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Outline

● Motivation
+ preliminaries: Renormalisation and Regularisation

● Anatomy of a higher-order QCD computation
● Virtual/Loop corrections
● Real emission corrections

● Systematic higher-order computations:
● Multi-loop computations 
● Subtraction schemes & infrared safety

● Higher-orders at hadron colliders:
● PDFs & factorization
● Phenomenology

Infrared singularities in e+e- → jets

NLO, NNLO and beyond



3

Credit: Wikipedia/CERN
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Scattering experiments
Large Hadron Collider (LHC)

Theory/
Standard Model 

Credit: CERN

What are the fundamental building blocks of matter?
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Collision events
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Theory picture of hadron collision events

Guiding principle: factorization
”What you see depends on the energy scale”

In Quantum Chromodynamics (QCD):

“Hadronization”/MPI/…
non-perturbative physics

Parton-shower/Resummation
all-order bridge between perturbative
and non-perturbative physics

Fixed-order perturbation theory
scattering of individual partons

+ PDF factorization
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LHC Precision era and future experiments

[Credit: CERN]

More precision for higher multiplicity processes:
→ theory needs to keep up!
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Precision predictions

Precision theory predictions

Fixed order
perturbation theory

Resummation

Parton-showers

Parametric input:
PDFs, couplings (     ), ...

Soft physics:
MPI, colour reconnection,
... Fragmentation/hadronisation

→ Core element of event
    simulation
→ Describes high Q  regime
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Precision through higher-order perturbation theory

[ATLAS 2301.09351]

Cross section = LO        + NLO     + NNLO + O(      )

Order
of

magnitude
O(10%) O(1%)Theory uncertainty:

Experimental precision reaches percent-level already at LHC
next-to-next-to-leading order QCD needed on theory side!

Example: ATLAS
multi-jet measurements

Fixed-order expansion
in the strong coupling
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NNLO QCD in collinear factorization

LO

NLO

NNLO

Partonic cross section in
perturbation theory:

Parton distribution functions
→ after the coffee break

Focus on higher-order QCD
→ dominant corrections at the LHC
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Preliminaries
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Conventions: QCD Lagrangian

Quantum Chromodynamics is a local gauge theory of six quarks

→ 3 fundamental indices or ‘colours’ (index:     )
→ 8 adjoint indices/generators or gluons (index:    ) 

structure constants normalization

‘Colour’ algebra:

+ gauge fixing terms (for completeness):
Covariant gauges (λ=1 Feynman, λ = 0 Landau)
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Conventions: Feynman rules

+ rule for loops:

Propagators

Vertices

Ghost propagator:

Gluon-ghost vertex:
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The strong coupling constant

In massless QCD the strong coupling constant is the only free parameter:

...

Measurement of R
→ measurement of
(in practise not the best observable) 
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UV renormalisation of the strong coupling

Consider cut-off regularization:

Ultra-violet divergence

Recover the full theory in the limit breaks Lorentz invariance :(

ghosts
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Dimensional regularization
Working with a cut-off is cumbersome: broken Lorenz invariance of amplitudes...

Commonly used alternative: dimensional regularization
→ working in
→ Keeps Lorentz and gauge invariance
→ Infrared divergences can be treated in the same way
→ Instead of logarithms we find poles:            for
→ Implementation:

→ modify momentum integrals
→ modified Lorentz and Dirac-algebra
→ rescaled coupling (dimensionless)
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Renormalisation of the strong coupling

Renormalization in QFTs:
● bare Lagrangian parameters are not physical quantities
● absorb (UV) divergences in parameter definition
● physical measurements fix the renormalized value

ghosts
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UV renormalization in QCD

Wave functions:

Coupling:

These introduce new diagrams in the perturbative expansions:
→ cancellation of all UV divergences

Scheme (massless QCD, covariant gauge):
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Renormalization group equations

The Lagrangian parameter now depend on an arbitrary scale
→ physical quantities do not, for example the R-ratio

scale dependence only
through 
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The running coupling

The renormalised coupling is fixed by experiment where we identify a reference scale
For example at the Z-pole: 

First order solution:

Beta-function:
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Asymptotic freedom & confinement

PDG

Confinement at small energy scales:
→ perturbation theory breaks downs
→ QCD bound states aka hadrons

Asymptotic freedom at high energies:
→ dynamics of individual quarks and gluons
→ good regime for perturbation theory 
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Anatomy of higher order QCD computations
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e+e- → jets: our higher-order QCD playground

Flux factor:

Fermi’s Golden Rule:

Lorentz Invariant Phase Space (LIPS):

Leading order cross section:
(only photon exchange)

quark electric charge
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Perturbative expansion

Next-to-leading order
(NLO)

Next-to-next-to-leading order 
(NNLO)
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e+e-: the virtual corrections

→ UV counter terms not needed at NLO QCD

In dimensional regularization:

After some algebra:
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Real corrections

Consider the following matrix element:
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Real corrections in 4 dimensions → IR limits exposed

3n-4=5 phase space dimensions → Integrate out two angles

A bit of phase space magic:

… reveals hidden treasure:
Singularities:
- collinear:
- soft: 

Regularize in dimensional regularization:
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Combined NLO QCD
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Kinoshita-Lee-Nauenberg Theorem

When calculating sufficiently inclusive observable quantities in
quantum field theory (like cross sections or decay rates), all infrared
(soft and collinear) divergences cancel out once you include every
process that is physically indistinguishable within the detector
resolution (i.e., summing over degenerate initial and final states).

This is ‘trivial’ for inclusive quantities like total cross sections,
but as soon we have to be careful as soon we want something more differential

Differential: not fully integrating over the phase space but only in some region of it
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R-ratio

At the Z-pole:
(this includes now also Z-boson exchange)
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Systematic higher order computations
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Systematics of loop computation

In principle we have all the building blocks to compute any loop diagram
but in practise algebra challenging → own line of research:
● number of Feynman diagrams grows fast with the loop-order and number of legs
● more particles lead to many kinematic scales … even more algebra
● how to evaluate appearing Feynman integrals?

Two-loop 5-point
[Abreu, Agarwal, Badger, Buccioni, Chawdhry, Chicherin,Czakon, de 
Laurenties, Febres-Cordero, Gambuti, Gehrmann, Henn, Lo Presti, 
Manteuffel, Ma, Mitov, Page, Peraro, Poncelet, Schabiner Sotnikov, 
Tancredi, Zhang,...]
Three-loop 4-point
[Bargiela, Dobadilla, Canko, Caola, Jakubcik, Gambuti, Gehrmann, Henn, 
Lim, Mella, Mistleberger, Wasser, Manteuffel, Syrrakow, Smirnov, 
Trancredi, ...]
Four-loop 3-point
[Henn, Lee, Manteuffel, Schabinger, Smirnov, Steinhauser,...]

Two important techniques
(you often will hear about in TH talks)

→ Integration-by-parts Identities
→ Master integral differential equations

State-of-the-art box
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Integration-By-Parts reduction
Rational functions of the kinematic invariants and

Scalar (or Feynman) integrals:

: squared propagators, for example

Number of loops
Number of propagators
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Integration-By-Parts Identities and reduction

This leads to large matrix (all coefficients are functions of the invariants and    )
→ can be solved for small number of so-called master integrals
→ Gaussian elimination → Laporta algorithm

does not change the integral since the boundaries are at infinity

Non-trivial in practise,
many refinements
in state-of-the-art
computations
→ huge computers...

The number of master integrals is typically much smaller (106 → 102)

Bonus feature of dimensional regularization:



35

Master integrals

How to deal with the master integrals?
→ Feynman parameters and related techniques
→ Method by regions: decompose the integral into its IR singularity structure

However, direct analytical integration is often not possible:
→ numerics
→ differential equations

Typically with smaller                    then generic integrals  → easier integrals
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Differential equations for master integrals

System of differential equations:
→ needs boundary conditions: kinematic limits, special points, numerics,….
→ often solved as expansion in
→ analytic solutions → special functions (Polylogarithms, Hypergeometric functions, …)
→ solve numerically as evolution from the boundary

Consider the derivative with respect to external kinematic invariants:

Recover Feynman integrals
→ use IBPs again



37

Automation at one-loop

Only part of loop amplitudes is need in practise 
→ needs understanding of the basis of all functions contributing to       : box, triangles, bubbles
→ ‘projection’ directly on this basis (up to rational terms)
→ numerical implementation: One-Loop-Providers (OLP)

→ OpenLoops
→ Recola
→ MadLoop
→ …

→ automation at two-loops?
→ one of the toughest problems of the higher order theory community at the moment
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Systematics of real emissions

How to deal with the real radiation contributions?
● phase space constraints make computations more complicated
● more particles imply more soft and collinear limits
● ‘observables’ might depend on the kinematics

→ how to reconcile this with the phase space integration?
→ eventually only a numerical approach can be practical!
→ but numerics in                         is tricky...
But how to get rid of the IR divergences?

factorization comes to the rescue...
Two types of limits: soft and collinear
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Systematics of real emissions: soft limits

Factorization of matrix elements in the soft limit (only for gluons)

In our e+e- example:

sum over colour-correlators: emissions from colour dipoles

[Keep in mind a factor of     from
 the phase space measure]
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Systematics of real emissions: collinear limits

Collinear limits in the Sudakov parametrization:

diagonal in colour space but gluon – splitting kernels induce spin-correlations
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Systematics of real emissions: collinear limits

The splitting functions depend on the flavours involved:

For e+e- example:
g collinear with quark
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Next-to-leading order case

Each term separately infrared (IR) divergent: 

Real corrections: Virtual corrections:

KLN theorem
sum is finite for sufficiently inclusive observables 
and regularization scheme independent

Phase space integration over unresolved configurations Integration over loop-momentum
(UV divergences cured by renormalization)

Measurement function
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IR singularities in real radiation

Finite function

Divergent

Regularization in Conventional Dimensional Regularization (CDR)

Cancellation against similar divergences in
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How to extract these poles? Slicing and Subtraction

Slicing

Central idea: Divergences arise from infrared (IR, soft/collinear) limits → Factorization!

Subtraction

Phase space factorization
→ momentum mappings

Most popular
NLO QCD schemes:
CS [hep-ph/9605323],
FKS [hep-ph/9512328]

→ Basis of modern
event simulation
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Slicing and Subtraction

Slicing

Subtraction

● Conceptually simple
● Recycling of lower computations
● Non-local cancellations/power-corrections

→ computationally expensive
● Comparatively easy to extend to N3LO

● Conceptually more difficult
● Local subtraction → efficient
● Better numerical stability
● Choices:

● Momentum mapping
● Subtraction terms
● Numerics vs. analytic

qT-slicing [Catani’07],
N-jettiness slicing [Gaunt‘15/Boughezal‘15]

Antenna [Gehrmann’05-’08],
Colorful [DelDuca‘05-’15],
Sector-improved residue subtraction [Czakon’10-’14’19]
Projection [Cacciari‘15],
Nested collinear [Caola’17],
Geometric [Herzog‘18],
Unsubtraction [Aguilera-Verdugo’19],
...

NNLO QCD schemes
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Infrared safety of the measurement function

KLN theorem: average over sufficient unresolved degrees of freedom
→ IR safe observables: well behaved* in the soft and collinear regions!

‘Measurement function’ defines
→ observables → cuts → jets
→ histograms → ...

*the precise notion what properties
are sufficient or equivalent
is sometimes still a matter of debateSoft limits:

Collinear limits:
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Higher-orders at hadron colliders
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Hadron-hadron collisions

● Bound state interactions in the proton:
typical time scale

● Scattering at a high energy

● Asymptotic freedom at high Q:
→ small coupling
→ proton a collection of free quarks/gluons

● Momentum distribution described by
parton distribution function (PDF)
→ extracted from data
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Evolution of PDFs

The PDFs depend on the scale they are probed at

→ the origin are emissions at a lower energy scale
    consider the striking a parton with a virtual photon Q2

no emission all possibilities of emissions 

splitting functions!
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DGLAP

Taking into account that the splitting may change the parton flavour:
DGLAP [Dokshitzer, Gribov, Lipatov, Altarelli, Parisi, 77]

Prediction of the running of PDFs (universal, i.e. not dependent on the collider)
→ still needs input at a given scale (similar to coupling)
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DGLAP: splitting functions

‘+’ distribution:
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The Drell-Yan process

Kinematics of the boson:

Simplest and probably best understood hadron-hadron process
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Partonic channels

At leading order we have:

At next-to-leading order we have:
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Collinear initial state singularities
channel:

single poles do not cancel but
~ splitting functions….channels:

LO:
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NLO PDFs

Absorb the singularity in the definition of the PDF → renormalised PDFs

part of the partonic
cross section

part of the PDF

Renormalised PDFs

Important: the PDF depends now also on the order of the computation
For example: NNPDF31_nnlo_as0118 vs. NNPDF31_nlo_as0118
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Drell-Yan higher order QCD cross sections

[arxiv:2209.06138]

Perturbative convergence:
● O(10%) correction at NLO
● O(1%) correction at NNLO
● O(1%) correction at N3LO?

(PDF consistency?)

Being evermore precise is good, but

how to derive uncertainties?
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Scale variation prescription (ad-hoc and heuristic choice)
- choose ‘sensible’
    → principle of fasted apparent convergence:
    → principle of minimal sensitivity:
    → ... 
- vary with a factor (typically 2)
- take envelope as uncertainty
     

Theory uncertainties from scale variations

RGE

Of same order as the next dominant term → exploiting this to estimate size of
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Scale variation approach

Change of scale = change of renormalisation  scheme:

For QCD:
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Scale variations as uncertainties can work ...

“Agreement within the variation envelope”

→ two scales: renormalisation and factorisation scale
→ conventional 7-point variations by a factor of 2

multi-jet cross section (TEEC)
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...sometimes :/

[talk by Grazzini]

Higgs productionThree photon production

NNLO QCD needed before “convergence” kicks in...
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Short comings of scale variations

- not always reliable … however in most cases issues are understood/expected:
new channels, phase space constraints, etc. → often we can design workarounds

- however, some issues are more fundamental:
→ how to choose the central scale? → not a physical parameter, no ‘true’ value

(Principle of fasted apparent convergence, principle of minimal sensitivity,...)

→ how to propagate the estimated uncertainty, no statistical interpretation!
→ what about correlations? Based on ‘fixed form’ of the lower orders and RGE.

- Alternatives:
- Bayesian methods
- Theory Nuisance Parameters

- with increasing precision this becomes more relevant...
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End of lecture

Things I didn’t cover but are important for LHC pheno:
● NLO electro-weak corrections
● Matching to parton-shower and resummation

(see lectures by )
● Jet algorithms and jet physics

● Overview over various aspects of higher order QCD
● Importance of infrared behaviour of

massless gauge theories
● Pointers to current research topics
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