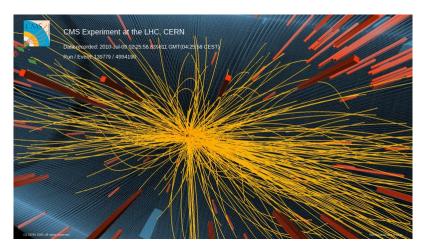


Introduction to Event Generators


Part 3: Multiparton Interactions and Hadronization

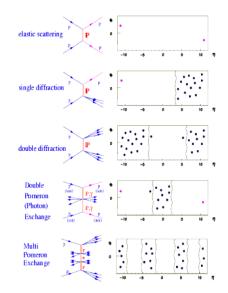
Torbjörn Sjöstrand

Department of Physics Lund University

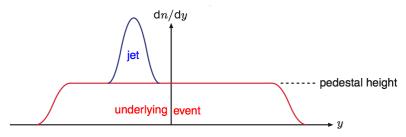
Terascale Monte Carlo School 2025, DESY

Event topologies

Expect and observe high multiplicities at the LHC. What are production mechanisms behind this?


Event-type properties

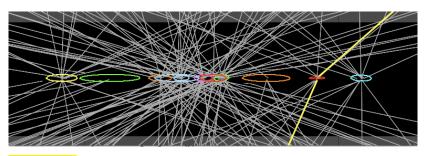
Roughly 60% of $\sigma_{\rm tot}\approx 100$ mb consists of "ordinary" events, "inelastic nondiffractive", where the full rapidity range is populated by particle production.


The remaining events have large or small rapidity gaps with no production.

Many of the latter events escape detection.

Minimum-bias events: all events that can be triggered/observed by a detector, without any further selection.

What is underlying event (UE)?



In an event containing a jet pair or another hard process, how much further activity is there, that does not have its origin in the hard process itself, but in other physics processes?

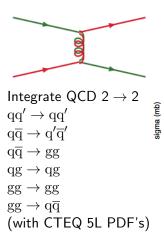
Pedestal effect: the UE contains more activity than a normal MB event does (even discarding diffractive events).

Trigger bias: a jet "trigger" criterion $E_{\perp \rm jet} > E_{\perp \rm min}$ is more easily fulfilled in events with upwards-fluctuating UE activity, since the UE E_{\perp} in the jet cone counts towards the $E_{\perp \rm jet}$. Not enough!

What is pileup?

$$\langle n \rangle = \overline{\mathcal{L}} \, \sigma$$

where $\overline{\mathcal{L}}$ is machine luminosity per bunch crossing, $\overline{\mathcal{L}} \sim n_1 n_2/A$ and $\sigma \sim \sigma_{\rm tot} \approx 100$ mb.


Current LHC machine conditions $\Rightarrow \langle n \rangle \sim 20 - 100$.


Pileup introduces no new physics, and is thus not further considered here, but can be a nuisance.

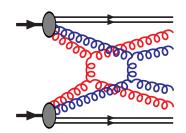
However, keep in mind concept of bunches of hadrons leading to multiple collisions.

The divergence of the QCD cross section

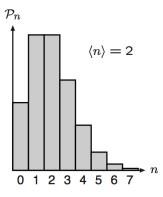
Cross section for $2 \to 2$ interactions is dominated by *t*-channel gluon exchange, so diverges like $\mathrm{d}\hat{\sigma}/\mathrm{d}p_{\perp}^2 \approx 1/p_{\perp}^4$ for $p_{\perp} \to 0$.

What is multiple partonic interactions (MPI)?

Note that $\sigma_{\rm int}(p_{\perp \rm min})$, the number of (2 \rightarrow 2 QCD) interactions above $p_{\perp \rm min}$, involves integral over PDFs,


$$\sigma_{\mathrm{int}}(p_{\perp \mathrm{min}}) = \iiint_{p_{\perp \mathrm{min}}} \mathrm{d}x_1 \, \mathrm{d}x_2 \, \mathrm{d}p_{\perp}^2 \, f_1(x_1,p_{\perp}^2) \, f_2(x_2,p_{\perp}^2) \, \frac{\mathrm{d}\hat{\sigma}}{\mathrm{d}p_{\perp}^2}$$

with $\int dx f(x, p_{\perp}^2) = \infty$, i.e. infinitely many partons.


So half a solution to $\sigma_{\mathrm{int}}(p_{\perp \mathrm{min}}) > \sigma_{\mathrm{tot}}$ is

many interactions per event: MPI

$$\begin{array}{lll} \sigma_{\rm tot} & = & \displaystyle \sum_{n=0}^{\infty} \sigma_n \\ \\ \sigma_{\rm int} & = & \displaystyle \sum_{n=0}^{\infty} n \, \sigma_n \\ \\ \sigma_{\rm int} & > & \sigma_{\rm tot} \Longleftrightarrow \langle n \rangle > 1 \end{array}$$

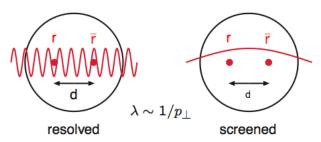
Poissonian statistics

If interactions occur independently then Poissonian statistics

$$\mathcal{P}_n = \frac{\langle n \rangle^n}{n!} e^{-\langle n \rangle}$$

but $n = 0 \Rightarrow$ no event (in many models) and energy–momentum conservation \Rightarrow large n suppressed so narrower than Poissonian

MPI is a logical consequence of the composite nature of protons, $n_{\mathrm{parton}} \sim \sum_{\mathbf{q},\overline{\mathbf{q}},\mathbf{g}} \int f(x) \, \mathrm{d}x > 3$, which allows $\sigma_{\mathrm{int}}(p_{\perp \mathrm{min}}) > \sigma_{\mathrm{tot}}$, but what about the limit $p_{\perp \mathrm{min}} \to 0$?

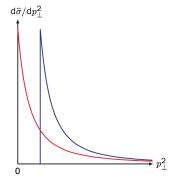

Colour screening

Other half of solution is that perturbative QCD is not valid at small p_{\perp} since q, g are not asymptotic states (confinement!).

Naively breakdown at

$$p_{\perp \rm min} \simeq \frac{\hbar}{r_{_D}} \approx \frac{0.2~{\rm GeV} \cdot {\rm fm}}{0.7~{\rm fm}} \approx 0.3~{\rm GeV} \simeq \Lambda_{\rm QCD}$$

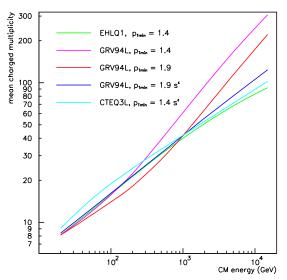
... but better replace r_p by (unknown) colour screening length d in hadron:



Regularization of low- p_{\perp} divergence

so need nonperturbative regularization for $p_{\perp} \rightarrow 0$, e.g.

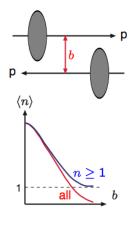
$$\frac{\mathrm{d}\hat{\sigma}}{\mathrm{d}p_{\perp}^{2}} \propto \frac{\alpha_{\mathrm{s}}^{2}(p_{\perp}^{2})}{p_{\perp}^{4}} \quad \rightarrow \quad \frac{\alpha_{\mathrm{s}}^{2}(p_{\perp}^{2})}{p_{\perp}^{4}} \, \theta \left(p_{\perp} - p_{\perp \mathrm{min}}\right) \quad \text{(simpler)}$$


$$\text{or} \quad \rightarrow \quad \frac{\alpha_{\mathrm{s}}^{2}(p_{\perp 0}^{2} + p_{\perp}^{2})}{\left(p_{\perp 0}^{2} + p_{\perp}^{2}\right)^{2}} \quad \text{(more physical)}$$

where $p_{\perp \min}$ or $p_{\perp 0}$ are free parameters, empirically of order 2-3 GeV.

Typical number of interactions/event is 3 at 2 TeV, 4 – 5 at 13 TeV, but may be twice that in "interesting" high-p₁ ones.

Energy dependence of $p_{\perp \min}$ and $p_{\perp 0}$



Larger collision energy

- \Rightarrow probe parton (\approx gluon) density at smaller x
- \Rightarrow smaller colour screening length d
- \Rightarrow larger $p_{\perp \min}$
- or $p_{\perp 0}$
- ⇒ dampened multiplicity rise

Impact parameter dependence

So far assumed that all collisions have equivalent initial conditions, but hadrons are extended, so dependence on impact parameter b.

Overlap of protons during encounter is

$$\mathcal{O}(b) = \int \mathrm{d}^3\mathbf{x}\,\mathrm{d}t\;
ho_1(\mathbf{x},t)\,
ho_2(\mathbf{x},t)$$

where ρ is (boosted) matter distribution in p, e.g. Gaussian or electromagnetic form factor.

Average activity at b proportional to $\mathcal{O}(b)$:

- * central collisions more active
 - $\Rightarrow \mathcal{P}_n$ broader than Poissonian;
- \star peripheral passages normally give no collisions \Rightarrow finite σ_{tot} .

Indirect evidence for multiparton interactions – 1

without MPI:

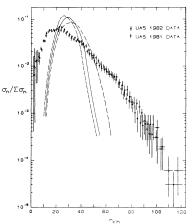


FIG. 3. Charged-multiplicity distribution at 540 GeV, UA5 results (Ref. 32) vs simple models: dashed low p_T only, full including hard scatterings, dash-dotted also including initial- and final-state radiation.

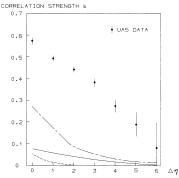


FIG. 4. Forward-backward multiplicity correlation at 540 GeV, UA5 results (Ref. 33) vs simple models; the latter models with notation as in Fig. 3.

Indirect evidence for multiparton interactions – 2

with MPI included:

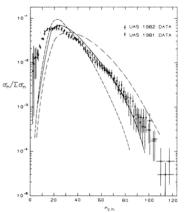


FIG. 5. Charged-multiplicity distribution at 540 GeV, UA5 results (Ref. 32) vs impact-parameter-independent multiple-interaction model: dashed line, $p_{Tmin} = 1.0$ GeV; solid line, $p_{Tmin} = 1.6$ GeV; dashed-dotted line, $p_{Tmin} = 1.2$ GeV.

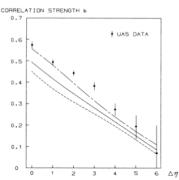
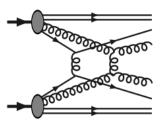



FIG. 6. Forward-backward multiplicity correlation at 540 GeV, UA5 results (Ref. 33) vs impact-parameter-independent multiple-interaction model; the latter with notation as in Fig. 5.

Double parton scattering

Double parton scattering (DPS): two hard processes in same event.

$$\sigma_{\rm DPS} = \begin{cases} \frac{\sigma_A \sigma_B}{\sigma_{\rm eff}} & \text{for } A \neq B \\ \frac{\sigma_A \sigma_B}{2 \sigma_{\rm eff}} & \text{for } A = B \end{cases}$$

Poissonian statistics:

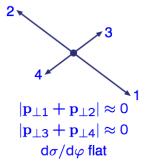
$$e^{A+B} = 1 + A + B + \frac{(A+B)^2}{2} + \cdots$$

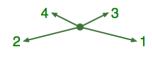
= $1 + A + B + \frac{A^2}{2} + AB + \frac{B^2}{2} + \cdots$

Studied by

- 4 jets
- γ + 3 jets
- \bullet W/Z + 2 jets
- \bullet W $^-$ W $^-$

- Note inverse relationship on $\sigma_{\rm eff}$. Natural scale is $\sigma_{\rm ND}\approx 50$ mb, but "reduced" by b dependence.
- 4 jets, whereof two b- or c-tagged
- J/ψ or $\Upsilon + 2$ jets (including $vc\overline{c}$)


Double parton scattering backgrounds


Always non-DPS backgrounds, so kinematics cuts required.

Example: order 4 jets $\mathbf{p}_{\perp 1} > \mathbf{p}_{\perp 2} > \mathbf{p}_{\perp 3} > \mathbf{p}_{\perp 4}$ and define φ as angle between $\mathbf{p}_{\perp 1} \mp \mathbf{p}_{\perp 2}$ and $\mathbf{p}_{\perp 3} \mp \mathbf{p}_{\perp 4}$ for AFS/CDF

Double Parton Scattering

Double BremsStrahlung

$$|\mathbf{p}_{\perp 1} + \mathbf{p}_{\perp 2}| \gg 0$$

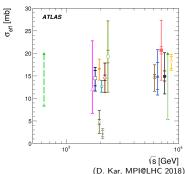
 $|\mathbf{p}_{\perp 3} + \mathbf{p}_{\perp 4}| \gg 0$

 ${\rm d}\sigma/{\rm d}\varphi$ peaked at $\varphi\approx 0/\pi$ for AFS/CDF

Direct observation of double parton scattering

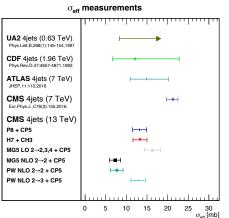
$$\sigma_{AB} = rac{\sigma_A \, \sigma_B}{\sigma_{
m eff}} \quad \ \sigma_{AA} = rac{\sigma_A^2}{2\sigma_{
m eff}}$$

Experiment (energy, final state, year)


ATLAS AFS ($\sqrt{s} = 63 \text{ GeV}$, 4 jets, 1986) UA2 ($\sqrt{s} = 630 \text{ GeV}$, 4 jets, 1991) CDF $(\sqrt{s} = 1.8 \text{ TeV}, 4 \text{ iets}, 1993)$ CDF ($\sqrt{s} = 1.8 \text{ TeV}, \gamma + 3 \text{ jets}, 1997$) DØ ($\sqrt{s} = 1.96 \text{ TeV}, \gamma + 3 \text{ jets}, 2010$) LHCb ($\sqrt{s} = 7 \text{ TeV}$, $J/\psi \Lambda_c^+$, 2012) LHCb $(\sqrt{s} = 7 \text{ TeV}, J/\psi D_{+}^{+}, 2012)$ LHCb ($\sqrt{s} = 7 \text{ TeV}, J/\psi D^{+}, 2012$) LHCb ($\sqrt{s} = 7 \text{ TeV}, J/\psi D^0, 2012$) ATLAS ($\sqrt{s} = 7 \text{ TeV}, W + 2 \text{ iets}, 2013$) CMS ($\sqrt{s} = 7 \text{ TeV}$, W+ 2 jets, 2014) DØ ($\sqrt{s} = 1.96$ TeV, $\gamma + b/c + 2$ jets, 2014) DØ $(\sqrt{s} = 1.96 \text{ TeV}, \gamma + 3 \text{ jets}, 2014)$ DØ $(\sqrt{s} = 1.96 \text{ TeV}, J/\psi + J/\psi, 2014)$ ATLAS ($\sqrt{s} = 8 \text{ TeV}, Z + J/\psi, 2015$) LHCb ($\sqrt{s} = 7\&8 \text{ TeV}, \Upsilon(1S)D^{0,+}, 2015$) DØ $(\sqrt{s} = 1.96 \text{ TeV}, J/\psi + \Upsilon, 2016)$ DØ $(\sqrt{s} = 1.96 \text{ TeV}, 2\gamma + 2 \text{ jets}, 2016)$ ATLAS ($\sqrt{s} = 7 \text{ TeV}$, 4 jets, 2016) ATLAS ($\sqrt{s} = 8 \text{ TeV}$, $J/\psi + J/\psi$, 2017) CMS $(\sqrt{s} = 8 \text{ TeV}, \Upsilon + \Upsilon, 2017)$ LHCb ($\sqrt{s} = 13 \text{ TeV}, J/\psi + J/\psi, 2017$) CMS ($\sqrt{s} = 8 \text{ TeV}, W^{\pm}W^{\pm}, 2018$) ATLAS $(\sqrt{s} = 8 \text{ TeV}, 4 \text{ leptons}, 2018)$ 10 15 20 25 30 σ_{off} [mb]

20 15 10

arXiv:1811.11094

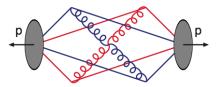

c.m energy₁₉

Issues with DPS observations

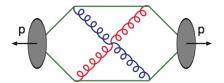
Background modelling nontrivial, especially when jets are involved. Higher orders relevant for this.

Full model range even larger spread!

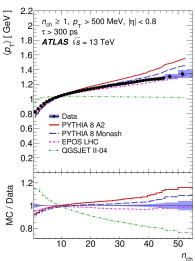
For Gaussian matter distribution expect

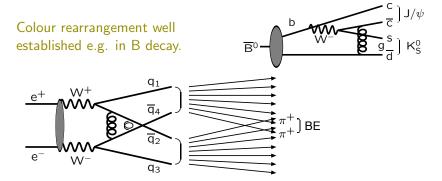

 $\sigma_{\rm eff} \approx 20~{\rm fm}$.

Lower $\sigma_{\rm eff} \Rightarrow$ "hot spots"?


Enhanced DPS rate should dampen at small p_{\perp} scales. Not seen in 3 J/ ψ . Probe with $c\bar{c}c\bar{c}$ events?

Colour (re)connections and $\langle p_{\perp} \rangle (n_{\rm ch})$


 $\langle p_{\perp}
angle (n_{
m Ch})$ is very sensitive to colour flow

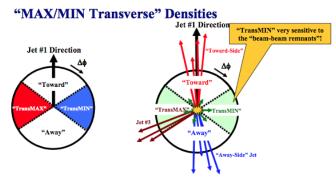

long strings to remnants \Rightarrow much $n_{\rm Ch}/{\rm interaction} \Rightarrow \langle p_{\perp} \rangle (n_{\rm Ch}) \sim {\rm flat}$

short strings (more central) \Rightarrow less $n_{\rm Ch}$ /interaction $\Rightarrow \langle p_{\perp} \rangle (n_{\rm Ch})$ rising

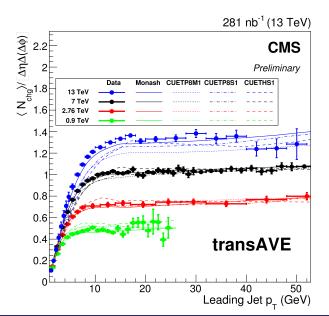
Colour Reconnection Revisited

At LEP 2 search for effects in $e^+e^- \to W^+W^- \to q_1\overline{q}_2\,q_3\overline{q}_4$:

- ullet perturbative $\langle \delta \textit{M}_{
 m W} \rangle \lesssim 5$ MeV : negligible!
- nonperturbative $\langle \delta M_{\rm W} \rangle \sim$ 40 MeV : favoured; no-effect option ruled out at 2.8 σ .
- Bose-Einstein $\langle \delta M_{\rm W} \rangle \lesssim 100$ MeV : full effect ruled out (while models with ~ 20 MeV barely acceptable).


Jet pedestal effect – 1

Events with hard scale (jet, W/Z) have more underlying activity!


Events with n interactions have n chances that one of them is hard,

- so "trigger bias": hard scale \Rightarrow central collision
- \Rightarrow more interactions \Rightarrow larger underlying activity.

Studied in particular by Rick Field, with CDF/CMS data:

 Define the MAX and MIN "transverse" regions on an event-by-event basis with MAX (MIN) having the largest (smallest) density.

The Sudakov form factor applied to MPI

A Poissonian process is one where "events" (e.g. radioactive decays) can occur uncorrelated in "time" t (or other ordering variable). If the probability for an "event" to occur at "time" t is P(t) then the probability for an i'th event at t_i is

$$\mathcal{P}(t_i) = P(t_i) \exp \left(-\int_{t_{i-1}}^{t_i} P(t) dt\right)$$

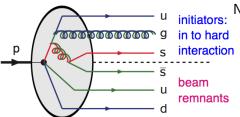
Example: Sudakov form factor for parton showers, where increasing $t \to \text{decreasing evolution variable } p_{\perp}$ and "event" $\to \text{parton branchings}$. Can also apply to ordered sequence of MPIs at decreasing p_{\perp} values, starting from $E_{cm}/2$

$$\mathcal{P}(p_{\perp}=p_{\perp i})=rac{1}{\sigma_{
m nd}}rac{{
m d}\sigma}{{
m d}p_{\perp}}\exp\left[-\int_{p_{\perp}}^{p_{\perp}(i-1)}rac{1}{\sigma_{
m nd}}rac{{
m d}\sigma}{{
m d}p'_{\perp}}{
m d}p'_{\perp}
ight]$$

MPI in PYTHIA

- MPIs are gererated in a falling sequence of p_{\perp} values; recall Sudakov factor approach to parton showers.
- Energy, momentum and flavour conserved step by step: subtracted from proton by all "previous" collisions.
- Protons modelled as extended objects, allowing both central and peripheral collisions, with more or less activity.
- (Partons at small x more broadly spread than at large x.)
- Colour screening increases with energy, i.e. $p_{\perp 0} = p_{\perp 0}(E_{\rm cm})$, as more and more partons can interact.
- (Rescattering: one parton can scatter several times.)
- Colour connections: each interaction hooks up with colours from beam remnants, but also correlations inside remnants.
- Colour reconnections: many interaction "on top of" each other ⇒ tightly packed partons ⇒ colour memory loss?

Interleaved evolution in PYTHIA


- Transverse-momentum-ordered parton showers for ISR and FSR
- MPI also ordered in p_{\perp}
- ⇒ Allows interleaved evolution for ISR, FSR and MPI:

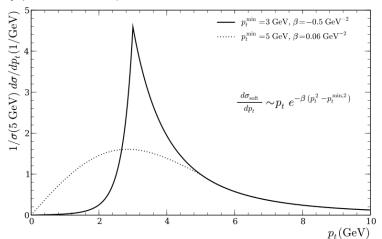
$$\begin{array}{ll} \frac{\mathrm{d}\mathcal{P}}{\mathrm{d}\boldsymbol{p}_{\perp}} &=& \left(\frac{\mathrm{d}\mathcal{P}_{\mathrm{MPI}}}{\mathrm{d}\boldsymbol{p}_{\perp}} + \sum \frac{\mathrm{d}\mathcal{P}_{\mathrm{ISR}}}{\mathrm{d}\boldsymbol{p}_{\perp}} + \sum \frac{\mathrm{d}\mathcal{P}_{\mathrm{FSR}}}{\mathrm{d}\boldsymbol{p}_{\perp}} \right) \\ &\times & \exp\left(-\int_{\boldsymbol{p}_{\perp}}^{\boldsymbol{p}_{\perp} \max} \left(\frac{\mathrm{d}\mathcal{P}_{\mathrm{MPI}}}{\mathrm{d}\boldsymbol{p}_{\perp}'} + \sum \frac{\mathrm{d}\mathcal{P}_{\mathrm{ISR}}}{\mathrm{d}\boldsymbol{p}_{\perp}'} + \sum \frac{\mathrm{d}\mathcal{P}_{\mathrm{FSR}}}{\mathrm{d}\boldsymbol{p}_{\perp}'} \right) \mathrm{d}\boldsymbol{p}_{\perp}' \right) \end{array}$$

Ordered in decreasing p_{\perp} using "Sudakov" trick. Corresponds to increasing "resolution":

- smaller p_{\perp} fill in details of basic picture set at larger p_{\perp} .
 - Start from fixed hard interaction ⇒ underlying event
 - No separate hard interaction ⇒ minbias events
 - Possible to choose two hard interactions, e.g. W⁻W⁻

Initiators and remnants

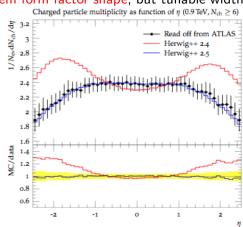
Need to assign:


- correlated flavours
- correlated $x_i = p_{zi}/p_{ztot}$
- ullet correlated primordial $k_{\perp i}$
- correlated colours
- correlated showers

PDF after preceding MI/ISR activity:

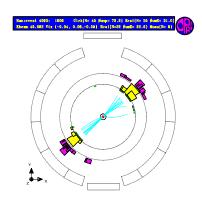
- Squeeze range 0 < x < 1 into $0 < x < 1 \sum x_i$ (ISR: $i \neq i_{\text{current}}$)
- Valence quarks: scale down by number already kicked out
- § Introduce companion quark q/\overline{q} to each kicked-out sea quark \overline{q}/q , with x based on assumed $g \to q\overline{q}$ splitting
- Gluon and other sea: rescale for total momentum conservation

MPI in Herwig


Key point: two-component model

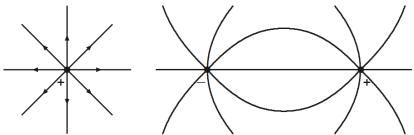
 $p_{\perp}>p_{\perp \rm min}$: pure perturbation theory (no modification) $p_{\perp}< p_{\perp \rm min}$: pure nonperturbative ansatz

MPI in Herwig – 2


- Number of MPIs first picked; then generated unordered in p_{\perp} .
- Interactions uncorrelated, up until energy used up.
- Force ISR to reconstruct back to gluon after first interaction.
- Impact parameter by em form factor shape, but tunable width.
- p_{⊥min} scale to be tuned energy-by-energy.
- Colour reconnection essential to get $dn/d\eta$ correct.

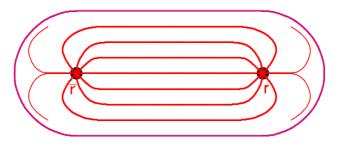
Hadronization

Hadronization/confinement is nonperturbative \Rightarrow only models. Main contenders: **string** and **cluster** fragmentation.


Begin with $e^+e^-\to \gamma^*/Z^0\to q\overline{q}$ and $e^+e^-\to \gamma^*/Z^0\to q\overline{q}g$:

The QED potential

In QED, field lines go all the way to infinity


since photons cannot interact with each other.

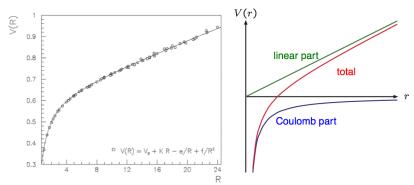
Potential is simply additive:

$$V(\mathbf{x}) \propto \sum_{i} \frac{1}{|\mathbf{x} - \mathbf{x}_{i}|}$$

The QCD potential – 1

In QCD, for large charge separation, field lines are believed to be compressed to tubelike region(s) \Rightarrow string(s)

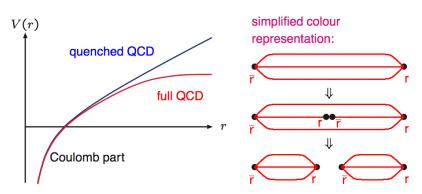
Gives force/potential between a q and a \overline{q} :


$$F(r) \approx \text{const} = \kappa \iff V(r) \approx \kappa r$$

 $\kappa \approx 1~{\rm GeV/fm} \approx$ potential energy gain lifting a 16 ton truck.

Flux tube parametrized by center location as a function of time \Rightarrow simple description as a 1+1-dimensional object – a string.

The QCD potential – 2


Linear confinement confirmed e.g. by lattice QCD calculation of gluon field between a static colour and anticolour charge pair:

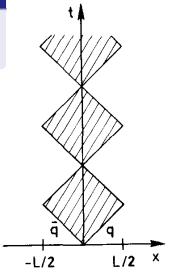
At short distances also Coulomb potential, important for internal structure of hadrons, but not for particle production (?).

The QCD potential – 3

```
Full QCD = gluonic field between charges ("quenched QCD") plus virtual fluctuations g \to q\overline{q} (\to g) \Longrightarrow nonperturbative string breakings gg \dots \to q\overline{q}
```

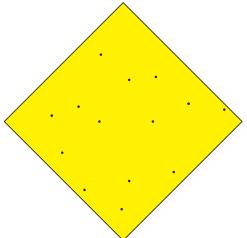

String motion

The Lund Model: starting point


Use only linear potential $V(r) \approx \kappa r$ to trace string motion, and let string fragment by repeated $q\overline{q}$ breaks.

Assume negligibly small quark masses. Then linearity between space—time and energy—momentum gives

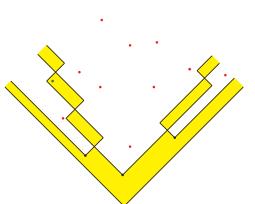
$$\left| \frac{\mathrm{d}E}{\mathrm{d}z} \right| = \left| \frac{\mathrm{d}p_z}{\mathrm{d}z} \right| = \left| \frac{\mathrm{d}E}{\mathrm{d}t} \right| = \left| \frac{\mathrm{d}p_z}{\mathrm{d}t} \right| = \kappa$$


(c=1) for a $q\overline{q}$ pair flying apart along the $\pm z$ axis.

But signs relevant: the q moving in the +z direction has $\mathrm{d}z/\mathrm{d}t=+1$ but $\mathrm{d}p_z/\mathrm{d}t=-\kappa$.

The Artru-Mennessier Model

1974: the first (semi-)realistic hadronization model Assume fragmentation local, and string homogeneous. Thus constant probability per unit string area of breaking.


The Artru-Mennessier Model

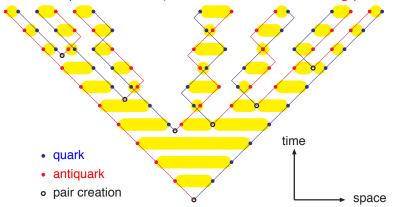
1974: the first (semi-)realistic hadronization model Assume fragmentation local, and string homogeneous. Thus constant probability per unit string area of breaking.

But a string cannot break where it has already broken ⇒ remove vertices in forward lightcone of another

The Artru-Mennessier Model

1974: the first (semi-)realistic hadronization model Assume fragmentation local, and string homogeneous. Thus constant probability per unit string area of breaking.

But a string cannot break where it has already broken ⇒ remove vertices in forward lightcone of another

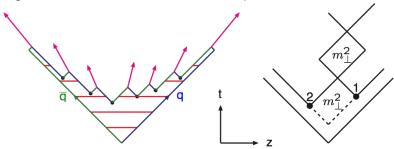

 \Rightarrow dampening factor $\exp(-\mathcal{P}\tilde{A})$, where \tilde{A} is string area in the backwards lightcone

Drawback: continuous hadron mass spectrum

The Lund Model

Combine yo-yo-style string motion with string breakings!

Motion of quarks and antiquarks with intermediate string pieces:



A ${\bf q}$ from one ${\color{red} {\sf string}}$ break combines with a ${\color{red} \overline{\bf q}}$ from an adjacent one.

Gives simple but powerful picture of hadron production.

Where does the string break? -1

Fragmentation starts in the middle and spreads outwards:

- Here m_{\perp}^2 fixed from hadron and p_{\perp} selection (unlike AM).
- Lorentz covariant inside—out cascade.
- Breakup vertices causally disconnected
 - ⇒ iteration from ends inwards allowed!

Where does the string break? -2

Breakup vertices causally disconnected

- \Rightarrow can proceed in arbitrary order
- ⇒ *left*–*right symmetry*

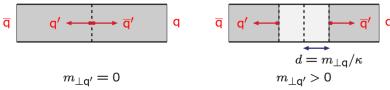
$$\mathcal{P}(1,2) = \mathcal{P}(1) \times \mathcal{P}(1 \to 2)$$

= $\mathcal{P}(2) \times \mathcal{P}(2 \to 1)$

⇒ Lund symmetric fragmentation function:

$$f(z) \propto (1-z)^a \exp(-bm_{\perp}^2/z)/z$$

Lund-Bowler modified shape for heavy quarks:


y order 2.5
$$m_{T}^{2} = 1$$
 $m_{T}^{2} = 4$ $m_{T}^{2} = 4$

f(z), a = 0.5, b = 0.7

$$f(x) \propto rac{1}{z^{1+bm_q^2}} \exp\left(-rac{bm_\perp^2}{z}
ight).$$

3

How does the string break?

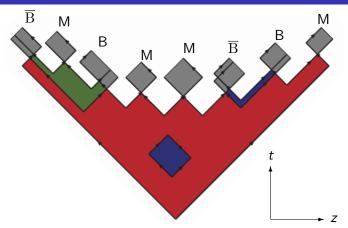
String breaking modelled by tunneling:

$$\mathcal{P} \propto \exp\left(-\frac{\pi m_{\perp \mathrm{q}}^2}{\kappa}\right) = \exp\left(-\frac{\pi p_{\perp \mathrm{q}}^2}{\kappa}\right) \, \exp\left(-\frac{\pi m_{\mathrm{q}}^2}{\kappa}\right)$$

- Common Gaussian p_{\perp} spectrum, $\langle p_{\perp} \rangle \approx 0.4$ GeV.
- Suppression of heavy quarks,

$$u\overline{u}: d\overline{d}: s\overline{s}: c\overline{c} \approx 1:1:0.3:10^{-11}$$
.

• Diquark \sim antiquark \Rightarrow simple model for baryon production.


Flavour composition

Combination of q from one break and $\overline{q}\ (qq)$ gives meson (baryon). Many uncertainties in selection of hadron species, e.g.:

- Spin counting suggests vector:pseudoscalar = 3:1, but $m_{\rho} \gg m_{\pi}$, so empirically \sim 1:1.
- Also for same spin $m_{\eta'}\gg m_{\eta}\gg m_{\pi^0}$ gives mass suppression. String model unpredictive in understanding of hadron mass effects \Rightarrow many "materials constants".
- There is one V and one PS for each $q\overline{q}$ flavour set, but baryons are more complicated, e.g. $uuu \Rightarrow \Delta^{++}$ whereas $uds \Rightarrow \Lambda^0$, Σ^0 or Σ^{*0} . SU(6) (flavour×spin) Clebsch-Gordans needed; affects surrounding flavours.
- Simple diquark model too simpleminded; produces baryon-antibaryon pairs nearby in momentum space.

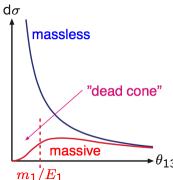
Many parameters, 10–20 depending on how you count.

The popcorn model for baryon production

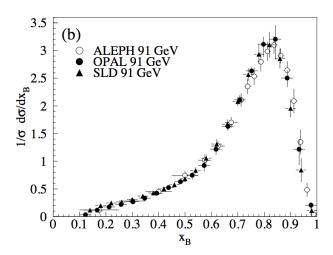
- SU(6) (flavour×spin) Clebsch-Gordans needed.
- Quadratic diquark mass dependence
 - \Rightarrow strong suppression of multistrange and spin 3/2 baryons.
 - \Rightarrow effective parameters with less strangeness suppression.

Heavy flavours: the dead cone

Consider eikonal expression for soft-gluon radiation

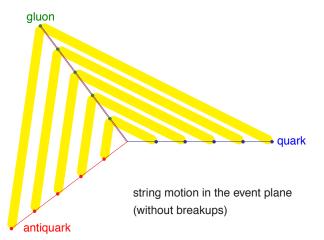

$$\frac{d\sigma_{q\overline{q}g}}{\sigma_{q\overline{q}}} \propto (-1) \left(\frac{p_1}{p_1 p_3} - \frac{p_2}{p_2 p_3} \right)^2 \frac{d^3 p_3}{E_3}
\propto \left(\frac{2p_1 p_2}{(p_1 p_3)(p_2 p_3)} - \frac{m_1^2}{(p_1 p_3)^2} - \frac{m_2^2}{(p_2 p_3)^2} \right) E_3 dE_3 d\cos\theta_{13}$$

For θ_{13} small


$$\frac{\mathrm{d}\sigma_{\mathrm{q}\overline{\mathrm{q}}\mathrm{g}}}{\sigma_{\mathrm{q}\overline{\mathrm{q}}}} \propto \frac{\mathrm{d}\omega}{\omega} \frac{\mathrm{d}\theta_{13}^2}{\theta_{13}^2} \left(\frac{\theta_{13}^2}{\theta_{13}^2 + m_1^2/E_1^2}\right)^2$$

$$= \frac{\mathrm{d}\omega}{\omega} \frac{\theta_{13}^2 \, \mathrm{d}\theta_{13}^2}{(\theta_{13}^2 + m_1^2/E_1^2)^2}$$

so "dead cone" for $\theta_{13} < m_1/E_1$


Heavy flavours: fragmentation data

But note that a heavy hadron decays to many secondaries, filling up "dead cone" and giving "normally-soft" light-hadron spectra.

The Lund gluon picture – 1

A gluon carries one colour and one anticolour. Thus it can be viewed as a kink on the string, carrying energy and momentum:

The most characteristic feature of the Lund model.

The Lund gluon picture – 2

Gluon = kink on string

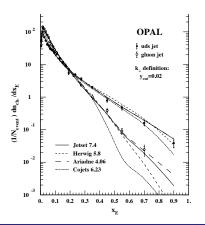
Force ratio gluon/ quark = 2, cf. QCD $N_C/C_F = 9/4$, \rightarrow 2 for $N_C \rightarrow \infty$ No new parameters introduced for gluon jets!

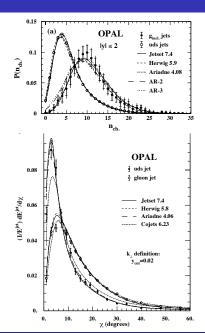
SO

- Few parameters to describe energy-momentum structure!
- Many parameters to describe flavour composition!

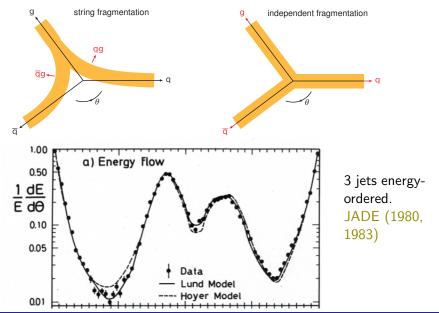
String piece \approx dipole

One-to-one correspondence between how strings and how colour dipoles are stretched between colour charges in $N_C \to \infty$ limit.

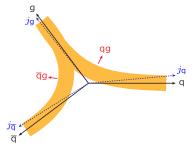

Dipole: emission in perturbative regime.


String: "emission" in nonperturbative regime.

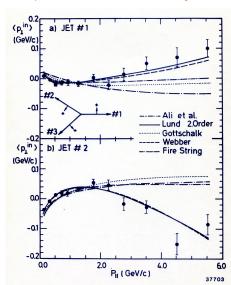
String picture 5 years ahead...


Gluon vs. quark jets

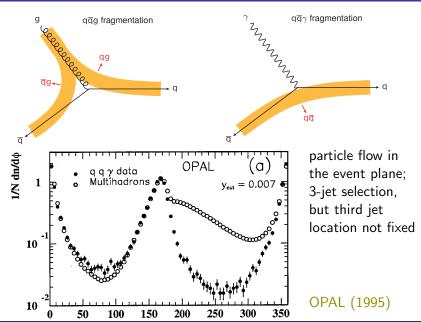
Energy sharing between two strings makes hadrons in gluon jets softer, more and broader in angle:

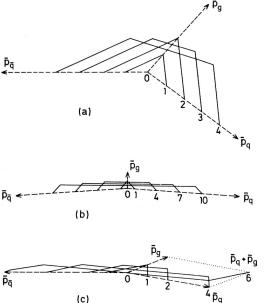


The string/JADE Effect (DESY 1980)



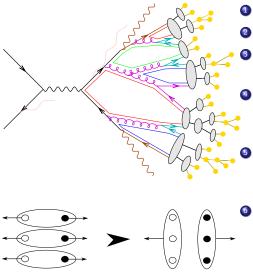
(E, \mathbf{p}) not preserved when massless partons become massive jets!


In the string model the reconstructed q and \overline{q} jet axes are shifted in the g direction:


More two-jetlike events compensated by higher $\alpha_{\rm s}$ in string than in independent fragmentation.

Photon vs. Gluon Emission

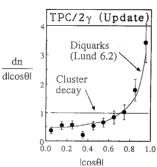
Infrared and collinear safety of string fragmentation



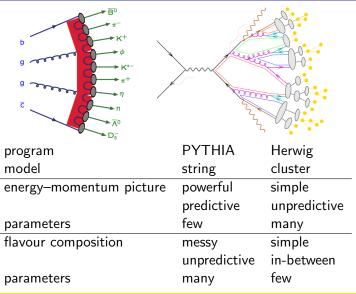
Emission of a soft or collinear gluon only negligibly perturbs string motion/evolution.

Therefore string fragmentation is soft and collinear safe.

Technically, tracing the string motion for many nearby gluons can become messy, prompting simplifications.

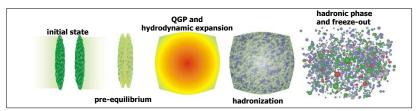

The Herwig Cluster Model

- **1** Force $g \to q\overline{q}$ branchings.
- Form colour singlet clusters.
- Decay high-mass clusters to smaller clusters.
- Decay clusters to 2 hadrons according to phase space times spin weight.
- $\begin{tabular}{ll} \textbf{0} & \textbf{New: allow nonperturbative} \\ & g \to s \overline{s} \ \mbox{in addition to} \\ & g \to u \overline{u} \ \mbox{and} \ g \to d \overline{d}. \\ \end{tabular}$

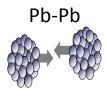

Cluster Model issues

- 1 Tail to very large-mass clusters (e.g. if no emission in shower); if large-mass cluster \rightarrow 2 hadrons then incorrect hadron momentum spectrum, crazy four-jet events ⇒ split big cluster into 2 smaller along "string" direction; daughter-mass spectrum \Rightarrow iterate if required; $\sim 15\%$ of primary clusters are split, but give $\sim 50\%$ of final hadrons
- 2 Isotropic baryon decay inside cluster \implies splittings $g \rightarrow qq + \overline{qq}$
- 3 Too soft charm/bottom spectra ⇒ anisotropic leading-cluster decay
- 4 Charge correlations still problematic \implies all clusters anisotropic (?)
- 5 Sensitivity to particle content ⇒ only include complete multiplets

dn


String vs. Cluster

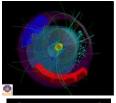
"There ain't no such thing as a parameter-free good description"

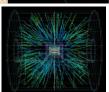

Heavy Ion Collisions

Conventional wisdom:

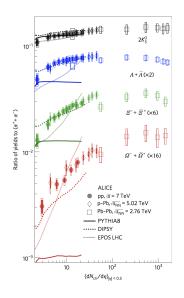
- The only way we can create the QGP in the laboratory!
- By colliding heavy ions it is possible to create a large (»1fm³) zone of hot and dense QCD matter
- Goal is to create and study the properties of the Quark Gluon Plasma
- Experimentally mainly the final state particles are observed, so the conclusions have to be inferred via models

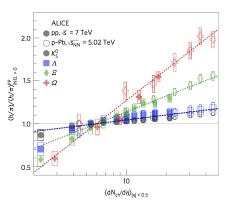
The three systems — understanding before 2012





p-Pb

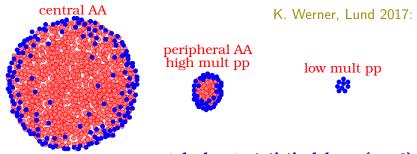



Hot QCD matter: This is where we expect the QGP to be created in central collisions.

QCD baseline: This is the baseline for "standard" QCD phenomena.

Cold QCD matter: This is to isolate nuclear effects, e.g. nuclear pdfs.

Strangeness enhancement



Signs of QGP in high-multiplicity pp collisions? If not, what else? A whole new game!

The Core-Corona solution

Currently most realistic "complete" approach

core => hydro => statistical decay ($\mu=0$) corona => string decay

allows smooth transition. Implemented in **EPOS** MC (Werner, Guiot, Pierog, Karpenko, Nucl.Phys.A931 (2014) 83)

Can conventional pp MCs be adjusted to cope?

Ropes (in Dipsy model)

Dense environment \Rightarrow several intertwined strings \Rightarrow **rope**.

Sextet example:

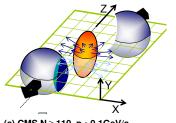
$$3 \otimes 3 = 6 \oplus \overline{3}$$

$$C_2^{(6)} = \frac{5}{2}C_2^{(3)}$$

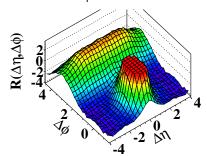
$$\overline{q}_2$$
 q_1 \overline{q}_4 q_3

At first string break $\kappa_{\rm eff} \propto C_2^{(6)} - C_2^{(3)} \Rightarrow \kappa_{\rm eff} = \frac{3}{2}\kappa$.

At second string break $\kappa_{\rm eff} \propto C_2^{(3)} \Rightarrow \kappa_{\rm eff} = \kappa$.

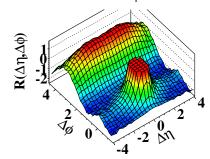

Multiple \sim parallel strings \Rightarrow random walk in colour space.

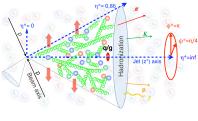
Larger
$$\kappa_{
m eff} \Rightarrow$$
 larger $\exp\left(-rac{\pi m_{
m q}^2}{\kappa_{
m eff}}
ight)$


- more strangeness $(\tilde{\rho})$
- more baryons $(\tilde{\xi})$
- ullet mainly agrees with ALICE (but p/π overestimated)

Bierlich, Gustafson, Lönnblad, Tarasov, JHEP 1503, 148; from Biro, Nielsen, Knoll (1984), Białas, Czyz (1985), ...

The Ridge Effect (2010)


(c) CMS N \geq 110, p_{τ}>0.1GeV/c


Elliptic flow in AA predicted from geometry + pressure.

Not so for pp, and yet ridge is observed at high multiplicities:

(d) CMS N \geq 110, 1.0GeV/c<p_{τ}<3.0GeV/c

Ridge in jets? (2023)

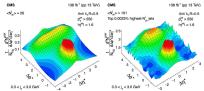


FIG. 2. Results for 2D two-particle angular correlation functions for particle $0.3 < j_{\rm T} < 3.0$ GeV from inclusive (left) and the highest (right) $N_{\rm ch}^i$ jets, for anti- $k_{\rm T}$ R = 0.8 algorithm with $p_{\rm ch}^{\rm igh} > 550$ GeV and $|p_{\rm ch}^{\rm igh}| < 1.6$.

2312.17103 [hep-ex]

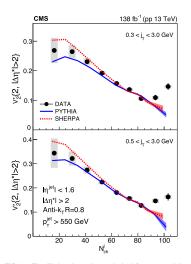
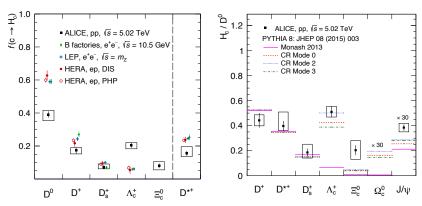
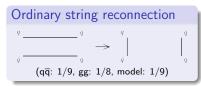
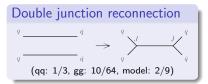
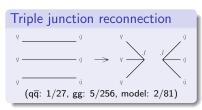



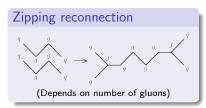
FIG. 4. The elliptic anisotropies v_2^* , obtained from two-particle correlations as a function of N_{ch}^l , for anti- k_T R = 0.8 jets with $p_T^{\text{jet}} > 550$ GeV and $|p_f^{\text{jet}}| < 1.6$ in pp collisions at 13 TeV from data, PYTHIA8, and SHERPA. Vertical bars on data points indicate statistical uncertainty, while shaded boxes represent systematic

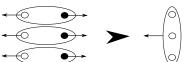
The charm baryon enhancement

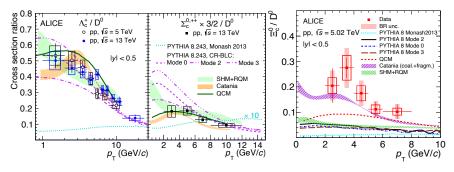

In 2017/21 ALICE found/confirmed strong enhancement of charm baryon production, relative to LEP, HERA and default $\rm PYTHIA$.

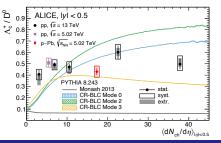



The QCDCR model does much better, with junctions \Rightarrow baryons.


Colour reconnection models

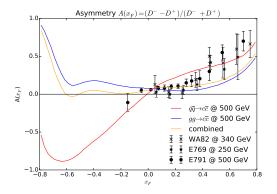

"Recent" PYTHIA option: QCD-inspired CR (QCDCR):

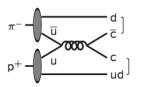




Triple-junction also in HERWIG cluster model.

Charm baryon differential distributions

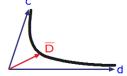



QCDCR does well for some distributions, less so for others. Improvements needed, but good starting point.

Beam drag effects

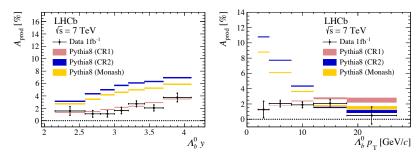
Colour flow connects hard scattering to beam remnants. Can have consequences, e.g. in π^-p :

$$A(x_{\rm F}) = \frac{\sigma({\rm D}^-) - \sigma({\rm D}^+)}{\sigma({\rm D}^-) + \sigma({\rm D}^+)}$$



If low-mass string e.g.:

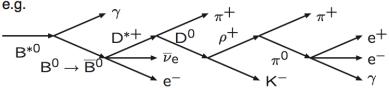
 $\overline{c}d:D^-,D^{*-}$


 $\mathrm{cud}: \Lambda_{\mathrm{c}}^+, \Sigma_{\mathrm{c}}^+, \Sigma_{\mathrm{c}}^{*+}$

 \Rightarrow flavour asymmetries

Can give D "drag" to larger x_F than c quark.

Bottom asymmetries


$$A(y), A(p_{\perp}) = \frac{\sigma(\Lambda_{\rm b}^0) - \sigma(\overline{\Lambda}_{\rm b}^0)}{\sigma(\Lambda_{\rm b}^0) + \sigma(\overline{\Lambda}_{\rm b}^0)}$$

CR1 = QCDCR, with no enhancement at low p_{\perp} . Enhanced $\Lambda_{\rm b}$ production at low p_{\perp} , like for $\Lambda_{\rm c}$, dilutes asymmetry? Asymmetries observed also for other charm and bottom hadrons.

Warning: fragmentation function formalisms unreliable at low p_{\perp} . May lead to incorrect conclusions about intrinsic charm.

Decays

Unspectacular/ungrateful but necessary: this is where most of the final-state particles are produced! Involves hundreds of particle kinds and thousands of decay modes.

- $B^{*0} \to B^0 \gamma$: electromagnetic decay
- $B^0 \to \overline{B}^0$ mixing (weak)
- $\overline{\rm B}^0 \to {\rm D}^{*+} \overline{\nu}_{\rm e} {\rm e}^-$: weak decay, displaced vertex, $|{\cal M}|^2 \propto (\rho_{\overline {\rm B}} \rho_{\overline {\nu}}) (\rho_{\rm e} \rho_{{\rm D}^*})$
- $D^{*+} \to D^0 \pi^+$: strong decay
- $D^0 \to \rho^+ K^-$: weak decay, displaced vertex, ρ mass smeared
- $\rho^+ \to \pi^+ \pi^0$: ρ polarized, $|\mathcal{M}|^2 \propto \cos^2 \theta$ in ρ rest frame
- $\pi^0 \to e^+e^-\gamma$: Dalitz decay, $m(e^+e^-)$ peaked

Summary

- Perturbative jet cross section is divergent in $p_{\perp} \to 0$ limit \Rightarrow colour screening invoked.
- MPI absolutely crucial to get right multiplicities, rapidity and p₁ spectra, and various correlations.
- String model most common approach to hadronization, with strong support in data and lattice QCD.
- String space—time picture well confirmed, e.g. in 3-jet, but flavour composition less well so.
- Cluster model valid alternative for most properties.
- LHC data has revolutionized the picture of soft physics:
 Goodbye jet universality!
- This has led to a renewed phenomenology interest:
 Welcome new mechanisms!