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Multijets – the need for Higher Orders

2 → 6 process or 2 → 2 dressed up by bremsstrahlung!?
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Perturbative QCD

Perturbative calculations ⇒ Matrix Elements.
Improved calculational techniques allows
⋆ more legs (= final-state partons)
⋆ more loops (= virtual partons not visible in final state)
but with limitations, especially for loops.
See presentations by Rene Poncelet and Andrea Banfi.

Parton Showers:
approximations to matrix element behaviour,
most relevant for multiple emissions at low energies and/or angles.
Main topic of this lecture.

Matching and Merging:
methods to combine matrix elements (at high scales)
with parton showers (at low scales),
with a consistent and smooth transition.
Huge field at LHC.
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In the beginning: Electrodynamics

An electrical charge, say an electron,
is surrounded by a field:

For a rapidly moving charge
this field can be expressed in terms of
an equivalent flux of photons:

dnγ ≈ 2αem

π

dθ

θ

dω

ω

Equivalent Photon Approximation,
or method of virtual quanta (e.g. Jackson)
(Bohr; Fermi; Weiszäcker, Williams ∼1934)

e−

e−

e−

e−

.

θ: collinear divergence, saved by me > 0 in full expression.

ω: true divergence, nγ ∝
∫
dω/ω = ∞, but Eγ ∝

∫
ω dω/ω finite.

These are virtual photons: continuously emitted and reabsorbed.
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In the beginning: Bremsstrahlung

When an electron is kicked into a new direction,
the field does not have time fully to react:

e−

Initial State Radiation (ISR):
part of it continues ∼ in original direction of e

Final State Radiation (FSR):
the field needs to be regenerated around outgoing e,
and transients are emitted ∼ around outgoing e direction

Emission rate provided by equivalent photon flux in both cases.
Approximate cutoffs related to timescale of process:
the more violent the hard collision, the more radiation!
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In the beginning: Exponentiation

Assume
∑

Eγ ≪ Ee such that energy-momentum conservation is
not an issue. Then

dPγ = dnγ ≈ 2αem

π

dθ

θ

dω

ω
is the probability to find a photon at ω and θ,
irrespectively of which other photons are present.

Uncorrelated ⇒ Poissonian number distribution:

Pi =
⟨nγ⟩i
i !

e−⟨nγ⟩

with

⟨nγ⟩ =
∫ θmax

θmin

∫ ωmax

ωmin

dnγ ≈ 2αem

π
ln

(
θmax

θmin

)
ln

(
ωmax

ωmin

)
Note that

∫
dPγ =

∫
dnγ > 1 is not a problem:

proper interpretation is that many photons are emitted.

Exponentiation: reinterpretation of dPγ into Poissonian.
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So how is QCD the same?

A quark is surrounded by a gluon field

dPg = dng ≈ 8αs

3π

dθ

θ

dω

ω

i.e. only differ by substitution (−1)2αem → (4/3)αs.

An accelerated quark emits gluons
with collinear and soft divergences,
and as Initial and Final State Radiation.

e−

q

Typically ⟨ng⟩ =
∫
dng ≫ 1 since αs ≫ αem

⇒ even more pressing need for exponentiation.
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So how is QCD different?

QCD is non-Abelian, so a gluon
is charged and is surrounded
by its own field:
emission rate (4/3)αs → 3αs,
field structure more complicated,
interference effects more important.

αs(Q
2) diverges for Q2 → Λ2

QCD,

with ΛQCD ∼ 0.2GeV = 1 fm−1.

Confinement: gluons below ΛQCD

not resolved ⇒ de facto cutoffs..

Unclear separation between
“accelerated charge” and “emitted radiation”:
many possible Feynman graphs ≈ histories.

Torbjörn Sjöstrand Introduction to Event Generators 2 slide 8/59



The Parton-Shower Approach

2 → n = (2 → 2) ⊕ ISR ⊕ FSR

FSR = Final-State Radiation = timelike shower
Q2

i ∼ m2 > 0 decreasing
ISR = Initial-State Radiation = spacelike showers
Q2

i ∼ −m2 > 0 increasing
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Why “time”like and “space”like?

Consider four-momentum conservation in a branching a → b c

p⊥a = 0 ⇒ p⊥c = −p⊥b

p+ = E + pL ⇒ p+a = p+b + p+c

p− = E − pL ⇒ p−a = p−b + p−c

Define p+b = z p+a, p+c = (1− z) p+a

Use p+p− = E 2 − p2L = m2 + p2⊥

m2
a + p2⊥a

p+a
=

m2
b + p2⊥b

z p+a
+

m2
c + p2⊥c

(1− z) p+a

⇒ m2
a =

m2
b + p2⊥
z

+
m2

c + p2⊥
1− z

=
m2

b

z
+

m2
c

1− z
+

p2⊥
z(1− z)

Final-state shower: mb = mc = 0 ⇒ m2
a =

p2⊥
z(1−z) > 0 ⇒ timelike

Initial-state shower: ma = mc = 0 ⇒ m2
b = − p2⊥

1−z < 0 ⇒ spacelike
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Doublecounting

Do not doublecount: 2 → 2 = most virtual = shortest distance

(detailed handling of borders ⇒ match & merge)
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Final-state radiation

Standard process e+e− → qqg by two Feynman diagrams:

xi =
2Ei

Ecm

x1+x2+x3 = 2

dσME
σ0

= αs
2π

4
3

x21+x22
(1−x1)(1−x2)

dx1 dx2

Convenient (but arbitrary) subdivision to “split” radiation:

1

(1− x1)(1− x2)

(1− x1) + (1− x2)

x3
=

1

(1− x2)x3
+

1

(1− x1)x3
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From matrix elements to parton showers

Rewrite for x2 → 1, i.e. q–g collinear limit:

1− x2 =
m2

13

E 2
cm

=
Q2

E 2
cm

⇒ dx2 =
dQ2

E 2
cm

define z as fraction q retains
in branching q → qg

x1 ≈ z ⇒ dx1 ≈ dz

x3 ≈ 1− z

⇒ dP =
dσ

σ0
=

αs

2π

dx2
(1− x2)

4

3

x22 + x21
(1− x1)

dx1 ≈
αs

2π

dQ2

Q2

4

3

1 + z2

1− z
dz

In limit x1 → 1 same result, but for q → qg.

dQ2/Q2 = dm2/m2: “mass (or collinear) singularity”

dz/(1− z) = dω/ω “soft singularity”
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The DGLAP equations

Generalizes to

DGLAP (Dokshitzer–Gribov–Lipatov–Altarelli–Parisi)

dPa→bc =
αs

2π

dQ2

Q2
Pa→bc(z)dz

Pq→qg =
4

3

1 + z2

1− z

Pg→gg = 3
(1− z(1− z))2

z(1− z)

Pg→qq =
nf
2

(z2 + (1− z)2) (nf = no. of quark flavours)

Universality: any matrix element reduces to DGLAP in collinear limit.

e.g.
dσ(H0 → qqg)

dσ(H0 → qq)
=

dσ(Z0 → qqg)

dσ(Z0 → qq)
in collinear limit
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The iterative structure

Generalizes to many consecutive emissions if strongly ordered,
Q2

1 ≫ Q2
2 ≫ Q2

3 . . . (≈ time-ordered).
To cover “all” of phase space use DGLAP in whole region
Q2

1 > Q2
2 > Q2

3 . . ..

Iteration gives
final-state
parton showers:

Need soft/collinear cuts to stay away from nonperturbative physics.
Details model-dependent, but around 1 GeV scale.
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Planar QCD

With NC = 3 you need to reuse colours, but not if NC → ∞:

r

br

gb

rg

br

gb

bg

b

r

br

gb

og (o = orange)

mo (m = magenta)

cm (c = cyan)

yc (y = yellow)

y

Colour lines crossed between M and M† scale like 1/N2
C in |M|2,

so vanish for NC → ∞ ⇒ planar QCD. Thus

σ = σLC +
1

N2
C

σNLC +
1

N4
C

σNNLC + · · ·

Also showers and hadronization become simpler in this limit.
Still use correct Nc = 3 for exact calculations, but NC → ∞
for colour connections in hard process and shower history.
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The Sudakov form factor – 1

Time evolution, conservation of total probability:
P(no emission) = 1− P(emission).

Multiplicativeness, with Ti = (i/n)T , 0 ≤ i ≤ n:

Pno(0 ≤ t < T ) = lim
n→∞

n−1∏
i=0

Pno(Ti ≤ t < Ti+1)

= lim
n→∞

n−1∏
i=0

(1− Pem(Ti ≤ t < Ti+1))

= exp

(
− lim

n→∞

n−1∑
i=0

Pem(Ti ≤ t < Ti+1)

)

= exp

(
−
∫ T

0

dPem(t)

dt
dt

)
=⇒ dPfirst(T ) = dPem(T ) exp

(
−
∫ T

0

dPem(t)

dt
dt

)
cf. radioactive decay in lecture 1.

Torbjörn Sjöstrand Introduction to Event Generators 2 slide 17/59



The Sudakov form factor – 2

Expanded, with Q ∼ 1/t (Heisenberg)

dPa→bc =
αs

2π

dQ2

Q2
Pa→bc(z) dz

× exp

−
∑
b,c

∫ Q2
max

Q2

dQ ′2

Q ′2

∫
αs

2π
Pa→bc(z

′) dz ′


where the exponent is (one definition of) the Sudakov form factor

A given parton can only branch once, i.e. if it did not already do so

Note that
∑

b,c

∫ ∫
dPa→bc ≡ 1 ⇒ convenient for Monte Carlo

(≡ 1 if extended over whole phase space, else possibly nothing
happens before you reach Q0 ≈ 1 GeV).
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The Sudakov form factor – 3

Sudakov regulates singularity for first emission . . .

. . . but in limit of repeated soft
emissions q → qg (but no g → gg)
one obtains the same inclusive
Q emission spectrum as for ME,

i.e. divergent ME spectrum
⇐⇒ infinite number of PS emissions

More complicated in reality:

energy-momentum conservation effects big since αs big,
so hard emissions frequent

g → gg branchings leads to accelerated multiplication
of partons
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The ordering variable

In the evolution with

dPa→bc =
αs

2π

dQ2

Q2
Pa→bc(z)dz

Q2 orders the emissions (memory).

If Q2 = m2 is one possible evolution variable
then Q ′2 = f (z)Q2 is also allowed, since∣∣∣∣d(Q ′2, z)

d(Q2, z)

∣∣∣∣ =
∣∣∣∣∣ ∂Q′2

∂Q2
∂Q′2

∂z
∂z
∂Q2

∂z
∂z

∣∣∣∣∣ =
∣∣∣∣ f (z) f ′(z)Q2

0 1

∣∣∣∣ = f (z)

⇒ dPa→bc =
αs

2π

f (z)dQ2

f (z)Q2
Pa→bc(z) dz =

αs

2π

dQ ′2

Q ′2 Pa→bc(z) dz

Q ′2 = E 2
a θ

2
a→bc ≈ m2/(z(1− z)); angular-ordered shower

Q ′2 = p2⊥ ≈ m2z(1− z); transverse-momentum-ordered
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Coherence

QED: Chudakov effect (mid-fifties)

QCD: colour coherence for soft gluon emission

solved by • requiring emission angles to be decreasing
or • requiring transverse momenta to be decreasing
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Ordering variables in the LEP/Tevatron era
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The HERWIG algorithm

Basic ideas, to which much has been added over the years:

1 Evolution in Q2
a = E 2

a ξa with ξa ≈ 1− cos θa, i.e.

dPa→bc =
αs

2π

d(E 2
a ξa)

E 2
a ξa

Pa→bc(z) dz =
αs

2π

dξa
ξa

Pa→bc(z)dz

Require ordering of consecutive ξ values, i.e. (ξb)max < ξa and
(ξc)max < ξa.

2 Reconstruct masses backwards in algorithm
m2

a = m2
b +m2

c + 2EbEcξa
Note: ξa = 1− cos θa only holds for mb = mc = 0.

3 Reconstruct complete kinematics of shower (forward again).

+ angular ordering built in from start
− total jet/system mass not known beforehand (⇒ boosts)
− some wide-angle regions never populated, “dead zones”
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The dipole shower

Dual description of partonic state:
partons connected by dipoles ⇔ dipoles stretched between partons
parton branching ⇔ dipole splitting

q q q

g

q
p⊥-ordered dipole emissions ⇒
coherence (cf. angular ordering).

2 → 3 on-shell parton branchings
with local (E ,p) conservation.
ARIADNE shower + many more.

Neat representation in Lund plane
(hot topic today).

y

κ = ln(k2
⊥/Λ2)

L = ln(s/Λ2)

−L/2 L/2
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Quark vs. gluon jets

Pg→gg

Pq→qg
≈ Nc

CF
=

3

4/3
=

9

4
≈ 2

⇒ gluon jets are softer and broader than quark ones
(also helped by hadronization models, lecture 4).

 (GeV/c)TJet P
50 100 200 300 1000

〉
chN〈

5

10

15

20

25
 = 7 TeV s pp  

Data |y| < 1 
Data 1 < |y| < 2
Gluon Jets (Pythia Tune Z2)
Quark Jets (Pythia Tune Z2)

-1L dt = 36 pb∫ CMS   

 (GeV/c)TJet P
50 100 200 300 1000

  〉2 Rδ〈

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035
 = 7 TeV  s  pp  

Data  |y| < 1
Data 1 < |y| < 2
Gluon Jets (Pythia Tune Z2)
Quark Jets (Pythia Tune Z2)

-1L dt = 36 pb∫ CMS   

Note transition g jets → q jets for increasing p⊥.
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Heavy flavours: the dead cone

Matrix element for e+e− → qqg for small θ13

dσqqg
σqq

∝ x21 + x22
(1− x1) (1− x2)

≈ dω

ω

dθ213
θ213

is modified for heavy quark Q:

dσqqg
σqq

∝ dω

ω

dθ213
θ213

(
θ213

θ213 +m2
1/E

2
1

)2

=
dω

ω

θ213 dθ
2
13

(θ213 +m2
1/E

2
1 )

2

so “dead cone” for θ13 < m1/E1

For charm and bottom lagely filled in by their decay products.

Torbjörn Sjöstrand Introduction to Event Generators 2 slide 26/59



Parton Distribution Functions

Hadrons are composite, with time-dependent structure:

fi (x ,Q
2) = number density of partons i

at momentum fraction x and probing scale Q2.
Linguistics (example):

F2(x ,Q
2) =

∑
i

e2i xfi (x ,Q
2)

structure function parton distributions
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PDF example12 18. Structure Functions
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Figure 18.4: The bands are x times the unpolarized (a,b) parton distributions f(x) (where f =
uv, dv, u, d, s ƒ s̄, c = c̄, b = b̄, g) obtained in NNLO NNPDF3.0 global analysis [76] at scales
µ2 = 10 GeV2 (left) and µ2 = 104 GeV2 (right), with –s(M2

Z) = 0.118. The analogous results
obtained in the NNLO MMHT analysis can be found in Fig. 1 of Ref [55].The corresponding
polarized parton distributions are shown (c,d), obtained in NLO with NNPDFpol1.1 [78].

1st June, 2020 8:28am

Several PDF collaborations: CTEQ, MMHT, NNPDF, . . .
See presentation by Katerina Lipka tomorrow.
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PDF evolution

Initial conditions at small Q2
0 unknown: nonperturbative.

Resolution dependence perturbative, by DGLAP:

DGLAP (Dokshitzer–Gribov–Lipatov–Altarelli–Parisi)

dfb(x ,Q
2)

d(lnQ2)
=
∑
a

∫ 1

x

dz

z
fa(y ,Q

2)
αs

2π
Pa→bc

(
z =

x

y

)
DGLAP already introduced for (final-state) showers:

dPa→bc =
αs

2π

dQ2

Q2
Pa→bc(z)dz

Same equation, but different context:

dPa→bc is probability for the individual parton to branch; while

dfb(x ,Q
2) describes how the ensemble of partons evolve

by the branchings of individual partons as above.
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Initial-State Shower Basics

• Parton cascades in p are continuously born and recombined.
• Structure at Q is resolved at a time t ∼ 1/Q before collision.
• A hard scattering at Q2 probes fluctuations up to that scale.
• A hard scattering inhibits full recombination of the cascade.

• Convenient reinterpretation:
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Forwards vs. backwards evolution

Event generation could be addressed by forwards evolution:
pick a complete partonic set at low Q0 and evolve,
consider collisions at different Q2 and pick by σ of those.
Inefficient:

1 have to evolve and check for all potential collisions,
but 99.9. . .% inert

2 impossible (or at least very complicated) to steer the
production, e.g. of a narrow resonance (Higgs)

Backwards evolution is viable and ∼equivalent alternative:
start at hard interaction and trace what happened “before”
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Backwards evolution master formula

Monte Carlo approach, based on conditional probability : recast

dfb(x ,Q
2)

dt
=
∑
a

∫ 1

x

dz

z
fa(x

′,Q2)
αs

2π
Pa→bc(z)

with t = ln(Q2/Λ2) and z = x/x ′ to

dPb =
dfb
fb

= |dt|
∑
a

∫
dz

x ′fa(x ′, t)
xfb(x , t)

αs

2π
Pa→bc(z)

then solve for decreasing t, i.e. backwards in time,
starting at high Q2 and moving towards lower,
with Sudakov form factor exp(−

∫
dPb).

Extra factor x ′fa/xfb relative to final-state equations.
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Coherence in spacelike showers

with Q2 = −m2 = spacelike virtuality

kinematics only:
Q2

3 > z1Q
2
1 , Q

2
5 > z3Q

2
3 , . . .

i.e. Q2
i need not even be ordered

coherence of leading collinear singularities:
Q2

5 > Q2
3 > Q2

1 , i.e. Q
2 ordered

coherence of leading soft singularities (more messy):
E3θ4 > E1θ2, i.e. z1θ4 > θ2
z ≪ 1: E1θ2 ≈ p2⊥2 ≈ Q2

3 , E3θ4 ≈ p2⊥4 ≈ Q2
5

i.e. reduces to Q2 ordering as above
z ≈ 1: θ4 > θ2, i.e. angular ordering of soft gluons

=⇒ reduced phase space
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Evolution procedures

DGLAP: Dokshitzer–Gribov–Lipatov–Altarelli–Parisi
evolution towards larger Q2 and (implicitly) towards smaller x
BFKL: Balitsky–Fadin–Kuraev–Lipatov
evolution towards smaller x (with small, unordered Q2)
CCFM: Ciafaloni–Catani–Fiorani–Marchesini
interpolation of DGLAP and BFKL
GLR: Gribov–Levin–Ryskin
nonlinear equation in dense-packing (saturation) region,
where partons recombine, not only branch
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Initial- vs. final-state showers

Both controlled by same evolution equations

dPa→bc =
αs

2π

dQ2

Q2
Pa→bc(z) dz · (Sudakov)

but

Final-state showers:
Q2 timelike (∼ m2)

decreasing E ,m2, θ
both daughters m2 ≥ 0
physics relatively simple
⇒ “minor” variations:
Q2, shower vs. dipole, . . .

Initial-state showers:
Q2 spacelike (≈ −m2)

decreasing E , increasing Q2, θ
one daughter m2 ≥ 0, one m2 < 0
physics more complicated
⇒ more formalisms:
DGLAP, BFKL, CCFM, GLR, . . .
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Combining FSR with ISR

Separate processing of ISR and FSR misses interference
(∼ colour dipoles)

ISR+FSR add coherently
in regions of colour flow
and destructively else

in “normal” shower by
azimuthal anisotropies

automatic in dipole
(by proper boosts)
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Next-to-leading log showers

dPg = dng ≈ 8αs

3π

dθ

θ

dω

ω
7→ αsL

2

gives leading-log answer Pn ∝ (αsL
2)n = αn

sL
2n.

Resummation/exponentiation gives Sudakov P0 ∝ exp(−αsL
2).

(Transverse momentum cuts both θ and ω ⇒ αn
sL

n.)

More careful handling of kinematics, αs running, splitting kernels
(also g → ggg), etc., give subleading corrections ∝ αn

sL
2n−1.

All showers have some elements of NLL, e.g. momentum
conservation, but some dedicated ongoing projects:

Deductor (Nagy, Soper)

PanScales (Salam et al.)

Herwig 7 (Plätzer et al.)

Vincia (Skands et al.)

Alaric (Krauss et al.)

see presentation by
Daniel Reichelt
on Thursday
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Matrix elements vs. parton showers

ME : Matrix Elements
+ systematic expansion in αs (‘exact’)
+ powerful for multiparton Born level
+ flexible phase space cuts
− loop calculations very tough
− negative cross section in collinear regions

⇒ unpredictive jet/event structure
− no easy match to hadronization

PS : Parton Showers
− approximate, to LL (or NLL)
− main topology not predetermined

⇒ inefficient for exclusive states
+ process-generic ⇒ simple multiparton
+ Sudakov form factors/resummation

⇒ sensible jet/event structure
+ easy to match to hadronization
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Matrix elements and parton showers

Recall complementary strengths:
• ME’s good for well separated jets
• PS’s good for structure inside jets

Marriage desirable! But how?

Problems: • gaps in coverage?
• doublecounting of radiation?
• Sudakov?
• NLO (+NLL) consistency?

First attempt 40 years ago — Matrix Element Corrections.

Key topic of event generator development in last 30 years,
with impressive progress.

See presentations by Tomas Jezo
on Thursday and Friday.

Torbjörn Sjöstrand Introduction to Event Generators 2 slide 39/59



Matrix Element Corrections (MEC)

= cover full phase space with smooth transition ME/PS.

Want to reproduce WME =
1

σ(LO)

dσ(LO+ g)

d(phasespace)

by shower generation with W PS > WME + correction procedure

wanted︷ ︸︸ ︷
WME =

generated︷ ︸︸ ︷
W PS

correction︷ ︸︸ ︷
WME

W PS

• Exponentiate ME correction by shower Sudakov form factor:

W PS
actual(Q

2) = WME(Q2) exp

(
−
∫ Q2

max

Q2

WME(Q ′2) dQ ′2
)

• Memory of shower remains in Q2 choice, i.e. “time” ordering.
• ME regularized: probability ≤ 1 instead of divergent.
• NLO correction simple for FSR, more messy for ISR:
replace σ(LO) → σ(NLO) in prefactor (POWHEG).
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Event and jet characterization

Key difference between e+e− and pp:
• e+e− → qq is rotationally symmetric on unit sphere.
• pp has “irrelevant” beam remnants along collision axis,
requiring “true jets” to stick out in p⊥.

Brief history:

Spear (SLAC): find event axis in e+e− → qq ⇒ Sphericity.

Fixed-target pp experiments collision alignment ⇒ Thrust.

PETRA (DESY): early 80’ies, e+e− → qqg, establish g.
1) S, T; extend Sphericity and Thrust families to 3 axes.
2) clustering algorithms, e.g. JADE, Durham k⊥.

SppS (CERN): cone jets in (η, φ) space, e.g. UA1.

Tevatron (Fermilab): cone algorithms, increasingly messy.

LHC: return of clustering with new safer and faster algorithms.
Anti-k⊥ “is” infrared safe return to UA1 cone algorithm.
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Two- and three-jet events in e+e−
P. Söding: On the discovery of the gluon 9

Fig. 4. The momentum vectors of the three elementary “partons” quark, antiquark and
gluon, produced by annihilation of an electron positron pair, span a plane (upper figure).
Consequently, the three jets generated by the hadronization of the partons are forming an
(approximately) “planar event” (lower figure).

vation and the limited transverse momenta within a jet. By creatively extending the
application of the sphericity tensor that had proven useful in the discovery of quark
jets, Sau Lan Wu and Georg Zobernig of the Wisconsin group in the TASSO collab-
oration had designed and implemented an efficient method to recognize, present and
investigate such “planar” events and three-jet configurations [74]. Wu figured that
once the invariant mass of each pair of jets in a three-jet event was at least about
7.4 GeV, the total energy at which the qq̄ two-jet states had first been identified at
SPEAR, a three-jet state would be identified by the method. This led to the estimate
that three-jet events could be detected once PETRA reached an energy of ! 22 GeV
in the e+e− center-of-mass system (cms) [51, 52].

4 Discovery of three-jet events and hard gluon radiation

While initially operating at reduced energy, by April 1979 PETRA succeeded in ac-
celerating the beams to an energy of 13.7 GeV, yielding 27.4 GeV in the e+e− cms.
The detectors of MARK-J, PLUTO and TASSO were recording data while JADE
had suffered the bad luck of having been damaged by beam loss in the machine; it
was repaired in a crash effort and started data taking by late June. Meanwhile the
three other detectors had each registered a few dozens of events in which hadrons
were produced at the high energy. The tracks appeared collimated, suggestive of a
two-jet origin; indeed for the first time jets were visible by “naked eye”, see Figure 5
for an example. No trace of toponium or of a new lepton was detected. But the Wu-
Zobernig analysis of the TASSO data began to turn up events that differed markedly
from the dominant two-jet class by their “planar” nature [75]. Along with other results
from TASSO [76,77] they were presented in June 1979 at international conferences in
Bergen and Geneva [78, 79]. A few of the events showed a distinct three-jet pattern
(Figs. 6, 7).

Had the first signs of hard gluon bremsstrahlung been uncovered? Even though the
final proof had to come from a quantitative analysis in terms of QCD, the evidence
was striking and suggestive and this appeared to be the only possible explanation.
Hadron production by e+e− annihilation was bound to proceed, in lowest order, by
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Jets[Introduction]

[Background knowledge]

Jets are everywhere in QCD
Our window on partons

But not the same as partons:
Partons ill-defined; jets well-definable

Jets lecture 1 (Gavin Salam) MC tools for LHC school September 2011 2 / 30
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Sphericity

View as eigenvector problem, e.g. rotation axes of irregular
3D body. Here spanned up by the pi of “all” particles in event.

Sab =

∑
i p

a
i p

b
i∑

i p
2
i

a, b = x , y , z

Sab has three eigenvalues λ1 ≥ λ2 ≥ λ3 with λ1 + λ2 + λ3 = 1.

Sphericity S = 3
2(λ2 + λ3), 0 ≤ S ≤ 1.

S = 0: two back-to-back pencil jets, e.g. e+e− → µ+µ−.
S = 1: spherically symmetric distribution.

Aplanarity A = 3
2λ3, 0 ≤ A ≤ 1

2 .
A = 0: all particles in one plane.
A = 1/2: like S = 1.

Problem: collinear unsafe!
E.g. different answer if π0 → γγ counted as one or two particles.
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Linearized Sphericity

Collinear safe alternative, used in same way but with

Lab =

∑
i
pai p

b
i

|pi |∑
i |pi |

a, b = x , y , z

No proper name: some confusion!

Additional measures:
C = 3(λ1λ2 + λ1λ3 + λ2λ3)
D = 27λ1λ2λ3

used to characterize 3- and 4-jet topologies, respectively.

(Linearized) Sphericity family not normally used in pp,
since beam jets dominate structure.
Solution: set all pzi = 0 so only transverse structure studied.
Modified “2D” S = 2λ2 and no A.
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Thrust

Thrust is computationally more demanding optimization

T = max
|n|=1

∑
i |pin|∑
i |pi |

with n for maximum is called Thrust axis.
1/2 < T < 1, with T = 1 for two back-to-back pencil jets and
T = 1/2 for a spherically symmetric distribution.

Major = max
|n′|=1,n′n=0

∑
i |pin′|∑
i |pi |

Minor =

∑
i |pin′′|∑
i |pi |

with n′′n = n′′n′ = 0

Oblateness = Major−Minor

Major and Oblateness again useful for 3-jet structure,
Minor for 4-jet one.
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2D Sphericity at the LHC

Competition between more
∑

p⊥ by more particles or by jets?
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Clustering algorithms — basics

Most clustering algorithms are based on sequential recombination:

Define a distance measure dij between to objects i and j ,
partons or particles, where dij = 0 is closest possible.

Define a procedure whereby any objects i and j
can be joined into a new object k , e.g. pk = pi + pj .

Define a stopping criterion, e.g. that all dij > dmin

or that only nmin objects remain.

Start out with a list of n objects.

Calculate all dij and find pair imin and jmin with smallest value.

Remove imin and jmin from list and insert joined object k .

Iterate last two steps until the stopping criterion is met.

Jets = the objects that now remain.

2 → 1 joining can be viewed as undoing 1 → 2 parton branchings.
Less obvious interpretation of hadronization step.
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Clustering algorithms in e+e−

Naive thought dij = m2
ij , but allows clustering of opposite objects.

JADE is almost like invariant mass:

dij =
2EiEj(1− cos θij)

E 2
vis

where Evis ≈ ECM is visible energy.

Durham offers a theoretically preferred alternative

dij =
2min(E 2

i ,E
2
j )(1− cos θij)

E 2
CM

which can be viewed as the (scaled) p2⊥ of the softer object
with respect to the harder one:
2(1− cos θ) ≈ sin2 θ for small θ and p⊥ = p sin θ.
Undoes p⊥-ordered branchings (to some approximation).
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Clustering algorithm ambiguities

Interpretation is in the eye of the beholder:Seeing v. defining jets[Introduction]

[Background knowledge]

Jets are what we see.
Clearly(?) 2 jets here

How many jets do you see?
Do you really want to ask yourself
this question for 109 events?

Jets lecture 1 (Gavin Salam) MC tools for LHC school September 2011 6 / 30
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How many jets?
Which are quarks and which gluons?
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Clustering algorithm results

Most LEP QCD physics based on jet finding, e.g.:
n-

je
t f

ra
ct

io
n

ALEPH  Ecm = 206 GeV

PYTHIA6.1

HERWIG6.1

ARIADNE4.1
1-jet

2-jet

3-jet

4-jet

5-jet

+6-jet

log10(ycut)
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ALEPH
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T R
/C
F

SU(4)

This analysis, 68% CL contour

 ALEPH-1997 OPAL-2001

Figure 8: 68% confidence level contour in the (x = CA

CF
,y = TR

CF
) plane, calculated from statistical plus systematic

uncertainties (shaded region). For comparison also the results from previous measurements are given, as well as
predictions for simple Lie groups.

The results are

x = 2.27 ± 0.09(stat) ± 0.08(sys)
y = 0.38 ± 0.05(stat) ± 0.07(sys)

(⇢xy)total = �0.15

for the pure QCD case, and

x = 2.26 ± 0.08(stat) ± 0.07(sys)
y = 0.15 ± 0.06(stat) ± 0.06(sys)

(⇢xy)total = �0.19

for the QCD+gluino hypothesis.

Figure 10 shows that these results exclude the existence of a massless gluino at more than
95% confidence level, since the measured colour factor ratios do not agree with the expectation of
SU(3) anymore.

In a previous publication by ALEPH [33] a similar analysis allowed to set a limit on the light
gluino mass. At that time only LO predictions existed for the four-jet angular correlations, both

23
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Clustering conditions in hadron collisions

Most particles are at small p⊥, say below 1 GeV, and at small
angles with respect to beam axis, outside central tracking region.
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Cylindrical symmetry and rapidity

Cylindrical coordinates:

d3p

E
=

dpx dpy dpz
E

=
d2p⊥ dpz

E
= d2p⊥ dy

= p⊥dp⊥ dφdy =
1

2
dp2⊥ dφdy

with rapidity y given by

y =
1

2
ln

E + pz
E − pz

=
1

2
ln

(E + pz)
2

(E + pz)(E − pz)
=

1

2
ln

(E + pz)
2

m2 + p2⊥

= ln
E + pz
m⊥

= ln
m⊥

E − pz

Exercise: show that dpz/E = dy by showing that dy/dpz = 1/E .

Hint: use that E =
√

m2
⊥ + p2z .

Torbjörn Sjöstrand Introduction to Event Generators 2 slide 52/59



Lightcone kinematics and boosts

Introduce (lightcone) p+ = E + pz and p− = E − pz .
Note that p+p− = E 2 − p2z = m2

⊥.
Consider boost along z axis with velocity β and γ = 1/

√
1− β2{

p′z = γ(pz + β E )
E ′ = γ(E + β pz)

⇒
{

p′+ = kp+

p′− = p−/k
with k =

√
1 + β

1− β

y ′ =
1

2
ln

p′+

p′−
=

1

2
ln

k p+

p−/k
= y + ln k

y ′2 − y ′1 = (y2 + ln k)− (y1 + ln k)= y2 − y1

Note how integration of cross section nicely separates into rapidity:

σAB =
∑
i ,j

∫∫
dx1 dx2 f

(A)
i (x1,Q

2) f
(B)
j (x2,Q

2)

∫
dσ̂ij(ŝ = x1x2s)∫∫

dx1 dx2 =

∫∫
dτ dy with τ = x1x2 and y =

1

2
ln

x1
x2
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Pseudorapidity

If experimentalists cannot measure m they may assume m = 0.
Instead of rapidity y they then measure pseudorapidity η:

y =
1

2
ln

√
m2 + p2 + pz√
m2 + p2 − pz

⇒ η =
1

2
ln

|p|+ pz
|p| − pz

= ln
|p|+ pz

p⊥

or

η =
1

2
ln

|p+ |p| cos θ
|p| − |p| cos θ =

1

2
ln

1 + cos θ

1− cos θ

=
1

2
ln

2 cos2 θ/2

2 sin2 θ/2
= ln

cos θ/2

sin θ/2
= − ln tan

θ

2

which thus only depends on polar angle.

η is not simple under boosts: η′2 − η′1 ̸= η2 − η1.
You may even flip sign!
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The pseudorapidity dip

By analogy with dy/dpz = 1/E it follows that dη/dpz = 1/|p|.
Thus

dη

dy
=

dη/dpz
dy/dpz

=
E

|p| > 1

with limits

dη

dy
→ m⊥

p⊥
for pz → 0

dη

dy
→ 1 for pz → ±∞

so if dn/dy is flat for y ≈ 0
then dn/dη has a dip there.
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The R separation

Massless four-vectors can be written in cylindrical coordinates like

p = p⊥(cosh y ; cosφ, sinφ, sinh y) .

The invariant mass of two massless four-vectors is

m2
ij = (pi + pj)

2 = 2pipj

= 2p⊥ip⊥j (cosh(yi − yj)− cos(φi − φj))

≈ 2p⊥ip⊥j

(
1 +

1

2
(yi − yj)

2 − (1− 1

2
(φi − φj)

2)

)
= p⊥ip⊥j (∆y2ij +∆φ2

ij) = p⊥ip⊥jR
2
ij

so a circle in the (y , φ) plane is a meaningful concept.
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The k⊥ algorithm

Each original particle defines a cluster,
with well-defined four-momentum ⇒ (p⊥, y , φ).
Define distance measures of all clusters i to the beam
and of all cluster pairs (i , j) relative to each other

diB = p2⊥i

dij = min
(
p2⊥i , p

2
⊥j

) R2
ij

R2

Find the smallest of all diB and dij .
a) If a diB and p⊥i < p⊥min then throw it.
b) Else if a diB then call i a jet and remove it from cluster list.
c) Else if a dij then combine i and j to a new cluster
with four-momentum pi + pj .

Repeat until no clusters remain.

Two key parameters R and p⊥min,
where p⊥min = 0 is allowed simplification.
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The k⊥ family

Generalize the diB and dij measures to

diB = p2p⊥i

dij = min
(
p2p⊥i , p

2p
⊥j

) R2
ij

R2

p = 1 is k⊥ algorithm; preferentially clusters soft particles.

p = 0 is Cambridge–Aachen or no-k⊥ algorithm.

p = −1 is anti-k⊥ algorithm; preferentially clusters around
hardest particle and give round jet catchment areas.

All three are infrared and collinear safe; i.e. the addition of a
soft particle, or the splitting of a particle into two collinear ones,
do not alter the outcome.

These, and many more jet algorithms, are available in the
FastJet package. (Faster than naive step-by-step clustering.)

Torbjörn Sjöstrand Introduction to Event Generators 2 slide 58/59



Clustering results

Figure 6: A sample parton-level event (generated with Herwig [80]), together with many random
soft “ghosts”, clustered with four different jet algorithms, illustrating the “active” catchment areas
of the resulting hard jets (cf. section 4.4). For kt and Cam/Aachen the detailed shapes are in
part determined by the specific set of ghosts used, and change when the ghosts are modified.

class of algorithms is naturally replaced by the anti-kt algorithm (which produces circular
jets, as illustrated in figure 6, and has similar low-order perturbative properties), while
SISCone is very much like the IC-SM algorithms, but ensures that the stable-cone finding
is IRC safe.

Figure 6 illustrates the jets that are produced with the 4 “choice” IRC-safe algorithms
in a simple, parton-level event (generated with Herwig), showing among other things, the
degree of regularity (or not) of the boundaries of the resulting jets.

3 Computational geometry and jet-finding

It takes the human eye and brain a fraction of a second to identify the main regions of
energy flow in a calorimetric event such as fig. 6. A good few seconds might be needed to
quantify that energy flow, and to come to a conclusion as to how many jets it contains.

26
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