

Introduction to Event Generators

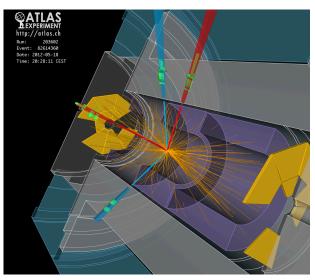
Part 1: Introduction and Monte Carlo Techniques

Torbjörn Sjöstrand

Department of Physics Lund University

Terascale Monte Carlo School 2025, DESY

Motivation



LHC collision event:

Four leptons clearly visible.

Maybe $H \rightarrow Z^0Z^0 \rightarrow e^+e^-\mu^+\mu^-.$

But what about rest of tracks?

Why and how are they produced?

Production properties of the Higgs?

Course Plan

Event generators: model and understand particle collisions
Complementary to the "textbook" picture of particle physics, since event generators are close to how things work "in real life".

Lecture 1 Introduction to QCD (and the Standard Model)
Introduction to generators and Monte Carlo techniques

Lecture 2 Parton showers and jet physics

Lecture 3 Multiparton interactions and hadronization

Apologies: PYTHIA-centric,

but most of it generic, or else options will be mentioned

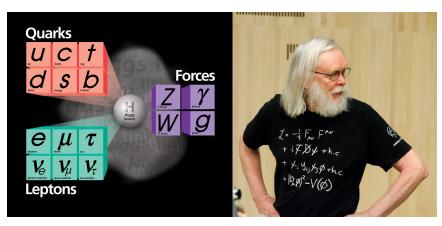
Textbook literature examples

- B.R. Martin and G. Shaw, "Particle Physics", Wiley (2017, 4th edition)
- G. Kane, "Modern Elementary Particle Physics", Cambridge University Press (2017, 2nd edition)
- D. Griffiths, "Introduction to Elementary Particles", Wiley (2008, 2nd edition)
- M. Thomson, "Modern Particle Physics", Cambridge University Press (2013)
- A. Rubbia, "Phenomenology of Particle Physics", Cambridge University Press (2022) (1100 pp!)
- P. Skands, "Introduction to QCD", arXiv:1207.2389 [hep-ph] (v5 2017)
- G. Salam, "Toward Jetography", arXiv:0906.1833 [hep-ph]

Event generator literature

- A. Buckley et al.,
 "General-purpose event generators for LHC physics",
 Phys. Rep. 504 (2011) 145, arXiv:1101.2599 [hep-ph], 89 pp
- J.M. Campbell et al., "Event Generators for High-Energy Physics Experiments", for Snowmass 2021, arXiv:2203.11110 [hep-ph], 153 pp
- C. Bierlich et al., "A comprehensive guide to the physics and usage of PYTHIA 8.3", SciPost PhysCodeb 2022, 8, arXiv:2203.11601 [hep-ph], 315 pp
- \bullet MCnet annual summer schools Monte Carlo network from ~ 10 European universities, see further https://www.montecarlonet.org/, with 2026 school at CERN, 31 May 5 June
- Other schools arranged by CTEQ, DESY, CERN, ...

The Standard Model in a nutshell



The Standard Model = "particles" + "interactions" with well-defined properties and behaviour.

Particles

Particles are spin 1/2 fermions, and

- obey Fermi–Dirac statistics and Pauli exclusion principle,
- can have two spin states, "left" and "right",
- carry unique quantum numbers that are more-or-less well conserved in interactions,
- can be separated into quarks (⇒ hadrons) and leptons,
- come in three generations, distinguished by mass:

$$\begin{array}{cccc} & \text{first} & \text{second} & \text{third} \\ \text{quarks} & \begin{pmatrix} u \\ d \end{pmatrix} & \begin{pmatrix} c \\ s \end{pmatrix} & \begin{pmatrix} t \\ b \end{pmatrix} \\ \\ \text{leptons} & \begin{pmatrix} \nu_e \\ e \end{pmatrix} & \begin{pmatrix} \nu_\mu \\ \mu \end{pmatrix} & \begin{pmatrix} \nu_\tau \\ \tau \end{pmatrix} \end{array}$$

- have each an antiparticle with opposite quantum numbers but same mass, and
- can only be created or destroyed in fermion-antifermion pairs.

Torbjörn Sjöstrand Introduction to Event Generators 1 slide 7/66

Interactions

Interactions (= forces) come in different kinds. In the Standard Model these are

- ullet electromagnetism, QED, mediated by the photon γ ,
- weak interactions, mediated by the Z^0 , W^+ and W^- ,
- strong interactions, QCD, mediated by eight gluons g, and
- mass generation, mediated by Higgs condensate (+ particle).

Among these, only the W^{\pm} does **not** conserve the number of fermions minus antifermions of each type.

E.g.
$$u + \overline{d} \to W^+ \to e^+ \nu_e$$
 but **not** $u + \overline{c} \to Z^0 \to e^+ \mu^-$.

Gravitation, mediated by gravitons, is not included since

- (a) it is too weak for any influence on particle physics processes,
- (b) attempts to formulate it as a quantum field theory have failed.

Units and scales

```
1 \, \mathrm{fm} = 10^{-15} \, \mathrm{m} \approx r_{\mathrm{proton}} basic distance scale
1 \, {\rm GeV} \approx 1.6 \cdot 10^{-10} \, {\rm J} \approx m_{\rm proton} c^2 basic energy scale
c=1\approx 3\cdot 10^{23}\,\mathrm{fm/s}, so that t in fm, and p and m in GeV
\hbar = 1 = \hbar c \approx 0.2 \, \mathrm{GeV} \cdot \mathrm{fm}, e.g. to use in e^{-ipx/\hbar} \to e^{-ipx}
1 \,\mathrm{mb} = 10^{-31} \,\mathrm{m}^2 \Rightarrow 1 \,\mathrm{fm}^2 = 10 \,\mathrm{mb}
\hbar^2 = (\hbar c)^2 \approx 0.4 \,\mathrm{GeV}^2 \cdot \mathrm{mb}
N = \sigma \int \mathcal{L} dt ("experiment = theory × machine")
e.g. if \sigma = 1 \, \text{fb} = 10^{-12} \, \text{mb}.
           \mathcal{L} = 10^{34} \, \text{cm}^{-2} \text{s}^{-1} = 10^{38} \, \text{m}^{-2} \text{s}^{-1} = 10^7 \, \text{mb}^{-1} \text{s}^{-1}
            T = \int dt = 24 \text{ hours} \approx 10^5 \text{ s}
then N \approx 10^{-12} \cdot 10^7 \cdot 10^5 = 1
```

Lagrangians

Classical Lagrangian $L = T - V = E_{\text{kinetic}} - E_{\text{potential}}$.

Action $S = \int L dt$ should be at minimum, $\delta S = 0$:

$$\frac{\partial L}{\partial q} = \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial L}{\partial \dot{q}} \right)$$
 (Euler – Lagrange)

with q a generalized coordinate and \dot{q} a generalized velocity.

In quantum field theory instead Lagrangian density \mathcal{L} :

$$L = \int \mathcal{L} \, \mathrm{d}^3 x \quad \Rightarrow \quad S = \int \mathcal{L} \, \mathrm{d}^4 x \quad \Rightarrow \quad \frac{\partial \mathcal{L}}{\partial \varphi} = \partial_\mu \left(\frac{\partial \mathcal{L}}{\partial (\partial_\mu \varphi)} \right)$$

E.g. for a scalar field φ

$$\mathcal{L} = \frac{1}{2} \left(\partial_{\mu} \varphi \partial^{\mu} \varphi - m^{2} \varphi^{2} \right) \quad \Leftrightarrow \quad (\partial^{\mu} \partial_{\mu} + m^{2}) \varphi = 0$$

i.e. the Klein-Gordon equation.

For
$$\varphi = e^{-ipx}$$
 this gives $(-p^2 + m^2)\varphi = (-E^2 + \mathbf{p}^2 + m^2)\varphi = 0$.

Torbjörn Sjöstrand Introduction to Event Generators 1 slide 10/66

Electromagnetism

The electromagnetic potential $A^{\mu}=(V;\mathbf{A})$ gives

$$F^{\mu\nu} = \partial^{\mu}A^{\nu} - \partial^{\nu}A^{\mu} = \begin{pmatrix} 0 & -E_{x} & -E_{Y} & -E_{z} \\ E_{x} & 0 & -B_{z} & B_{y} \\ E_{y} & B_{z} & 0 & -B_{x} \\ E_{z} & -B_{y} & B_{x} & 0 \end{pmatrix}$$

The pure QED Lagrangian is

$${\cal L} = -rac{1}{4}F^{\mu
u}F_{\mu
u} = rac{1}{2}({f E}^2 - {f B}^2)$$

Adding (Dirac four-component) fermion fields ψ_f with charges Q_f

$$\mathcal{L} = \sum_{f} \overline{\psi}_{f} \left[\gamma^{\mu} i \partial_{\mu} - m_{f} \right] \psi_{f} - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} - e \sum_{f} Q_{f} \overline{\psi}_{f} \gamma^{\mu} \psi_{f} A_{\mu}$$

where the last term gives the interactions between the fermions and the electromagnetic field.

The Standard Model groups (1)

Examples:

- U(1): group elements $g = e^{i\theta}$ are complex numbers on the unit circle. Abelian.
- SU(n): the set of all complex $n \times n$ matrices M that are unitary $(M^{\dagger}M = 1)$ and have determinant +1. Non-Abelian.
- SU(2): has three generators T_i the Pauli matrices:

$$\sigma_1 = \left(egin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}
ight) \hspace{0.5cm} \sigma_2 = \left(egin{array}{cc} 0 & -i \\ i & 0 \end{array}
ight) \hspace{0.5cm} \sigma_3 = \left(egin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}
ight)$$

• SU(3) has eight generators T_j – the Gell-Mann matrices:

$$\lambda_1 = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad \lambda_2 = \begin{pmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad \text{etc}$$

The Standard Model groups (2)

Group elements M can operate on column vectors. In the fundamental representation these are of dimension n. For infinitesimal "rotations", where all θ_i are small,

$$M = \exp\left(i\sum_{j}\theta_{j}T_{j}\right) \approx 1 + i\sum_{j}\theta_{j}T_{j}$$

so the interesting transformations are given by the T_j operations, e.g. in SU(2)

$$\sigma_1\left(\begin{array}{c}0\\1\end{array}\right)=\left(\begin{array}{c}0&1\\1&0\end{array}\right)\left(\begin{array}{c}0\\1\end{array}\right)=\left(\begin{array}{c}1\\0\end{array}\right)$$

In the Standard Model the column vectors represent the fermion particles and the T_i generators the interaction mediators.

The Standard Model groups (3)

Standard Model "=" $\mathrm{SU}(3)_C \times \mathrm{SU}(2)_L \times \mathrm{U}(1)_Y$ at high energies, which is reduced to $\mathrm{SU}(3)_C \times \mathrm{U}(1)_{em}$ at low energies.

Colour group $SU(3)_{\mathcal{C}}$: each quark q comes in three "colours", "red", "green" and "blue"

$$\mathbf{q}_r = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \quad \mathbf{q}_g = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \quad \mathbf{q}_b = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

Eight gluon states can be defined from the Gell-Mann matrices, e.g.

$$g_{r\overline{g}} = \frac{\lambda_1 + i\lambda_2}{2} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

And then matrix multiplication gives that

$$g_{r\overline{g}}q_{g}=q_{r}$$

The Standard Model Unbroken Lagrangian

At high energies the $SU(3)_C \times SU(2)_L \times U(1)_Y$ is exact. Applying our knowledge, its Lagrangian can be written as

$$\begin{split} \mathcal{L} &= \sum_f \overline{\psi}_f \gamma^\mu i \mathcal{D}_\mu \psi_f - \frac{1}{4} G^a_{\mu\nu} G^{a\mu\nu} - \frac{1}{4} W^i_{\mu\nu} W^{i\mu\nu} - \frac{1}{4} B_{\mu\nu} B^{\mu\nu} \\ \mathcal{D}_\mu &= \partial_\mu + i g_3 \frac{\lambda^a}{2} G^a_\mu + i g_2 \frac{\sigma^i}{2} W^i_\mu + i g_1 \frac{Y}{2} B_\mu \\ F^a_{\mu\nu} &= \partial_\mu A^a_\nu - \partial_\nu A^a_\mu + g f^{abc} A^b_\mu A^c_\nu \end{split}$$

where the G^a only act on quarks, and the W^i only on the lefthanded fermions.

A represents the potential, F the field tensor and g the coupling of the respective interaction.

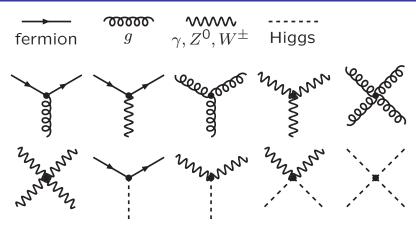
The F require an additional third term for non-Abelian groups, where f^{abc} are group constants.

The Higgs mechanism breaks the electroweak part, but QCD is unaffected, except that quarks gain mass.

Using the Standard Model Lagrangian

- Fermion wave function: $\psi_f(x) = u_f(p) e^{-ipx}$. $u_f(p)$ destroys a fermion f or creates an antifermion \overline{f} , $\overline{u}_f(p)$ creates a fermion f or destroys an antifermion \overline{f} , where $u_f(p)$ and $\overline{u}_f(p)$ are represented by Dirac spinors.
- Vector boson wave function: $A^{\mu}(x) = \epsilon^{\mu}(p) e^{-ipx}$, where ϵ^{μ} is a polarization vector; can create or destroy depending on context.
- Scalar boson wave function: $\phi(x) = 1 e^{-ipx}$; can create or destroy.
- Bilinear field combinations describe propagation of "free" particles, e.g. $\overline{\psi}_f \gamma^{\mu} i \partial_{\mu} \psi_f$.
- Trilinear field combinations describe triple vertices, e.g. $\overline{\psi}_f \gamma^{\mu} e Q_f A_{\mu} \psi_f$.
- Tetralinear field combinations describe quartic vertices.
 Spin handling major complicating factor!

Particle lines and vertices

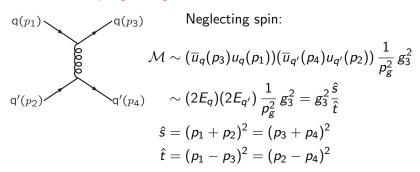


Some $\gamma/Z^0/W^\pm$ combinations not allowed, e.g. $\gamma\gamma\gamma$ or $\gamma\gamma H$. Quantum number preservation, notably colour and charge. Arbitrary time order, with fermion in \equiv antifermion out, W^+ in $\equiv W^-$ out, etc.

Feynman diagrams

A Feynman graph is a useful pictorial representation of a process. It can be converted into a matrix element \mathcal{M} , \approx an amplitude, by combining

- incoming and outgoing wave function normalizations,
- internally exchanged particle "propagators", and
- vertex coupling strengths.



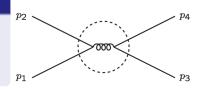
The basic QCD processes

Mandelstam variables

$$\hat{s} = (p_1 + p_2)^2 = (p_3 + p_4)^2$$

$$\hat{t} = (p_1 - p_3)^2 = (p_2 - p_4)^2$$

$$\hat{u} = (p_1 - p_4)^2 = (p_2 - p_3)^2$$



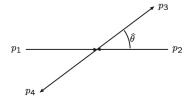
In rest frame, massless limit: $m_1 = m_2 = m_3 = m_4 = 0$

$$\hat{s} = E_{\mathrm{CM}}^2$$

$$\hat{t} = -\frac{\hat{s}}{2}(1 - \cos\hat{\theta}) \approx -p_{\perp}^2$$

$$\hat{u} = -\frac{\hat{s}}{2}(1 + \cos\hat{\theta})$$

$$\hat{s} + \hat{t} + \hat{u} = 0$$



Six basic $2 \rightarrow 2$ QCD processes:

$$qq' \rightarrow qq'$$
 $q\overline{q} \rightarrow q'\overline{q}'$ $q\overline{q} \rightarrow gg$
 $qg \rightarrow qg$ $gg \rightarrow q\overline{q}$ $gg \rightarrow gg$

Cross sections

Consider subprocess
$$a+b \to 1+2+\ldots+n$$
. If $m_a^2, m_b^2 \ll \hat{s} = (p_a+p_b)^2$ then
$$\mathrm{d}\hat{\sigma} = \frac{|\mathcal{M}|^2}{2\hat{s}}\,\mathrm{d}\Phi_n$$

$$\mathrm{d}\Phi_n = (2\pi)^4\,\delta^{(4)}\left(p_a+p_b-\sum_{i=1}^n p_i\right)\,\prod_{i=1}^n\frac{\mathrm{d}^3p_i}{(2\pi)^32E_i}$$

$$\mathrm{d}\Phi_2 = \frac{\mathrm{d}\hat{t}}{8\pi\hat{s}}$$

so for process $qq' \rightarrow qq'$ on preceding page

$$d\hat{\sigma} \approx \left(g_3^2 \frac{\hat{s}}{\hat{t}}\right)^2 \frac{1}{2\hat{s}} \frac{d\hat{t}}{8\pi \hat{s}} = \pi \left(\frac{g_3^2}{4\pi}\right)^2 \frac{d\hat{t}}{\hat{t}^2} = \pi \alpha_s^2 \frac{d\hat{t}}{\hat{t}^2}$$

$$\propto \frac{d\cos(\hat{\theta})}{\sin^4(\hat{\theta}/2)} \quad \text{(Rutherford scattering)} \propto \frac{dp_{\perp}^2}{p_{\perp}^4}$$

Closeup: $qg \rightarrow qg$

Consider $q(1) g(2) \rightarrow q(3) g(4)$:

$$|\mathcal{M}|^2 = \begin{vmatrix} \mathbf{g}^* \mathbf{g} & \mathbf{q}^* & \mathbf{q}^* \\ \mathbf{g}^* \mathbf{g} & \mathbf{q}^* & \mathbf{q}^* \\ \mathbf{g}^* \mathbf{g} & \mathbf{q}^* & \mathbf{q}^* \end{vmatrix}$$

$$\begin{split} t: p_{\mathrm{g}^*} &= p_1 - p_3 \Rightarrow m_{\mathrm{g}^*}^2 = (p_1 - p_3)^2 = \hat{t} \Rightarrow \mathrm{d}\hat{\sigma}/\mathrm{d}\hat{t} \sim 1/\hat{t}^2 \\ u: p_{\mathrm{q}^*} &= p_1 - p_4 \Rightarrow m_{\mathrm{q}^*}^2 = (p_1 - p_4)^2 = \hat{u} \Rightarrow \mathrm{d}\hat{\sigma}/\mathrm{d}\hat{t} \sim -1/\hat{s}\hat{u} \\ s: p_{\mathrm{q}^*} &= p_1 + p_2 \Rightarrow m_{\mathrm{q}^*}^2 = (p_1 + p_2)^2 = \hat{s} \Rightarrow \mathrm{d}\hat{\sigma}/\mathrm{d}\hat{t} \sim 1/\hat{s}^2 \end{split}$$

Contribution of each sub-graph is gauge-dependent, only sum is well-defined:

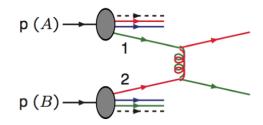
$$\frac{\mathrm{d}\hat{\sigma}}{\mathrm{d}\hat{t}} = \frac{\pi\alpha_\mathrm{s}^2}{\hat{s}^2} \left[\frac{\hat{s}^2 + \hat{u}^2}{\hat{t}^2} + \frac{4}{9} \frac{\hat{s}}{(-\hat{u})} + \frac{4}{9} \frac{(-\hat{u})}{\hat{s}} \right]$$

Torbjörn Sjöstrand Introduction to Event Generators 1 slide 21/66

Composite beams

In reality all beams are composite:

 $p: q, g, \overline{q}, \dots$ $e^-: e^-, \gamma, e^+, \dots$ $\gamma: e^{\pm}, q, \overline{q}, g$



Factorization

$$\sigma^{AB} = \sum_{i,j} \iint \mathrm{d}x_1 \, \mathrm{d}x_2 \, f_i^{(A)}(x_1, Q^2) \, f_j^{(B)}(x_2, Q^2) \, \int \mathrm{d}\hat{\sigma}_{ij}$$

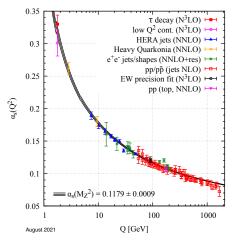
x: momentum fraction, e.g. $p_i = x_1 p_A$; $p_j = x_2 p_B$ Q^2 : factorization scale, "typical momentum transfer scale"

Factorization only proven for a few cases, like γ^*/Z^0 prodution, and strictly speaking not correct e.g. for jet production,

but good first approximation and unsurpassed physics insight.

Couplings

Divergences in higher-order calculations \Rightarrow renormalization \Rightarrow couplings run, i.e. depend on energy scale of process. Small effect for α_{em} (and α_1 , α_2 , $\sin^2\theta_W$), but big for $\alpha_s=\alpha_3$.



```
Small Q:
large \alpha_s,
"infrared slavery"
= "confinement",
perturbation theory fails
```

Large Q: small α_s , "asymptotic freedom", perturbation theory applicable

Also quark masses run!

QCD scales

Renormalization group equations \Rightarrow

$$\alpha_{\rm S}(Q^2) = \frac{12\pi}{(33 - 2n_f)\ln(Q^2/\Lambda_{\rm QCD}^2)} + \cdots$$

where n_f is the number of quarks with $m_{\rm q} < Q$, usually 5. $\alpha_{\rm S}$ continuous at flavour thresholds $\Rightarrow \Lambda_{\rm QCD} \to \Lambda_{\rm QCD}^{(n_f)}$.

Confinement scale $\Lambda_{\rm QCD} \approx 0.2\,{\rm GeV};\; \alpha_{\rm S}(\Lambda_{\rm QCD}) = \infty$

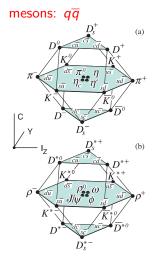
 $1/\Lambda_{\rm QCD}\approx 0.2\,{\rm GeV}\cdot{\rm fm}/0.2\,{\rm GeV}=1\,{\rm fm}$

hard QCD: $Q\gg \Lambda_{\rm QCD}$ such that $\alpha_{\rm S}(Q)\ll 1$; say $Q\geq 10\,{
m GeV}$

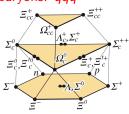
soft QCD: $Q \le \Lambda_{\rm QCD}$; in reality $Q \le 2 \, {\rm GeV}$

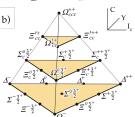
Hadrons

Confinement: no free quarks or gluons, but bound in colour singlets — hadrons.



baryons: qqq





Examples mesons:

$$\pi^+ = u\overline{d}$$
 $\pi^0 = (u\overline{u} - d\overline{d})/\sqrt{2}$
 $\pi^- = d\overline{u}$
 $K^+ = u\overline{s}$

Exampels baryons:

$$p = uud$$

 $n = udd$
 $\Lambda^0 = sud$
 $\Omega^- = sss$

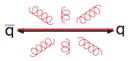
+ spin, orbital and radial excitations.

Higher orders and parton showers

In QED, accelerated charges give rise to radiation; this is the principle of a radio transmitter!

Also for deceleration: bremsstrahlung.

Dipole in QCD:



The more violent the acceleration/deceleration, the higher frequencies/energies can be emitted.

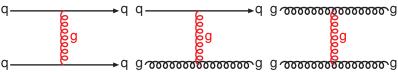
Track emission process as repeated branchings, where each can take a non-negligible energy fraction.

QED: $f \to f\gamma, \gamma \to f\bar{f}$ (f any charged fermion) QCD: $q \to qg, g \to q\bar{q}$, $g \to gg$ (q any quark)

Matrix element: exact as method, but limited by complexity. Parton showers: approximation to construct "complete" events. Match & merge: combine the best of the two.

Multiparton interactions (MPIs)

In pp collisions t-channel exchange of gluons dominate:



Diverges like $\mathrm{d}p_\perp^2/p_\perp^4$, also with PDF included.

At LHC, with $p_{\perp} > 5$ GeV, $\sigma_{2\rightarrow 2} \approx 100 \,\mathrm{mb} \approx \sigma_{\mathrm{total}}$ (cf. $\sigma_{\mathrm{total}} \sim \pi (2r_{\mathrm{p}})^2 \approx \pi (2 \cdot 0.85 \,\mathrm{fm})^2 \approx 9 \,\mathrm{fm}^2 = 90 \,\mathrm{mb}$).

Implies multiple $2 \rightarrow 2$ processes: **multiparton interactions**.

Naively $p_{\perp min} \sim 1/r_{\rm p} \sim \Lambda_{\rm QCD}$, but more relevant is typical separation between colour and anticolour, which if $r_{\rm sep} \sim r_{\rm p}/10$ implies $p_{\perp min} \sim 2\,{\rm GeV}$, a better data fit.

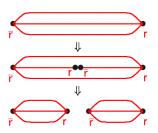
Hadronization

QCD does not allow free colour charges!

In the decay of a colour singlet, say $(e^+e^-) \to Z^0 \to q\overline{q}$, the q and \overline{q} move apart but remain connected by a "string".

Can be viewed as an elongated hadron with radius $r_{\rm string} \approx r_{\rm p}$ ($\times \sqrt{2/3}$ since 3 \to 2 dimensions).

Pulling out string costs energy: string tension $\kappa \approx 1 \text{ GeV/fm}$.



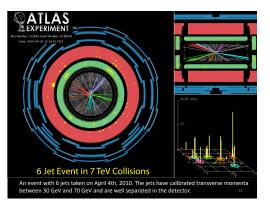
String fragmentation: a new $q'\overline{q}'$ pair is created inside the field between the original $q\overline{q}$ one, with colours screening these endpoints. Thus the big string breaks into two smaller ones.

This can be repeated to give a sequence of "small" strings \approx hadrons.

In sum: each quark remains confined during string fragmentation, but the partner will change.

Jets

A jet: a spray of hadrons moving out in \sim the same direction.

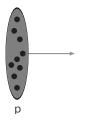


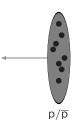
No unique definition, but "in the eye of the beholder".

At the LHC most commonly found in the $(\eta, \varphi, E_{\perp})$ space with the anti- k_{\perp} algorithm.

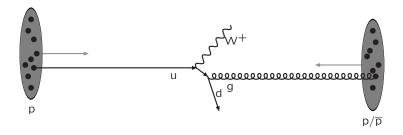
Naively a jet is associated with an outgoing quark or gluon of the hard process, but modified by ISR, FSR, MPI, hadronization.

Warning: schematic only, everything simplified, nothing to scale, ...





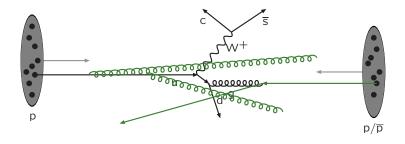
Incoming beams: parton densities



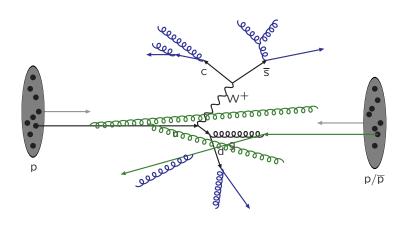
Hard subprocess: described by matrix elements



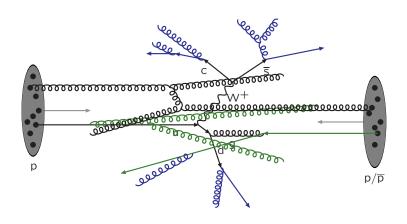
Resonance decays: correlated with hard subprocess



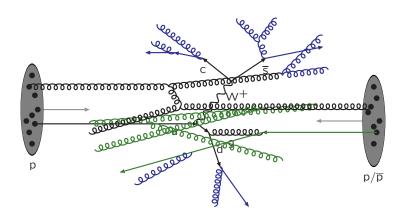
Initial-state radiation: spacelike parton showers



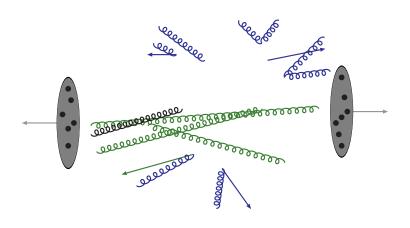
Final-state radiation: timelike parton showers



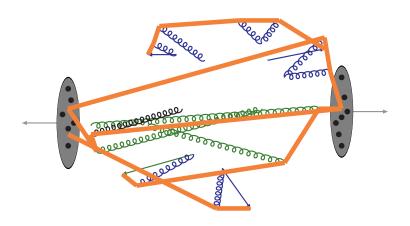
Multiple parton-parton interactions . . .



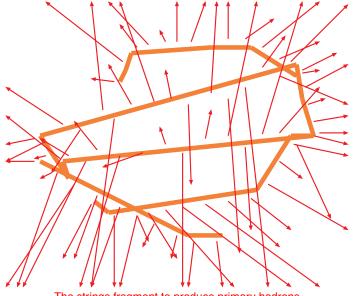
... with its initial- and final-state radiation



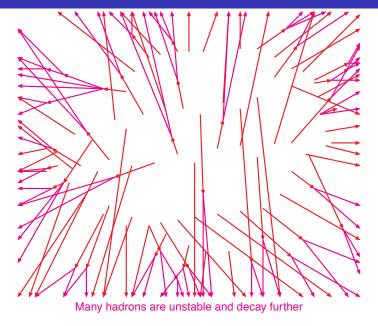
Beam remnants and other outgoing partons



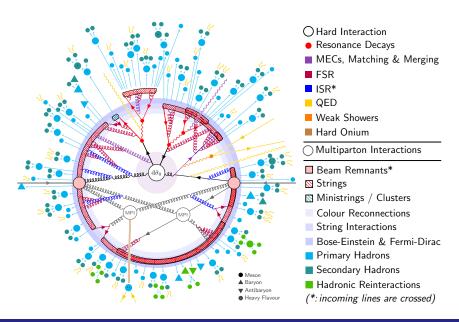
Everything is connected by colour confinement strings Recall! Not to scale: strings are of hadronic widths



The strings fragment to produce primary hadrons



A collected event view



A tour to Monte Carlo

... because Einstein was wrong: God does throw dice!

Quantum mechanics: amplitudes \Longrightarrow probabilities

Anything that possibly can happen, will! (but more or less often)

Event generators: trace evolution of event structure. Random numbers \approx quantum mechanical choices.

The Monte Carlo method

```
Want to generate events in as much detail as Mother Nature
                   ⇒ get average and fluctutations right
                 \implies make random choices, \sim as in nature
           \sigma_{\text{final state}} = \sigma_{\text{hard process}} \mathcal{P}_{\text{tot,hard process} \to \text{final state}}
(appropriately summed & integrated over non-distinguished final states)
where \mathcal{P}_{\text{tot}} = \mathcal{P}_{\text{res}} \, \mathcal{P}_{\text{ISR}} \, \mathcal{P}_{\text{FSR}} \, \mathcal{P}_{\text{MPI}} \mathcal{P}_{\text{remnants}} \, \mathcal{P}_{\text{hadronization}} \, \mathcal{P}_{\text{decays}}
            with \mathcal{P}_i = \prod_i \mathcal{P}_{ij} = \prod_i \prod_k \mathcal{P}_{ijk} = \dots in its turn
                              ⇒ divide and conquer
     an event with n particles involves \mathcal{O}(10n) random choices,
(flavour, mass, momentum, spin, production vertex, lifetime, . . . )
LHC: \sim 100 charged and \sim 200 neutral (+ intermediate stages)
                           ⇒ several thousand choices
                            (of \mathcal{O}(100) different kinds)
```

Why generators?

- Allow theoretical and experimental studies of complex multiparticle physics
- Large flexibility in physical quantities that can be addressed
- Vehicle of ideology to disseminate ideas from theorists to experimentalists

Can be used to

- predict event rates and topologies
 - ⇒ can estimate feasibility
- simulate possible backgrounds
 - ⇒ can devise analysis strategies
- study detector requirements
 - ⇒ can optimize detector/trigger design
- study detector imperfections
 - ⇒ can evaluate acceptance corrections

The workhorses: what are the differences?

Herwig, PYTHIA and Sherpa offer convenient frameworks for LHC $\rm pp$ physics studies, covering all aspects above, but with slightly different history/emphasis:

PYTHIA (successor to JETSET, begun in 1978): originated in hadronization studies, still special interest in soft physics.

Herwig (successor to EARWIG, begun in 1984): originated in coherent showers (angular ordering), cluster hadronization as simple complement.

Sherpa (APACIC++/AMEGIC++, begun in 2000): had own matrix-element calculator/generator originated with matching & merging issues.

Delphi and Pythia

Delphi: 120 km west of Athens, on the slopes of Mount Parnassus.

Python: giant snake killed by Apollon.

The Oracle of Delphi: ca. 1000 B.C. – 390 A.D.

Pythia: local prophetess/priestess.

Key role in myths and history, notably in

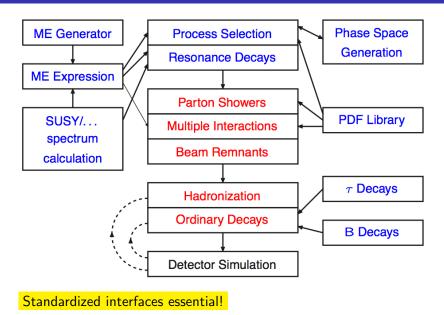
"The Histories" by Herodotus of Halicarnassus (~482 – 420 B.C.)

Other Relevant Software

Some examples (with apologies for many omissions), usually combined for maximum effect:

- Event generators: EPOS, HIjing, Sibyll, DPMjet, Genie
- Matrix-element generators: MadGraph_aMC@NLO, Sherpa, Helac, Whizard, CompHep, CalcHep, GoSam
- Matrix element libraries: AlpGen, POWHEG BOX, MCFM, NLOjet++, VBFNLO, BlackHat, Rocket
- Special BSM scenarios: Prospino, Charybdis, TrueNoir
- Mass spectra and decays: SOFTSUSY, SPHENO, HDecay, SDecay
- Feynman rule generators: FeynRules
- PDF libraries: LHAPDF
- Resummed (p_{\perp}) spectra: ResBos
- Approximate loops: LoopSim
- Parton showers: Ariadne, Vincia, Alaric, Deductor, PanScales
- Jet finders: anti- k_{\perp} and FastJet
- Analysis packages: Rivet, Professor, MCPLOTS
- Detector simulation: GEANT, Delphes
- Constraints (from cosmology etc): DarkSUSY, MicrOmegas
 Standards: PDG identity codes, LHA, LHEF, SLHA, Binoth LHA, HepMC

Putting it together



PDG particle codes

A. Fundamental objects

add — sign for antiparticle, where appropriate

+ diquarks, SUSY, technicolor, ...

B. Mesons

$$100\,|q_1|+10\,|q_2|+(2s+1)$$
 with $|q_1|\geq |q_2|$ particle if heaviest quark u, $\overline{\rm s},$ c, $\overline{\rm b};$ else antiparticle

C. Baryons

1000
$$q_1 + 100 q_2 + 10 q_3 + (2s + 1)$$

with $q_1 \ge q_2 \ge q_3$, or Λ -like $q_1 \ge q_3 \ge q_2$

2112 n | 3122
$$\Lambda^0$$
 | 2224 Δ^{++} | 3214 Σ^{*0} | 2212 p | 3212 Σ^0 | 1114 Δ^- | 3334 Ω^-

Les Houches LHA/LHEF event record

At initialization:

- beam kinds and E's
- PDF sets selected
- weighting strategy
- number of processes

Per process in initialization:

- ullet integrated σ
- ullet error on σ
- maximum $d\sigma/d(PS)$
- process label

Per event:

- number of particles
- process type
- event weight
- process scale
- \bullet $\alpha_{\rm em}$
- \bullet $\alpha_{\rm s}$
- (PDF information)

Per particle in event:

- PDG particle code
- status (decayed?)
- 2 mother indices
- colour & anticolour indices
- $(p_x, p_y, p_z, E), m$
- lifetime au
- spin/polarization

Monte Carlo techniques

"Spatial" problems: no memory/ordering

- Integrate a function
- Pick a point at random according to a probability distribution

"Temporal" problems: has memory

• Radioactive decay: probability for a radioactive nucleus to decay at time t, given that it was created at time 0

In reality combined into multidimensional problems:

- Random walk (variable step length and direction)
- Charged particle propagation through matter (stepwise loss of energy by a set of processes)
- Parton showers (cascade of successive branchings)
- Multiparticle interactions (ordered multiple subcollisions)

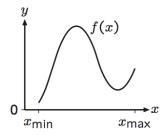
Assume algorithm that returns "random numbers" R, uniformly distributed in range 0 < R < 1 and uncorrelated.

Integration and selection

Assume function f(x), studied range $x_{\min} < x < x_{\max}$, where $f(x) \ge 0$ everywhere

Two connected standard tasks:

1 Calculate (approximatively)



$$\int_{x_{\min}}^{x_{\max}} f(x') \, \mathrm{d}x'$$

2 Select x at random according to f(x)

In step 2 f(x) is viewed as "probability distribution" with implicit normalization to unit area, and then step 1 provides overall correct normalization.

Integral as an area/volume

Theorem

An n-dimensional integration \equiv an n+1-dimensional volume

$$\int f(x_1,\ldots,x_n)\,\mathrm{d}x_1\ldots\mathrm{d}x_n \equiv \int \int_0^{f(x_1,\ldots,x_n)} 1\,\mathrm{d}x_1\ldots\mathrm{d}x_n\,\mathrm{d}x_{n+1}$$

since $\int_0^{f(x)} 1 \, \mathrm{d}y = f(x)$.

Integral as an area/volume

Theorem

An n-dimensional integration \equiv an n+1-dimensional volume

$$\int f(x_1,\ldots,x_n)\,\mathrm{d}x_1\ldots\mathrm{d}x_n \equiv \int \int_0^{f(x_1,\ldots,x_n)} 1\,\mathrm{d}x_1\ldots\mathrm{d}x_n\,\mathrm{d}x_{n+1}$$

since $\int_0^{f(x)} 1 dy = f(x)$.

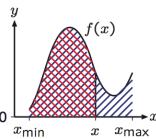
So, for 1+1 dimension, selection of x according to f(x) is equivalent to uniform selection of (x,y) in the area

 $x_{\min} < x < x_{\max}, \ 0 < y < f(x).$

Therefore

$$\int_{x_{\min}}^{x} f(x') dx' = R \int_{x_{\min}}^{x_{\max}} f(x') dx'$$

(area to left of selected x is uniformly distributed fraction of whole area)



Analytical solution

If know primitive function F(x) and know inverse $F^{-1}(y)$ then

$$F(x) - F(x_{\min}) = R(F(x_{\max}) - F(x_{\min})) = R A_{\text{tot}}$$

$$\implies x = F^{-1}(F(x_{\min}) + R A_{\text{tot}})$$

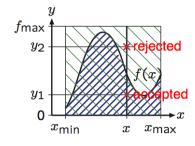
Proof: introduce $z = F(x_{\min}) + R A_{\text{tot}}$. Then

$$\frac{\mathrm{d}\mathcal{P}}{\mathrm{d}x} = \frac{\mathrm{d}\mathcal{P}}{\mathrm{d}R} \frac{\mathrm{d}R}{\mathrm{d}x} = 1 \frac{1}{\frac{\mathrm{d}x}{\mathrm{d}R}} = \frac{1}{\frac{\mathrm{d}x}{\mathrm{d}z} \frac{\mathrm{d}z}{\mathrm{d}R}} = \frac{1}{\frac{\mathrm{d}F^{-1}(z)}{\mathrm{d}z} \frac{\mathrm{d}z}{\mathrm{d}R}} = \frac{\frac{\mathrm{d}F(x)}{\mathrm{d}x}}{\frac{\mathrm{d}z}{\mathrm{d}R}} = \frac{f(x)}{A_{\mathrm{tot}}}$$

Hit-and-miss solution

If $f(x) \le f_{\max}$ in $x_{\min} < x < x_{\max}$ use interpretation as an area

- 1 select $x = x_{\min} + R(x_{\max} x_{\min})$
- 2 select $y = R f_{\text{max}}$ (new R!)
- 3 while y > f(x) cycle to 1



Integral as by-product:

$$I = \int_{x_{\min}}^{x_{\max}} f(x) \, \mathrm{d}x = f_{\max} \left(x_{\max} - x_{\min} \right) \frac{N_{\mathrm{acc}}}{N_{\mathrm{try}}} = A_{\mathrm{tot}} \, \frac{N_{\mathrm{acc}}}{N_{\mathrm{try}}}$$

Binomial distribution with $p = N_{\rm acc}/N_{\rm try}$ and $q = N_{\rm fail}/N_{\rm try}$, so error

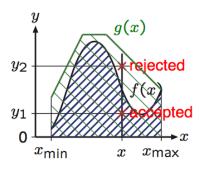
$$\frac{\delta \textit{I}}{\textit{I}} = \frac{\textit{A}_{\rm tot} \, \sqrt{\textit{p} \, \textit{q} / \textit{N}_{\rm try}}}{\textit{A}_{\rm tot} \, \textit{p}} = \sqrt{\frac{\textit{q}}{\textit{p} \, \textit{N}_{\rm try}}} = \sqrt{\frac{\textit{q}}{\textit{N}_{\rm acc}}} < \frac{1}{\sqrt{\textit{N}_{\rm acc}}}$$

Importance sampling

Improved version of hit-and-miss:

If
$$f(x) \le g(x)$$
 in $x_{\min} < x < x_{\max}$ and $G(x) = \int g(x') dx'$ is simple and $G^{-1}(y)$ is simple

- 1 select x according to g(x) distribution
- 2 select y = R g(x) (new R!)
- 3 while y > f(x) cycle to 1



Multichannel

If
$$f(x) \le g(x) = \sum_i g_i(x)$$
, where all g_i "nice" $(G_i(x))$ invertible) but $g(x)$ not

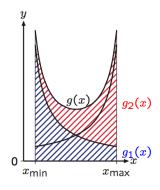
1 select i with relative probability

$$A_i = \int_{x_{\min}}^{x_{\max}} g_i(x') \, \mathrm{d}x'$$

- 2 select x according to $g_i(x)$
- 3 select $y = R g(x) = R \sum_{i} g_{i}(x)$
- 4 while y > f(x) cycle to 1

Works since

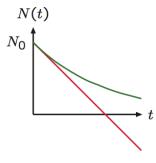
$$\int f(x) dx = \int \frac{f(x)}{g(x)} \sum_{i} g_i(x) dx = \sum_{i} A_i \int \frac{g_i(x) dx}{A_i} \frac{f(x)}{g(x)}$$



Temporal methods: radioactive decays – 1

Consider "radioactive decay":

N(t)= number of remaining nuclei at time t but normalized to $N(0)=N_0=1$ instead, so equivalently N(t)= probability that (single) nucleus has not decayed by time t $P(t)=-\mathrm{d}N(t)/\mathrm{d}t=$ probability for it to decay at time t



Naively $P(t) = c \Longrightarrow N(t) = 1 - ct$. Wrong! Conservation of probability driven by depletion:

a given nucleus can only decay once

Correctly
$$P(t) = cN(t) \Longrightarrow N(t) = \exp(-ct)$$
 i.e. exponential dampening $P(t) = c \exp(-ct)$

There is memory in time!

Temporal methods: radioactive decays – 2

For radioactive decays P(t) = cN(t), with c constant, but now generalize to time-dependence:

$$P(t) = -\frac{\mathrm{d}N(t)}{\mathrm{d}t} = f(t)N(t); \quad f(t) \geq 0$$

Standard solution:

$$\frac{\mathrm{d}N(t)}{\mathrm{d}t} = -f(t)N(t) \iff \frac{\mathrm{d}N}{N} = \mathrm{d}(\ln N) = -f(t)\,\mathrm{d}t$$

$$\ln N(t) - \ln N(0) = -\int_0^t f(t') \, \mathrm{d}t' \implies N(t) = \exp\left(-\int_0^t f(t') \, \mathrm{d}t'\right)$$

$$F(t) = \int_{-\tau}^{\tau} f(t') dt' \implies N(t) = \exp\left(-(F(t) - F(0))\right)$$

Assuming $F(\infty) = \infty$, i.e. always decay, sooner or later:

$$N(t) = R \implies t = F^{-1}(F(0) - \ln R)$$

Torbjörn Sjöstrand Introduction to Event Generators 1 slide 59/66

The veto algorithm: problem

What now if f(t) has no simple F(t) or F^{-1} ? Hit-and-miss not good enough, since for $f(t) \leq g(t)$, g "nice",

$$t = G^{-1}(G(0) - \ln R) \implies N(t) = \exp\left(-\int_0^t g(t') dt'\right)$$
$$P(t) = -\frac{dN(t)}{dt} = g(t) \exp\left(-\int_0^t g(t') dt'\right)$$

and hit-or-miss provides rejection factor f(t)/g(t), so that

$$P(t) = f(t) \exp\left(-\int_0^t g(t') dt'\right)$$

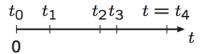
(modulo overall normalization), where it ought to have been

$$P(t) = f(t) \exp\left(-\int_0^t f(t') dt'\right)$$

The veto algorithm: solution

The veto algorithm

- 1 start with i = 0 and $t_0 = 0$
- i = i + 1
- 3 $t = t_i = G^{-1}(G(t_{i-1}) \ln R)$, i.e $t_i > t_{i-1}$
- $4 \quad y = R g(t)$
- 5 while y > f(t) cycle to 2



That is, when you fail, you keep on going from the time when you failed, and *do not* restart at time t = 0. (Memory!)

The veto algorithm: proof -1

Study probability to have *i* intermediate failures before success:

Define
$$S_g(t_a, t_b) = \exp\left(-\int_{t_a}^{t_b} g(t') dt'\right)$$
 ("Sudakov factor")

$$P_0(t) = P(t = t_1) = g(t) S_g(0, t) \frac{f(t)}{g(t)} = f(t) S_g(0, t)$$

$$P_1(t) = P(t = t_2)$$

$$= \int_0^t dt_1 g(t_1) S_g(0, t_1) \left(1 - \frac{f(t_1)}{g(t_1)}\right) g(t) S_g(t_1, t) \frac{f(t)}{g(t)}$$

$$= f(t) S_g(0, t) \int_0^t dt_1 (g(t_1) - f(t_1)) = P_0(t) I_{g-f}$$

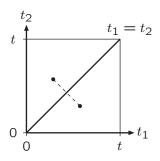
$$P_2(t) = \dots = P_0(t) \int_0^t dt_1 (g(t_1) - f(t_1)) \int_{t_1}^t dt_2 (g(t_2) - f(t_2))$$

$$= P_0(t) \int_0^t dt_1 (g(t_1) - f(t_1)) \int_0^t dt_2 (g(t_2) - f(t_2)) \theta(t_2 - t_1)$$

$$= P_0(t) \frac{1}{2} \left(\int_0^t dt_1 (g(t_1) - f(t_1))\right)^2 = P_0(t) \frac{1}{2} I_{g-f}^2$$

Forbjörn Sjöstrand Introduction to Event Generators 1 slide 62/61

The veto algorithm: proof - 2



Generally, *i* intermediate times corresponds to *i*! equivalent ordering regions.

$$P_i(t) = P_0(t) \frac{1}{i!} I_{g-f}^i$$

$$P(t) = \sum_{i=0}^{\infty} P_i(t) = P_0(t) \sum_{i=0}^{\infty} \frac{I_{g-f}^i}{i!} = P_0(t) \exp(I_{g-f})$$

$$= f(t) \exp\left(-\int_0^t g(t') dt'\right) \exp\left(\int_0^t (g(t') - f(t')) dt'\right)$$

$$= f(t) \exp\left(-\int_0^t f(t') dt'\right)$$

The winner takes it all

Assume "radioactive decay" with two possible decay channels 1&2

$$P(t) = -\frac{\mathrm{d}N(t)}{\mathrm{d}t} = f_1(t)N(t) + f_2(t)N(t)$$

Alternative 1:

use normal veto algorithm with $f(t) = f_1(t) + f_2(t)$. Once t selected, pick decays 1 or 2 in proportions $f_1(t) : f_2(t)$.

Alternative 2.

The winner takes it all

select t_1 according to $P_1(t_1) = f_1(t_1)N_1(t_1)$ and t_2 according to $P_2(t_2) = f_2(t_2)N_2(t_2)$, i.e. as if the other channel did not exist. If $t_1 < t_2$ then pick decay 1, while if $t_2 < t_1$ pick decay 2.

Equivalent by simple proof.

Radioactive decay as perturbation theory

Assume we don't know about exponential function.

Recall wrong solution, starting from $N(t) = N_0(t) = 1$:

$$rac{\mathrm{d}N}{\mathrm{d}t} = -cN = -cN_0(t) = -c \Rightarrow N(t) = N_1(t) = 1 - ct$$

Now plug in $N_1(t)$, hoping to find better approximation:

$$\frac{\mathrm{d}N}{\mathrm{d}t} = -cN_1(t) \Rightarrow N(t) = N_2(t) = 1 - c \int_0^t (1 - ct') \mathrm{d}t' = 1 - ct + \frac{(ct)^2}{2}$$

and generalize to

$$N_{i+1}(t) = 1 - c \int_0^t N_i(t') dt' \Rightarrow N_{i+1}(t) = \sum_{k=0}^{i+1} \frac{(-ct)^k}{k!}$$

which recovers exponential e^{-ct} for $i \to \infty$.

Reminiscent of (QED, QCD) perturbation theory with $c \to \alpha f$.

Summary

Main event components:

- parton distributions
- hard subprocesses
- initial-state radiation
- final-state interactions
- multiparton interactions
- beam remnants
- hadronization
- decays
- total cross sections

Main Monte Carlo methods:

- integration as an area
- analytical solution
- hit-and-miss
- importance sampling
- multichannel
- the veto algorithm
- the winner takes it all