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The likelihood ratio (LR) plays an important role in statistics and many domains of science. The Neyman-
Pearson lemma states that it is themost powerful test statistic for simple statistical hypothesis testing problems
[1] or binary classification problems. Likelihood ratios are also key to Monte Carlo importance sampling
techniques [2]. Unfortunately, in many areas of study the probability densities comprising the likelihood
ratio are defined by implicit models, and so are intractable to compute explicitly [3].

Neural based LR estimation using probabilistic classification has therefore had a significant impact in these
domains, providing a scalable method for determining an intractable LR from simulated datasets via the so-
called ratio trick [4, 5]. These approaches typically adhere to the standard Kolmogorov axioms of probability
theory [6]. In particular, they assume the first axiom: the probability of an event is a non-negative real number.
However, there are settings in which synthetically generated data (e.g. Monte Carlo sampling) {(xi, wi)}Ni=1

contains weights that are negative wi < 0 [7, 8]. These negative weights are a symptom of a class of distri-
bution known as quasiprobabilities, which do not adhere to the first Kolmogorov axiom. Consequently, the
probabilistic-like distribution has a negative density [9]; q(x) < 0 for some x.

In high energy physics, negative weights/densities are a commonly observed feature of Monte Carlo simulated
proton-proton (pp) collision datasets [10-13]. Whether it be due to quantum interference between Standard
Model and new physics processes, or algorithms that match/merge matrix element calculations of beyond
leading orderQuantum Chromodynamic processes with parton showers, Monte Carlo simulation codes often
introduce negatively weighted data.

This work will present a general approach to extending the neural based LR trick to quasiprobabilistic distribu-
tions. It will demonstrate that a new loss function, combined with signed probability measures (Hahn-Jordan
decomposition), can be used to decompose the likelihoods into signed mixture models. A quasiprobabilistic
analog of the Likelihood Ratio is then constructed using a ratio of signed mixture models. The technique is
demonstrated using di-Higgs production via gluon-gluon fusion in pp collisions at the Large Hadron Collider
[14].
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