny construction!

Con: What if we have chosen a different
prior?
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Probability and Bayes Theorem

Prior probabilities

“A Bayesian is one who, vaguely expecting a horse, and catching a glimpse of a 
donkey, strongly believes he has seen a mule” – Stephen Senn, Statistician & 
Bayesian Skeptic (mostly)
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Probability and Bayes Theorem

Prior probabilities

• Where does prior knowledge come from?

• Prior knowledge can come from
• personal degree-of-belief (“gut feeling”, “physics intuition”, prejudice (“do you want

SUSY to be true?”, …),

• theoretical considerations (masses cannot be negative, charges are quantized, …),

• auxiliary measurements, …

• … good arguments … (in the best case)

• Examples:
• Physical constraints, e.g. positive cross-sections, unitarity, …

• Measurement of background contributions in counting experiments

• Considering other types of measurements, e.g. searches for Dark Matter at colliders 
vs. direct-detection experiments
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Probability and Bayes Theorem

Prior probabilities

• Elegant update of knowledge:
• posterior of one experiment can be prior of another experiment.

• Natural way to combine measurements.

• Reflects human way of learning
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𝑃 model DS1 ~ 𝑃 DS1 model ∙ 𝑃 model

𝑃 model DS2 ~ 𝑃 DS2 model ∙ 𝑃′ model

𝑃′ model = 𝑃 DS1 model ∙ 𝑃 model

𝑃 model|DS2 = 𝑃 DS1 model ∙ 𝑃 DS2 model ∙ 𝑃 model
= 𝑃 model DS1, DS2



Probability and Bayes Theorem

Prior probabilities - criticism

• Priors are subjective
• Yes, but it is made explicit

• Objective Bayesian movement, try to 
find objective priors

• reference priors minimize the 
“information”

• Prior depends on parametrization
• Example: lifetime τ vs. decay constant 

λ=1/τ

• Jeffreys prior invariant under re-
parameterization
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Prior probabilities - remarks

• Choice of (initial) prior should not 
play a strong role.

• Difficult to formulate one prior for a 
collaboration of about 3.000 people

• Practical solution: Requote your 
result with different priors (“the 
optimist”, “the pessimist”, “the 
ignorant”, ...)

• Write down your prior!



Probability and Bayes Theorem

Prior probabilities – an example

• Assume a model with a free parameter 𝑥0 = 0.75

• Likelihood: Gaussian with mean value between 0 and 1 and std. dev. of 0.1

• Priors: optimistic vs. pessimistic

→ Slightly different posteriors after one event.
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Prior probabilities – an example

• Assume a model with a free parameter x0=0.75

• Likelihood: Gaussian with mean value between 0 and 1 and std of 0.1

• Priors: optimistic vs. pessimistic

→ About the same posterior after 100 events

.

Probability and Bayes Theorem
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Markov Chain Monte Carlo
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Markov Chain Monte Carlo

Numerical considerations

• Point estimate for parameters:
• Maximization of posterior

• Typical tool: Minuit

• Also: Simulated annealing

• Calculation of marginal distributions:
• Analytical solutions usually difficult

• Numerical integration methods

• Sampling methods:
• Hit&miss, simple Monte Carlo, ...

• Importance sampling

• Markov Chain Monte Carlo (MCMC)
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• Model comparison:
• Analytical solutions usually difficult

• Numerical integration methods, e.g. 
VEGAS

MCMC Methods and computing 
resources have made Bayesian 
computation possible



Markov Chain Monte Carlo

How does Markov Chain Monte Carlo work?

• Output of Bayesian analyses are posterior probability densities, i.e., 
functions of an arbitrary number of parameters (dimensions)

• Sampling large dimensional functions is difficult

• Idea: use random walk biased towards region of  larger values (probabilities)

• Metropolis algorithm: N. Metropolis et al., J. Chem. Phys. 21 (1953) 1087

28.02.2025 Terascale Statistics School 2025, DESY Modern Bayesian inference in practice - 31-

• Start at some randomly chosen xi

• Randomly generate y around xi

• If f(y) > f(xi) set xi+1 = y
• If f(y) < f(xi) set xi+1 = y with prob. p=f(y)/f(xi)
• If y is not accepted set xi+1 = xi

• Start over



Markov Chain Monte Carlo

Remarks on MCMC

• In general: MCMC is a class of algorithms that is used 
for drawing samples from a distribution in the form 
of a Markov Chain

• The elements of the Markov Chain approximate the 
underlying distribution

• There are a lot for concrete MCMC algorithms on the 
market, e.g. Metropolis, Gibbs sampling, 
Hamiltonian Monte Carlo, etc.

• Efficient algorithms for high-dimensional sampling, 
but comes with some limitations, e.g. auto-
correlation and multimodal distributions
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Source: Wikipedia (Joxemai4)



Markov Chain Monte Carlo

MCMC for Bayesian inference

• Use MCMC to sample the posterior
probability, i.e.

• Marginalization of posterior:

• Fill a histogram with just one
coordinate while sampling

• Error propagation: calculate any 
function of the parameters while
sampling
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𝑓 λ = 𝑝 𝐷 λ 𝑝 λ

𝑝 λ𝑖 𝐷 = න𝑝 𝐷 λ 𝑝 λ ෑ

𝑗

𝑛

dλ𝑗



A concrete example
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A concrete example

Applications

• Various applications of Bayesian reasoning

• Focus on problems for which the posterior
is not well behaved

• Large (>3) number of dimensions 

• Multimodal distributions

• Distributions with non-linear correlations

• Examples include
• Fitting of Wilson coefficients in SMEFT (O(14) parameters and O(30) 

measurements)

• Tuning of Monte Carlo generators (8 parameters and O(100) measurements)

• Using MCMC for event generation (>13 parameters)
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Eur. Phys. J. C 80 (2020) 136



A concrete example

Event generators

• Programs to calculate an ensemble of collider events on the parton and/or 
particle level, e.g. Pythia, Herwig, MadGraph, Sherpa, …

• Input: usually prescription for the SM with a certain precision (mostly NLO 
plus some corrections), rare decays, special processes, BSM physics, …

• Come with free parameters that need adjustment (“tuning”) to data
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A concrete example

Example: Tuning the Herwig event generator

• Herwig: Multi-purpose event generator including showering

• Consider only a subset of the free parameters: 𝝀

• Consider O(100) data distributions from LEP (e+e-): 𝑫
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Side remark:
this is prior knowledge

JINST 18 (2023) 10033



A concrete example

Procedure

1. Parameterize observables as a function of the free parameters

2. Formulate a likelihood

3. Formulate your prior knowledge

4. Perform the fit

5. Recalculation of the observables assuming the tuned values
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A concrete example

1. Parameterize observables as a function of the free parameters

• Predictions 𝒇 𝝀 are parameterized by multidimensional cubic polynomials
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A concrete example

2. Formulate a likelihood

• Assume (symmetric) Gaussian uncertainties for each measurement

• Consider possible correlations among measurements, e.g. from luminosity, 
detector effects, theory uncertainties

• Likelihood:

3. Formulate your prior knowledge

• Assume uniform priors for all parameters
28.02.2025 Terascale Statistics School 2025, DESY Modern Bayesian inference in practice - 40-

ln 𝐿 𝐷 Ԧ𝜆 = −
1

2
𝐷 − Ԧ𝑓 Ԧ𝜆

𝑇
∙ 𝑀−1 ∙ 𝐷 − Ԧ𝑓 Ԧ𝜆

data (vector of measured values) parameters

prediction as a function of the parameters 

covariance matrix



A concrete example

4. Perform the fit
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https://github.com/bat/BAT.jl



A concrete example

5. Recalculation of the observables assuming the tuned values

• Use the global mode and do uncertainty propagation respecting the 
correlations (“uncertainty on the tuned values”)
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A concrete example

Some remarks

• Tuning of event generators is parameter estimation
• Point estimation

• Interval estimation

• One could do more, e.g.
• Hypothesis testing: does the event generator describe the data well?

• Model comparison: which event generator does a better job in describing the data?

• Data quality: are all data sets consistent with each other?

• ...

• Very good application for Bayesian reasoning!
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Conclusion

Two answers for today

What does the concept of probability mean for you as a person?

→ Scientific reasoning

→ Probability and Bayes Theorem

How can Bayesian quantities be computed?

→ Markov Chain Monte Carlo

→ A concrete example
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