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Event topologies

Expect and observe high multiplicities at the LHC.
What are production mechanisms behind this?
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Event-type properties

Roughly 60% of oot ~ 100 mb N
consists of “ordinary” events, clasticscatiering. Jp ¢
m . . T I ~op . —
inelastic nondiffractive”, e e s e
where the full rapidity range is N T
populated by particle production. i v el
— i 10 - ° » w n
The remaining events have
T « 2 Y e, o
large or small rapidity gaps A Sl St

. . . P 0 P PR

with no production. dblediacion, ~ Ve L et
10 - ) s I ]
Many of the latter events Db g s -
escape detection. Pomeron 3 T
(Photon) - P .

L . Exchang el S
Minimum-bias events: s ’
all events that can be T I T
triggered /observed by a detector, ol jQ: “I% NES

Por — — L
T -0 - ] s w N

without any further selection.
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What is underlying event (UE)?

dn/dy

jet

------- pedestal height
/ underlying |event \
Yy

In an event containing a jet pair or another hard process, how
much further activity is there, that does not have its origin in the
hard process itself, but in other physics processes?

Pedestal effect: the UE contains more activity than a normal MB
event does (even discarding diffractive events).

Trigger bias: a jet "trigger” criterion E| jet > E| iy is more easily
fulfilled in events with upwards-fluctuating UE activity, since the
UE E| in the jet cone counts towards the E| jc;. Not enough!

Torbjérn



\

'/ﬂ‘/ =)

a i
N -

i

@
T
V]
2
i
2
k)
2

where L is machine luminosity per bunch crossing, £ ~ nyny/A

and o ~ oot = 100 mb.
However, keep in mind concept of bunches of hadrons

considered here, but can be a nuisance.
leading to multiple collisions.

Current LHC machine conditions =
Pileup introduces no new physics
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The divergence of the QCD cross section

Cross section for 2 — 2 interactions is dominated by t-channel
gluon exchange, so diverges like d6/dp? ~1/p? for py — 0.

Integrated cross section above pTmin for pp at 14 TeV

. I I I I I jlet cross section
total cross section -------
1000
Integrate QCD 2 — 2 _ 1%
qq’ — qd’ N
qq = q'q 5
qq — gg .
qg — 98
gg — g¢g 0.1
gg — qq N

(With CTEQ 5L PDF'S) o 0 5 10 15 20 25 30 35 40 45 50

pTmin (GeV)




What is multiple partonic interactions (MPI)?

Note that oint(pLmin), the number of (2 — 2 QCD) interactions
above p | min, involves integral over PDFs,

do

Tint(PLmin) = /// dxi dxo dp? A (x1, p1) (2, P1) Epe
Pl min pL

with [ dx f(x,p?) = oo, i.e. infinitely many partons.

So half a solution to oint(PLmin) > Otot 1S

many interactions per event: MPI

Otot — E On
Oint = E nonp

Oint > Otot < <n> >1




Poissonian statistics

Pn
If interactions occur independently

(n) =2 then Poissonian statistics
'Pn — ﬂ e_<n>

n!

but n = 0 = no event (in many models)
and energy—momentum conservation
= large n suppressed

™ so narrower than Poissonian

01234567

MPI is a logical consequence of the composite nature of protons,

Nparton ™~ Zq,ﬁ,g ] f(X) dx > 3, which allows Uint(mein) > Otots

but what about the limit p|min — 07




Colour screening

Other half of solution is that perturbative QCD is not valid at
small p, since q, g are not asymptotic states (confinement!).

Naively breakdown at

h N 0.2 GeV - fm

— & ~ 0. ~ A
o 0.7 fm 0.3 GeV Qb

Plmin &

... but better replace r, by (unknown) colour screening length d in

N IAEA

A~1/p)
resolved screened

hadron:

V




Regularization of low-p, divergence

so need | nonperturbative regularization for p; — 0 | e.g.

ds/dp3

ag(Pio + Pi)

a2(p? )
SI§4pJ_) 0 (PJ_ - pJ_min) (snnpler)
L

(more physical)
(Pio+pP1)?
where p | min OF pio are free

parameters, empirically of order
2-3 GeV.

Typical number of interactions/event
is3at2 TeV, 4 -5 at 13 TeV,

but may be twice that in
“interesting” high-p, ones.



Energy dependence of pmin and pg

Larger collision

%‘500 F
LE}ZOO e EHLA, pra =14 energy
= 00 |
£ ————— GRVOAL, proa = 1.4 = probe parton
o .
g ———— GRVAL, prm = 1.9 (=~ gluon) density
=
€199 F ——— GRVO4L pu = 1.9 at smaller x
o 80 -
E 2ol CTEQ3L, prosa = 14 5° = smaller colour
60 .
50 | screening length d
40 = larger pimin
o or pio
2 | = dampened
multiplicity rise
10 -
9 -
8 -
) MR | MR | MR |

10 10° 10°
CM energy (GeV)
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Impact parameter dependence

So far assumed that all collisions have equivalent initial conditions,
but hadrons are extended, so dependence on impact parameter b.

Overlap of protons during encounter is

—,p

b O(b) = [ dxat pa(x.0) polx. 1)

where p is (boosted) matter distribution in p,
e.g. Gaussian or electromagnetic form factor.

Average activity at b proportional to O(b):
* central collisions more active

= P, broader than Poissonian;
* peripheral passages normally give

no collisions = finite oot .




Indirect evidence for multiparton interactions — 1

Torbjérn S
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FIG. 3. Charged-multiplicity distribution at 540 GeV, UAS
results (Ref. 32) vs simple models: dashed low pr only, full in-
cluding hard scatterings, dash-dotted also including initial- and
final-state radiation.
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0.7

4 UAS DATA }
|

0.3 *

0.2

/
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FIG. 4. Forward-backward multiplicity correlation at 540
GeV, UAS results (Ref. 33) vs simple models; the latter models
with notation as in Fig. 3.
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Indirect evidence for multiparton interactions — 2

with MPI included:

L T ™ a
» § UAS 1982 DATA |
t UAS 1981 DATA |
1 CORRELATION STRENGTH b
ot 0.7 m——
i
| § UAS DATA
13 0.6
on/Eo, | ]
! L
10 0.
1
f \ 0.
i 1\
il | {
| 0.
1wl
0.
o.
P S S S S ST SR S SR SRR WY
o 20 40 60 80 100 120
fen 0 1 1 1 A e
. ) [ ' 2 3 4 s € Ay
FIG. 5. Charged-multiplicity distribution at 540 GeV, UAS
results (Ref. 32) vs imp i Itipl FIG. 6. Forward-backward multiplicity correlation at 540
interaction model: dashed line, prmn=2.0 GeV; solid line, GeV, UAS results (Ref. 33) vs impact-parameter-independent

Prmn=1.6 GeV; dashed-dotted line, prmia=1.2 GeV. multiple-interaction model; the latter with notation as in Fig. 5.




Double parton scattering

Double parton scattering (DPS): two hard processes in same event.

oA0B .
{ G for A# B
0DPS —

g%‘ﬂ for A= B
Oeff

Poissonian statistics:

2
eA+B:1+A+B+@+...
2 2
Studied by :1+A+B+A7+AB+87+...
@ 4 jets 2 2
o v+ 3 jets Note inverse relationship on o.g.
o W/Z + 2 jets Natural scale is onp ~ 50 mb,
o W-W- but “reduced” by b dependence.

@ 4 jets, whereof two b- or c-tagged
@ J/¢ or T 4 2 jets (including vcc)




Double parton scattering backgrounds

Always non-DPS backgrounds, so kinematics cuts required.

Example: order 4 jets p11 > pi2 > pi3 > pr4 and define ¢
as angle between p;; Fp12 and p13 F p14 for AFS/CDF
Double Parton Scattering

Double BremsStrahlung
2

=
4 2 1

lpi1+pi2/~0
lpi3+pial=0
do/de flat

lIp11+Ppi2|>0
P13 +pial >0
do/dy peaked at ¢ =~ 0/x for AFS/CDF




Direct observation of double parton scattering

2
oAOB g A
eff Oeff
fre T
[\
[} L]
> —_———
oy 1.8 TeV, 4 jets, 1993)
+— 1.8 TeV, 7+ 3 jets, 1997)
8 | DO (V5= 1.96 TV, v+ 3 jets, 2010) v
@D | LHCb (v5=7 TV, J/¢AL, 2012) =
ol Tev, J/yDY, 2012) A
7 3Dt
£ T e ) = JHEP 11 (2016) 110
S5 | ATLAS (V5 =7 TeV, W+ 2 jets, 2013) ki
D | CMS (Vs=TTeV, W+ 2 jets, 2014) ——
E DO (/5 =196 TeV, v+ b/c + 2 jets, 2014) —m— —_ 30 . .
c DO (/s =1.96 TeV, v+ 3 jets, 2014) T Fel [ aTLas
0] &V, 1/t + 1 /v, 2014) —m— = F ]
~ TeV, Z + J /1, 2015) freermeenanna > = r 1
< 8 TeV, T(18)D%, 2015) o o ]
(4} I/ + T, 2016) L] r ]
1S 2v+ 2 jets, 2016) ——T—— [ ]
= /, 4 jets, 2016) —bar—i 20 T 42
3 ATLAS (/5 =8 TeV, J/¢ + J /4, 2017) HraH E iv ]
>3 CMS (/s =8 TeV, T + T, 2017) C ]
I |iHCb (V5 b 5 | ]
CMS (V=8 , |
ATLAS (/5 =8 TeV, 4 leptons, 2018) [y Fo ]
0 5 10 15 20 25 30 tor | l ]
arXiv:1811.11094 r l I?

10° 10*
s [GeV]
(D. Kar, MPIGLHC 2018)
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Issues with DPS observations

Background modelling nontrivial,
especially when jets are involved. For Gaussian matter
Higher orders relevant for this. distribution expect

Oy Measurements

e ETHETEEES——. oot ~ 20 fn .
UA2 4jets (0.63 TeV) >
Phys.Lett.B,268(1):145-154,1991
CDF djets (1.96 TeV) e Lower g = “hot spots”?
Phys.Rev.D,47:4857-4871,1993
TS ets (7TeV) e Enhanced DPS rate
Py AR s should dampen
CMS 4jets (13 TeV) at small p; scales.
P8 + CP5 = . /
H7 + CH3 v— NOt Seen In 3 J/l,’
MG5 LO 2—2,3,4 + CP5 . IR
MGS NLO 202 » CPS ra Probe with cccc events?
PW NLO 22 + CP5 e
PW NLO 23 + CP5 =
‘ Ll ‘ Ll ‘ Ll ‘ I ‘ Ll ‘ I ‘ 11

o 5 10 15 20 25 30
Gy [Mb]

Full model range even larger spread!
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Colour (re)connections and (p, )(ney)

(p 1 )(ncp) is very sensitive to colour flow

2.2 L B B B B
Ny 21, Py > 500 MeV, n| < 0.8

7> 300 ps

1.8 ATLAS V(s =13 TeV

1.6
1.4

1.2

IRRRERRRN

(b [GeV]

\

AT AL R A

iy

long strings to remnants = much

nepfinteraction = (p | ) (ncn) ~ flat 08 == pata

N I I SN | (|

0 6:* — PYTHIA 8 A2
"“F —:PYTHIA 8 Monash
0.4F - EPOS LHC
£ - QGSJET IIl-04
0.2
p p g

-

[V}
Yy
1

MC / Data

short strings (more central) = less
nepfinteraction = (p | ) (ncp) rising n
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Colour Reconnection Revisited

Colour rearrangement well
established e.g. in B decay.

ol v ol o
x
o

S

W

At LEP 2 search for effects in ete™ — WTW™ — q1q, q3qy:
@ perturbative (§My) < 5 MeV : negligible!
@ nonperturbative (6 Myy) ~ 40 MeV :
favoured; no-effect option ruled out at 2.80.

@ Bose-Einstein (dMyy) < 100 MeV : full effect ruled out
(while models with ~ 20 MeV barely acceptable).




Jet pedestal effect — 1

Events with hard scale (jet, W/Z) have more underlying activity!
Events with n interactions have n chances that one of them is hard,
so “trigger bias”: hard scale = central collision

=- more interactions = larger underlying activity.

Studied in particular by Rick Field, with CDF/CMS data:
“MAX/MIN Transverse” Densities

Jet #1 Direction

“TransMIN” very sensitive to
the “beam-beam remnants™!

Jet #1 Direction

Ny

Jet#3

“Away-Side” Jet

o Define the MAX and MIN “transverse” regions on an event-by-event basis with
MAX (MIN) having the largest (smallest) density.
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Jet pedestal effect — 2

281 nb™ (13 TeV)
CMS

Preliminary

Data  Monash CUETP8M1 CUETP8S1 CUETHS1

13 TeV S,

7TeV e ————— i mimimim mmm e m

2.76 TeV e oo
09TeV —0—

04 t transAVE

0 L 1 1 1 I 1 1 L 1 I 1 1 1 1 I 1 L 1 L I 1 1 1 1 l 1
10 20 30 40
Leading Jet P, (GeV)
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The Sudakov form factor applied to MPI

A Poissonian process is one where “events” (e.g. radioactive decays)
can occur uncorrelated in “time” t (or other ordering variable).

If the probability for an “event” to occur at “time” t is P(t)

then the probability for an i/'th event at t; is

P(t)) = P(t;) exp (- /tt P(t)dt>

Example: Sudakov form factor for parton showers,
where increasing t — decreasing evolution variable p;
and “event” — parton branchings.

Can also apply to ordered sequence of MPIs
at decreasing p, values, starting from E.p,/2

1 do Pii-1 1 do
P(pL = pLi) = ——exp [—/ ——dp
p

/
n Ond dpL




MPIl in PYTHIA

@ MPIs are gererated in a falling sequence of p, values;
recall Sudakov factor approach to parton showers.

@ Energy, momentum and flavour conserved step by step:
subtracted from proton by all “previous” collisions.

@ Protons modelled as extended objects, allowing both central
and peripheral collisions, with more or less activity.

e (Partons at small x more broadly spread than at large x.)

e Colour screening increases with energy, i.e. p1o = p1o(Ecm),
as more and more partons can interact.

o (Rescattering: one parton can scatter several times.)

@ Colour connections: each interaction hooks up with colours
from beam remnants, but also correlations inside remnants.

@ Colour reconnections: many interaction “on top of” each
other = tightly packed partons = colour memory loss?
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Interleaved evolution in PYTHIA

e Transverse-momentum-ordered parton showers for ISR and FSR
e MPI also ordered in p|

= Allows interleaved evolution for ISR, FSR and MPI:

dapP <dPMPI ZdPISR Z(WFSH>

dpL dp, dpy dp|
Plmax [/ d d ] y
X exp (_ / ( PI\/IIPI Z PISR Y (PF/SR) dp), )
PL dp’; dp’,

Ordered in decreasing p; using “Sudakov” trick.
Corresponds to increasing “resolution”:
smaller p, fill in details of basic picture set at larger p .

@ Start from fixed hard interaction = underlying event

@ No separate hard interaction = minbias events

@ Possible to choose two hard interactions, e.g. W~W™




Initiators and remnants

initiators:
intohard @
interaction o
beam e
remnants o
o

PDF after preceding MI/ISR activity:

Need to assign:

correlated flavours
correlated X; = pi/Pztot
correlated primordial k;
correlated colours

correlated showers

@ Squeezerange 0 < x < linto0<x<1—) X

(ISR l7é icurrent)

@ Valence quarks: scale down by number already kicked out

@ Introduce companion quark ¢/q to each kicked-out sea quark
q/q, with x based on assumed g — qq splitting

© Gluon and other sea: rescale for total momentum conservation




MPI in Herwig

Key point: two-component model

-
Z o0 — MM =3GeV, f=—05GeV 2 ]
1 | P =5 GeV, B=0.06 GeV™?
i
Z g .
=
S~ - .
5
s 0 1
o °r do g —B (p? —p™in2 B
?'5 Tpre (py t ) ]
e
®2r
S 9
— L

1-

0k

0

P (GeV)

P1 > Plmin: pure perturbation theory (no modification)
p1 < Plmin: pure nonperturbative ansatz
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MPI in Herwig — 2

Number of MPIs first picked; then generated unordered in p; .

°
@ Interactions uncorrelated, up until energy used up.
@ Force ISR to reconstruct back to gluon after first interaction.
@ Impact parameter by em form factor shape, but tunable width.
I Charged particle multiplicity as function of y (0.9 TeV, Ny, > 6)
@ Plmin SCale =32
to be tuned “_: —e— Read off from ATLAS
3 3 —— Herwig++ 2.4
energy-by-energy. S S —— Herwig+ 25
=26 o AT

@ Colour reconnection
essential to get
dn/dn correct.

z —-m—— P
-~
g 1.2 S e
= P S —— i ~———]
08
0.6
-2 1 o 1 2

on to Event Gener:
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Hadronization/confinement is nonperturbative = only models.

Main contenders: string and cluster fragmentation.

Begin with eTe™ — 7*/Z% — qq and eTe™ — v*/Z° — qqg:

Run:event 4083: 1000  Ctrk(N=

Run:event 2642: 83760  Clrk(N= 26 Surp= 40.2) Ecal(N= 43 Sunk= 58.1)

Ebean 45.682 Vix (-0.04, 0.0 Bbeam 45.809 Vix (=0.06, 0.12,-0.91) Heal(N= 8 Sumi= 12.7) Muon(N= 1)

Torbjérn S on to Event Gener.



The QED potential

In QED, field lines go all the way to infinity

since photons cannot interact with each other.

Potential is simply additive:

V(x) x Z 7|x _1 <]

Torbjorn Introduction to Event Generators 3



The QCD potential — 1

In QCD, for large charge separation, field lines are believed
to be compressed to tubelike region(s) = string(s)

¢
G

Gives force/potential between a ¢ and a q:

=l

)
) )

F(r)~const =k <= V(r) = kr

k ~ 1 GeV/fm = potential energy gain lifting a 16 ton truck.

Flux tube parametrized by center location as a function of time
= simple description as a 1+1-dimensional object — a string .




The QCD potential — 2

Linear confinement confirmed e.g. by lattice QCD calculation
of gluon field between a static colour and anticolour charge pair:

. v(r)
a4
[ ol
> e /ﬁ}/
R
£ /;,?26 .
08 [ ﬂka@" linear part
L F &,.aﬂ’ total
&iic
0.6 & r
P
&
r 4
os | £ Coulomb part
E@
04 H
3 © V(R)=V,+KR—-e/R+1{/R
03 Lo o 1 L P L P i
o 4 8 12 8 20 24
R

At short distances also Coulomb potential,
important for internal structure of hadrons,
but not for particle production (?).
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The QCD potential — 3

Full QCD = gluonic field between charges (“quenched QCD")

plus virtual fluctuations g — qq (— g)
= nonperturbative string breakings gg... — qq

simplified colour

V(r)
representation:
quenched QCD

< >,

full QCD 2
r F< o7 >r

2
r r r r




String motion

The Lund Model: starting point

Use only linear potential V/(r) ~ kr th
to trace string motion, and let string ’
fragment by repeated q breaks.

Assume negligibly small quark masses.
Then linearity between space—time and
energy—-momentum gives

/
dE| _ |dps dp.|
) -] fa - -
(¢ =1) for a qq pair flying apart
along the +z axis. =
But signs relevant: the g moving in { 9 9 -
the +z direction has dz/dt = +1 -L/2 L/2 X

but dp,/dt = —




The Artru-Mennessier Model

1974: the first (semi-)realistic hadronization model
Assume fragmentation local, and string homogeneous.
Thus constant probability per unit string area of breaking.




The Artru-Mennessier Model

1974: the first (semi-)realistic hadronization model
Assume fragmentation local, and string homogeneous.
Thus constant probability per unit string area of breaking.

But a string cannot break
where it has already broken
= remove vertices

in forward lightcone

of another




The Artru-Mennessier Model

1974: the first (semi-)realistic hadronization model
Assume fragmentation local, and string homogeneous.
Thus constant probability per unit string area of breaking.

But a string cannot break
where it has already broken
= remove vertices

in forward lightcone

of another

= dampening factor
exp(—PA),

where A is string area

in the backwards lightcone

Drawback: continuous
hadron mass spectrum




The Lund Model

Combine yo-yo-style string motion with string breakings!

Motion of quarks and antiquarks with intermediate string pieces:

e quark
« antiquark
o pair creation

space
A q from one string break combines with a q from an adjacent one.

Gives simple but powerful picture of hadron production.

Torbjorn and Introduction to Event Generators 3



Where does the string break? — 1

Fragmentation starts in the middle and spreads outwards:

o Here m3 fixed from hadron and p, selection (unlike AM).
@ Lorentz covariant inside—out cascade.

@ Breakup vertices causally disconnected
= iteration from ends inwards allowed!




Where does the string break? — 2

Breakup vertices causally
disconnected

= can proceed in arbitrary order
= left-right symmetry

P(1) x P(1 —

P(2) x

P(1,2)

= Lund symmetric
fragmentation function:

f(z) oc (1 — z)? exp(—bm? /z)/z

f(z),a=0.5,b=0.7

0 -
0 02 04 06

Lund—-Bowler modified shape for heavy quarks:

).




How does the string break?

q ql < .: > a/ q q ql — E —_ al q
H H
d=m,q/k
m g =0 myq >0

String breaking modelled by tunneling:

2 2 2
™m P ™m
P o exp (— Lq) = exp (— Lq) exp (—q>
K K K

e Common Gaussian p; spectrum, (p) ~ 0.4 GeV.

e Suppression of heavy quarks,
ui:dd:sS:cc~1:1:0.3:10"1L
e Diquark ~ antiquark = simple model for baryon production.




Flavour composition

Combination of ¢ from one break and q (qq) gives meson (baryon).
Many uncertainties in selection of hadron species, e.g.:

@ Spin counting suggests vector:pseudoscalar = 3:1,
but m, > my, so empirically ~1:1.

@ Also for same spin m,s > m;, > m, o gives mass suppression.
String model unpredictive in understanding of hadron mass
effects = many “materials constants”.

@ There is one V and one PS for each qq flavour set,
but baryons are more complicated, e.g. uuu = A"+
whereas uds = A9, ¥0 or ¥*0.

SU(6) (flavourxspin) Clebsch-Gordans needed:;
affects surrounding flavours.

@ Simple diquark model too simpleminded; produces
baryon—antibaryon pairs nearby in momentum space.

Many parameters, 10-20 depending on how you count.




The popcorn model for baryon production

B M M

@ SU(6) (flavourxspin) Clebsch-Gordans needed.

@ Quadratic diquark mass dependence
= strong suppression of multistrange and spin 3/2 baryons.
= effective parameters with less strangeness suppression.




Heavy flavours: the dead cone

Consider eikonal expression for soft-gluon radiation

2
dogge x (~1) ( p1 p2 > d3ps

Oqq pip3  p2ps Es
2p1p2 m3 m3 )
- — E3 dE3 d cos (913
Qmmem)(mmF (p2p3)?
do

For 813 small k massless
doqge dw 62, ( 62, >2
QOqgg

Tqq w 033 \ 633+ mi/E? "dead cone”

dw  6%d62

w (9%3 + m%/E12)2

massive

so “dead cone” for 613 < my/E;

»013




Heavy flavours: fragmentation data

35F
- (b)
3 O ALEPH91GeV )
@ OPAL 91 GeV v
5| 4 SLD9IGeV &3
e ,ﬁj &
2 2F _
S &
b15F + %
1F +
e 1
05 et 9
_s;‘_—ﬂ} t
00 01 02 03 04 05 06 07 08 09 1
Xp

But note that a heavy hadron decays to many secondaries,
filling up “dead cone” and
giving “normally-soft” light-hadron spectra.




The Lund gluon picture — 1

A gluon carries one colour and one anticolour. Thus it can be
viewed as a kink on the string, carrying energy and momentum:

gluon

quark

string motion in the event plane
(without breakups)
antiquark

The most characteristic feature of the Lund model.
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The Lund gluon picture — 2

Gluon = kink on string

Force ratio gluon/ quark = 2,
cf. QCD Nc/CF = 9/4, — 2 for N¢ — o0
No new parameters introduced for gluon jets!

Sso
e Few parameters to describe energy-momentum structure!
e Many parameters to describe flavour composition!

String piece = dipole

One-to-one correspondence between how strings and how colour
dipoles are stretched between colour charges in N¢ — oo limit.
Dipole: emission in perturbative regime.

String: “emission” in nonperturbative regime.

String picture 5 years ahead. . .




Gluon vs. quark jets

015 T T T T T ]
) [ (@) OPAL e et ]
Energy sharing between i ez s ]
H 01 - — Jetset 74 ]
two strings makes hadrons 5 I hewinss ]
. [ et ft £ rraIN N Ariadne 4.08
In gluon Jjets sorter, more 005 ]
and broader in angle: A N The ]
L A N N
Dep,
102 OPA = L R
3 uds jet 3 OPAL 9
F % gluon jet 1 1
0 = i 008 3 uds jet _
E k, definition: 3 & gluon jet |
F Vo002 1
5“ i il 5 —— Jetset 7.4
s U E 3 R A Y — Herwig58 |
5 = E E ] — — Ariadne 4.06
< L ] e Cojets 6.23 B
g o ] B
z" F E = o b
- o — Jetset74 1 k, definition: 1
L[ o Herwigss 1 Yeu=0:02 1
107 & — - Ariadne 4.06 . |
Eo— Cojets 623 3 0.02 !
10° TR WA ]
0. 01 02 03 04 05 06 07 08 09 1 o Loty 0SS
X 0. 10. 50, 60,

20. 30.
% (degrees)
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The string/JADE Effect (DESY 1980)

9

Q

1.00

050 [
1E |
EdO |

010 |

005

string fragmentation

9 independent fragmentation

—7

—
a) Energy Flow

+ Data
— Lund Model

.....

LI B P e o e o

|

3 jets energy-
ordered.
JADE (1980,
1983)



Jets are crooked

(E,p) not preserved when massless partons become massive jets!

In the string model the
reconstructed q and @ jet axes

are shifted in the g direction:
9

T T

: 0»2_ T T T
(™ [ a) JET#1
(Gevic)f

ol

I #1 _—.—-Alj etal.
a Lund 2Order
-Q"_ #? '. o ' e GoOttschalk
<p™[ b) JET#2
(Gevic) [
o

jax"'“
a
More two-jetlike events
compensated by higher ay in
string than in independent
fragmentation.

Torbjérn Sj Introduction to Event Generators 3



Photon vs. Gluon Emission

9 qag fragmentation ol
qg
/
A9« q
a
LI I LER L] I LI ‘ T I LI ) I LB l rTrorT I
e gq7vydata OPAL (O) E
1 g o Multihadrons &% You = 0.007 &
F ® o ]
o iy 9]
B ) . 02 E
-1_ 66 .0 4 Lo 1
10 | 0355, & . R
o [y L4 3]
[ 'y * E
o %g,;,;o’é’ " ¥
1) Qi T WIS WU W WS L N

0 50 100 150 200 250 300 350

o«
Qf

qd~ fragmentation

particle flow in
the event plane;
3-jet selection,
but third jet
location not fixed

OPAL (1995)
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Infrared and collinear safety of string fragmentation

Torbjérn

Introduction to Event Generators 3

Emission of a soft
or collinear gluon
only negligibly
perturbs string
motion /evolution.

Therefore string
fragmentation is
soft and collinear safe.

Technically, tracing the
string motion for many
nearby gluons can
become messy,
prompting
simplifications.
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The Herwig Cluster Model

© Force g — qq branchings.
@ Form colour singlet clusters.

© Decay high-mass clusters to
smaller clusters.

@ Decay clusters to 2 hadrons
according to phase space
times spin weight.

© New: allow three aligned qq
clusters to reconnect to two
clusters q1q2q3 and q;q»qs.

@ New: allow nonperturbative
g — s§ in addition to
g — ut and g — dd.




Cluster Model issues

1 Tail to very large-mass clusters (e.g. if no emission in shower);
if large-mass cluster — 2 hadrons then incorrect hadron
momentum spectrum, crazy four-jet events
— split big cluster into 2 smaller along “string” direction;
daughter-mass spectrum =- iterate if required,
~ 15% of primary clusters are split,
but give ~ 50% of final hadrons

2 lIsotropic baryon decay inside cluster TPC/2y (Update)
= splittings g — qq + qq ¢ ]

Diquarks

3 Too soft charrp / bott.om spectra a2 (Lund 6.2)\
—> anisotropic leading-cluster decay goz0i Cluster )
4 Charge correlations still problematic d“ay\

= all clusters anisotropic (?) I

e . =
5 Sensitivity to particle content ot ,é/i

0
— only include complete multiplets 0.0 02 0'490-6 08 10
lcoshl
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String vs. Cluster

program PYTHIA Herwig
model string cluster
energy—momentum picture powerful simple
predictive unpredictive
parameters few many
flavour composition messy simple
unpredictive in-between
parameters many few

“There ain't no such thing as a parameter-free good description’

1

Torbjérn

Introduction to Event Generators 3



Heavy lon Collisions

Conventional wisdom:

hadronic phase

QGP and
initial state hydrodynamic expansion

pre-equilibrium

* The only way we can create the QGP in the laboratory!

+ By colliding heavy ions it is possible to create a large (»1fm3)
zone of hot and dense QCD matter

* Goal is to create and study the properties of the Quark Gluon
Plasma

+ Experimentally mainly the final state particles are observed,
so the conclusions have to be inferred via models
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The three systems — understanding before 2012

Pb-Pb

Hot QCD matter:

This is where we expect
the QGP to be created
in central collisions.

QCD baseline:

This is the baseline for
“standard” QCD
phenomena.

Cold QCD matter:

This is to isolate nuclear
effects, e.g. nuclear
pdfs.




Strangeness enhancement

i [ﬂ][ﬁ]ﬁ@ | ALCE ]
1

2%¢ 20 ®pp, s =7TeV

| Op-Pb,\syy =5.02 TeV

o m Uiy 1 LH
- 2 )
A+AxD)

p oy

INEL >0
wn

P2

PP

(h/m)/ (h/)

H VA v
E miz; w HHLH 2+ 2 (x16) EF H
T j S l ‘
[ TP ALICE 10
® pp5=7TeV (dNe/dmyy < 05

O pPb sy =502TeV
[] Pb-Pb, Sy =276 TeV

— priHing Signs of QGP in high-multiplicity

------ DIPSY
"""""" EPOS LHC pp collisions? If not, what else?
0 T A whole new game!
10 102 10°

(ANgy /)y <05




The Core—Corona solution

Currently most realistic “complete” approach
K. Werner, Lund 2017:

peripheral AA

high mult pp low mult pp

core => hydro => statistical decay (u = 0)
corona => string decay

allows smooth transition. Implemented in EPOS MC
(Werner, Guiot, Pierog, Karpenko, Nucl.Phys.A931 (2014) 83)

Can conventional pp MCs be adjusted to cope?
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Ropes (in Dipsy model)

Dense environment = several intertwined strings = rope.

Sextet example: T a1

393=6a3 ) ]
6 3 >

=35 aa a3

At first string break keg C2(6) — C2(3) = Koff = %n.
At second string break keg o C2(3) = Keff = K.
Multiple ~parallel strings = random walk in colour space.

7rm2
Larger kg = larger exp (— q)

Keff

e more strangeness ()

e more baryons (£)

e mainly agrees with ALICE (but p/m overestimated)
Bierlich, Gustafson, Lonnblad, Tarasov, JHEP 1503, 148;

from Biro, Nielsen, Knoll (1984), Biatas, Czyz (1985), ...




The Ridge Effect (2010)

Elliptic flow in AA predicted
from geometry + pressure.

Not so for pp, and yet ridge is
observed at high multiplicities:

(d) CMS N> 110, 1.0GeV/c<pT<3.0GeV/c

SO
ORI
AR
) /'0"‘|““"v‘ agd\n
LSOON AN
ety
A5

R(An,A¢)
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Ridge in jets? (2023)

@F=n
Gr=n/a
*=inf
cms 138 " (pp 13 TeV) cms 138" (pp 13 TeV)
N2 AnikR08  Np=101 Ak R=08
P> 550 Top 0.0023% highest-N, fots P850

<16 <18

FIG. 2. Results for 2D two-particle angular correlation func-
tions for particle 0.3 < jp < 3.0 GeV from inclusive (left) and
the highest (right) N, jets, for anti-ky R = 0.8 algorithm with
P> 550 GeV and [ < 1.6.

2312.17103 [hep-ex]

cMs 138 fb™ (pp 13 TeV)
0.3<j <3.0 GeV
0.3
-~
o
A
= 02
<
(\l’ ’
Lo
> U1 —e—DATA
= PYTHIA
wusier SHERPA
0 L L L L
0.4

0.5<j <3.0GeV

Al >2
04l Anti-kR=0.8

Pl > 550 GeV

—
o

A

3

f=d

= 02 mPi<16
o

R

>

FIG. 4. The elliptic anisotropies v:

3, obtained from two-particle
correlations as a function of N}, , for anti-ky R = 0.8 jets with
P> 550 GeV and || < 1.6 in pp collisions at 13 TeV from
data, PYTHIAS, and SHERPA. Vertical bars on data points indicate
stati: 1 uncertainty, while shaded boxes represent systematic



The charm baryon enhancement

In 2017/21 ALICE found/confirmed strong enhancement of charm
baryon production, relative to LEP, HERA and default PYTHIA.

0.4

0.2

\

= ALICE, pp, 5 = 5.02 TeV ‘

+ B factories, e'e”, Vs = 10.5 GeV }

+LEP, e'e”, \s=m, |

« HERA, ep, DIS ‘
o o HERA, ep, PHP }
|
|
|
|
|
|
|
|
|
|

[*]
¢ o
ia = ]
| | ﬁz‘ | % | El
® D D A 2 D"

H,/D°

1.2

-

0.8

0.6

0.4

0.2

=

* ALICE, pp, Vs =5.02 TeV
PYTHIA 8: JHEP 08 (2015) 003
—— Monash 2013

CR Mode 0

CR Mode 2

------ CR Mode 3

A TN NI SN T EININ AT B}

P[]
Pix
w
RS

|

D*

*+ + + —
D* D! Al =0

The QCDCR model does much better, with junctions = baryons.
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Colour reconnection models

“Recent” PYTHIA option: QCD-inspired CR (QCDCR):

Ordinary string reconnection
q q q a
- | |
q q q q
(ag: 1/9, gg: 1/8, model: 1/9)

Double junction reconnection

q a
J J
—
q q a a

(qq: 1/3, gg: 10/64, model: 2/9)

q q

Triple junction reconnection

- &

(qq: 1/27, gg: 5/256, model 2/81)

Zipping reconnection

q 9

(Depends on number of gluons)

Triple-junction also in
HERWIG cluster model.
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Charm baryon differential distributions

208 — T T T T A L IR
2 ALICE  A;/D St % 8/2 /1D - ALICE BR unc. ]
0.7 ¢ oppis=5Tev T = pp, (s=13TeV 199 0.4]- PP V5=5.02TeV PYTHIA 8 Monash2013 ]
c - . = . = PYTHIA 8 Mode 2 4
S06F p.fs=1aTeV § PYTHIA 8.243, Monash 2013 lyl<0.5 J— PYTHIA8 Mode 0
|5 . = PYTHIA 8 Mode 3 1
g V<05 1  PYTHIAB.243 CRBLC: 1 B . Iz ]
0.5 vi< ---Mode 0 -~ Mode 2 - - Mode 3 0.3 e (coal+tragm) ]
2 f o SN SHM+RQM 1
BoafFi Ll ) 1 ) SHM+RQM ]
O ! 4 . Catania 3 ’/ —
03F . ——acm My //,//%% ]
0.2F . 0.1 3
01F e
! \ T T T T
1 10 2 4 6 8 10 12 14 0 2 4 6 8 10
p, (GeVic) p, (GeVic) P, (GeV/c)
. ‘ .
T Ry 3 QCDCR does well
gl * PRI IOTeY for some distributions,
= pp, Vs =5.02 TeV
O7E » p-Po iy =502Tey less so for others.
06F
ost [ Improvements needed,
04f |i] . .
. PrHAs2ss o but good starting point.
02F CR-BLC Mode 0 [ syst.
“CE CR-BLC Mode 2 B extr.
0.1E CR-BLC Mode 3 E
0 10 20 ‘ T

40
<chh/d '7>|>;\<u 5
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Beam drag effects

Colour flow connects hard scattering to
beam remnants. Can have consequences,
e.g. in T p:

o(D~) —o(D7)

Alxr) =

o(D7) +o(D1)

Asymmetry A(z)=(D" —D*)/(D” +D")

Alep)

— qg—cc @ 500 GeV
— gg—cc @ 500 GeV
combined

-0.5
I ¥ WAS2 @ 340 Gev
I 1 E769@ 250 Gev
3 E791 @ 500 Gev
_190.3 —l‘).G —6.4 —‘0.2 0‘.0 U‘.Z 0‘.4 0‘.6 0.8

Introduction to Event Genera
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d
- 9

c
p* - ud]

If low-mass string e.g.:

cd: D~ ,D*~

cud : A, X, 25t

= flavour asymmetries
C

D

d

Can give D “drag” to
larger xp than ¢ quark.




Bottom asymmetries

= ug T T 3 S 14 ]
& 16F LHCb 4 v E LHCb ]
T ufp (s=7TeV 3 3 12+ fs=7TeV E
< " E —— Datalfp’ 3 < 10F —— Data 1fb™ E
F . Pythia8 (CRI) E E 10\ Pythia8 (CR1) ]
10F mmm Pythia8 (CR2) E 8k —— B Pythia8 (CR2) E
8 Pythia8 (Monash) E 6F Pythia8 (Monash)
F af E
4 b E
2 ;* 2 E E
of E of :

2 25 3 35 4 0 10 20

Ay Ay p, [GeVic]

—0

_ o(A?) — o(AD)

(A9 +o(Ay)
CR1 = QCDCR, with no enhancement at low p; .

Enhanced Ay, production at low p,, like for A, dilutes asymmetry?
Asymmetries observed also for other charm and bottom hadrons.

A(y), Alp.)

Warning: fragmentation function formalisms unreliable at low p; .
May lead to incorrect conclusions about intrinsic charm.
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Unspectacular/ungrateful but necessary:
this is where most of the final-state particles are produced!
Involves hundreds of particle kinds and thousands of decay modes.

e.g. ~ 7r+ 7r+

e B*0 — B%: electromagnetic decay
o B° - B° mixing (weak)
e B’ D*tw.e™: weak decay, displaced vertex,
M2 o (pgpz)(Pepp+)
e D't — D% t: strong decay
e D% — ptK~: weak decay, displaced vertex, p mass smeared
o pt — 7t 70 p polarized, |[M|? o cos? 6 in p rest frame

o 10 — eTe v Dalitz decay, m(ete™) peaked




@ Perturbative jet cross section is divergent in p; — 0 limit
= colour screening invoked.

@ MPI absolutely crucial to get right multiplicities,
rapidity and p, spectra, and various correlations.

@ String model most common approach to hadronization,
with strong support in data and lattice QCD.

@ String space—time picture well confirmed, e.g. in 3-jet,
but flavour composition less well so.

@ Cluster model valid alternative for most properties.
@ LHC data has revolutionized the picture of soft physics:
Goodbye jet universality!

@ This has led to a renewed phenomenology interest:

Welcome new mechanisms!




