

Matching and merging

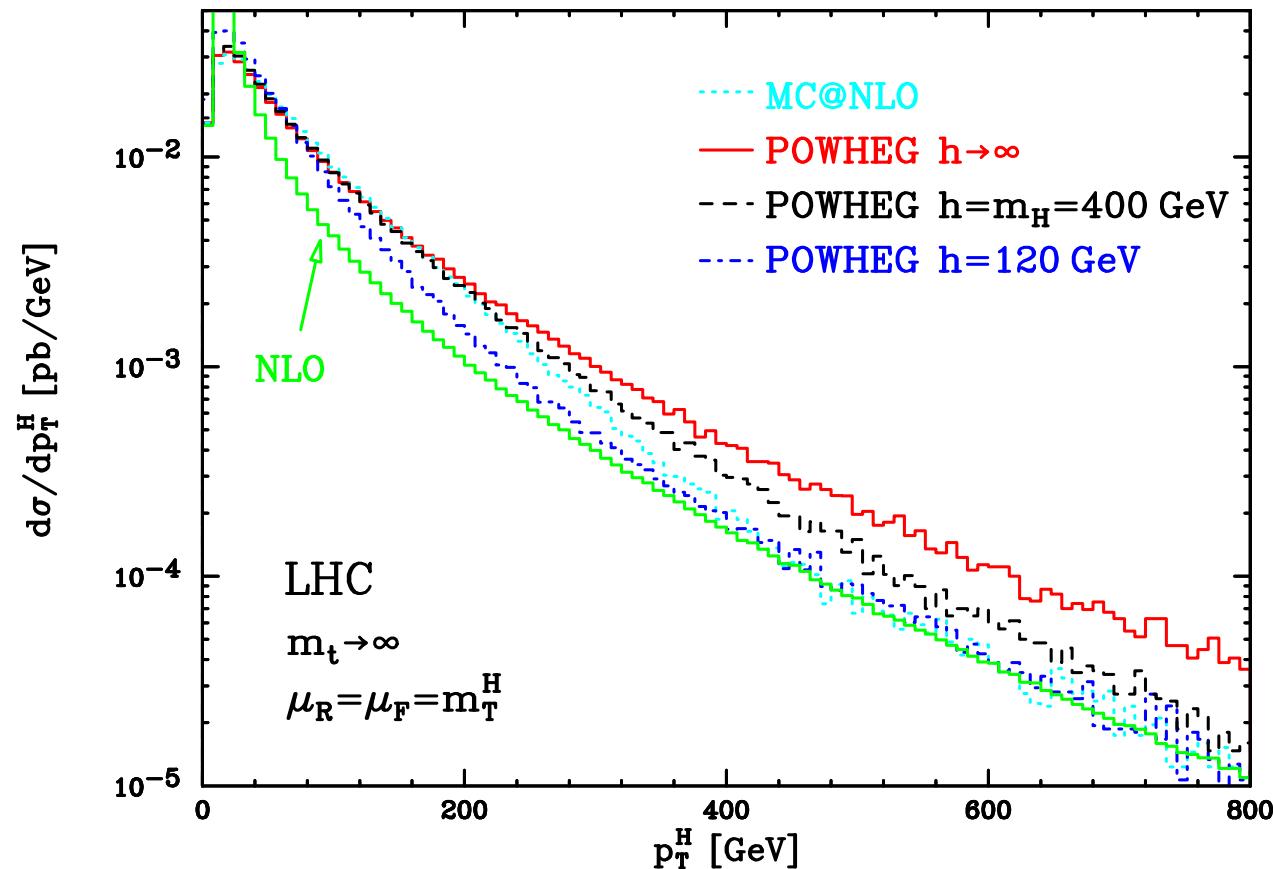
Part 1: Matching (continued)

Tomáš Ježo (tomas.jezo@uni-muenster.de)

Summary from the last lecture

- Matching = combining fixed-order NLO with parton showers
 - keep inclusive NLO accuracy and LL resummation
 - avoid double counting between real matrix elements and shower emissions
- Matching schemes intro
 - additive (MC@NLO-type): NLO result + [PS – approximate real], negative weights but FO structure is transparent
 - multiplicative (POWHEG-type): generate hardest emission with R/B and a Sudakov, effectively reweighting LO+PS by an NLO K-factor
- POWHEG method
 - from LO+PS to POWHEG formula
 - singular regions and $\Phi_B \leftrightarrow (\Phi_R, \Phi_{\text{rad}})$
 - Sudakov veto loop
- Tuning the real cross section
 - split $R = R_s + R_f$ with `hdamp` / `bornzerodamp` so that only the genuinely singular part R_s is exponentiated
 - control the high- p_T tail and scale dependence in the remnant R_f

Tuning the real cross section



Outline, Part 1: Continued

Resonance-aware POWHEG

- Resonance histories
- Multiple-radiation scheme

POWHEG BOX V2/RES

- POWHEG method implementations
- From POWHEG events to parton shower

Resonance-aware POWHEG method (POWHEG RES)

Global recoil

- In standard POWHEG, each real configuration is mapped to an underlying Born: $\Phi_R \leftrightarrow (\Phi_B, \Phi_{\text{rad}}^{\alpha})$ for each singular region α
 - This mapping redistributes real emission recoil globally and so in general **does not preserve internal resonance virtualities**
- If a narrow resonance r is on-shell in the real kinematics:
 - real: $M_r^2(\Phi_R) \simeq m_r^2$ (Breit-Wigner peak)
 - mapped Born: $M_r^2(\Phi_B) \neq m_r^2$ in general
 - the recoil that removes $\Phi_{\text{rad}}^{\alpha}$ shifts M_r^2 off-shell

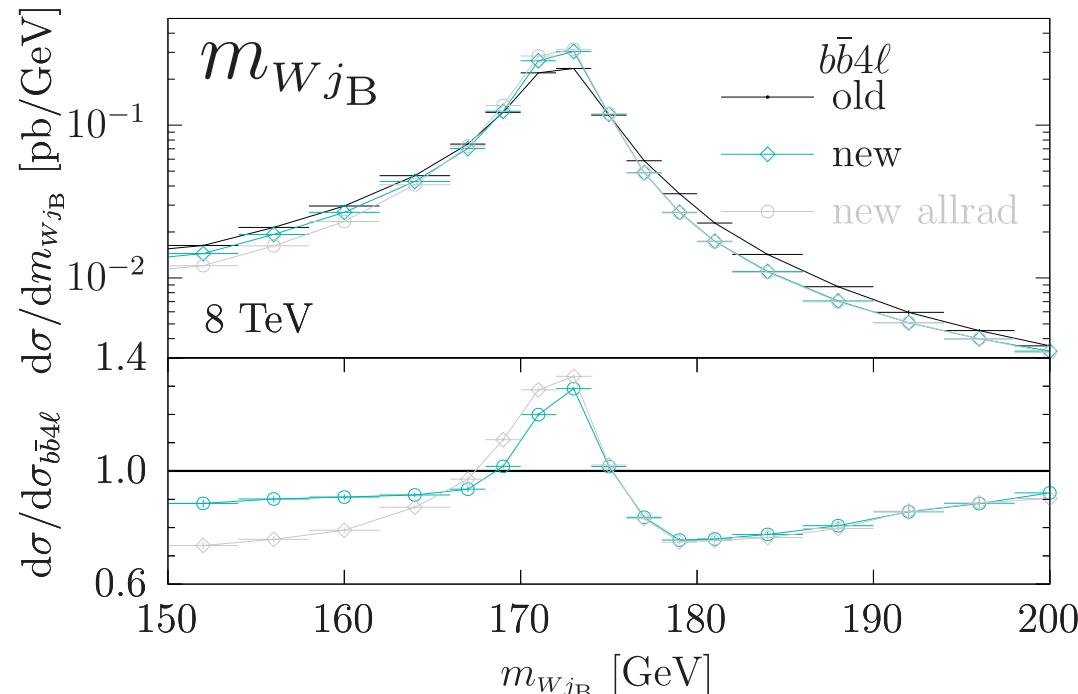
Consequence

- Large R/B means Sudakov is close to zero
 - we get artificial depletion on the peak regardless of hardness of the emission
 - resonance line shapes are distorted

Resonance-aware POWHEG method (POWHEG RES)

Consequence

- Large R/B means Sudakov is close to zero
 - we get artificial depletion on the peak regardless of hardness of the emission
 - resonance line shapes are distorted

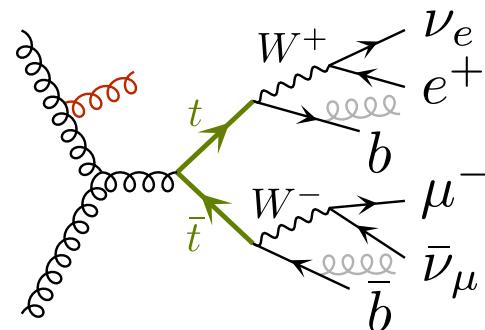


Resonance-aware POWHEG method (POWHEG RES)

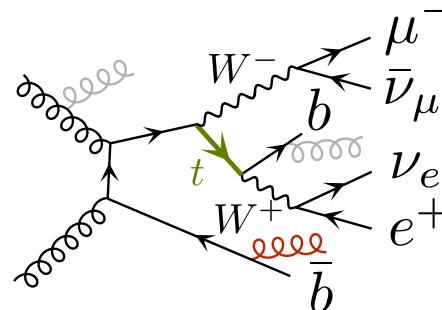
How to overcome this?[†]

1. Introduce resonance histories

- Decompose each configuration into contributions with definite internal resonances (t, W, H, \dots)
- Each parton is attributed either to production or to the decay of a specific resonance
- Example:



[21, 21, 6, -6, 24, -24, -11, 12, 5, 13, -14, 5, 21]
[0, 0, 0, 0, 3, 4, 5, 5, 3, 6, 6, 4, 0]



[21, 21, 6, 24, -24, -11, 12, 5, 13, -14, 5, 21]
[0, 0, 0, 3, 0, 4, 4, 3, 5, 5, 0, 0]

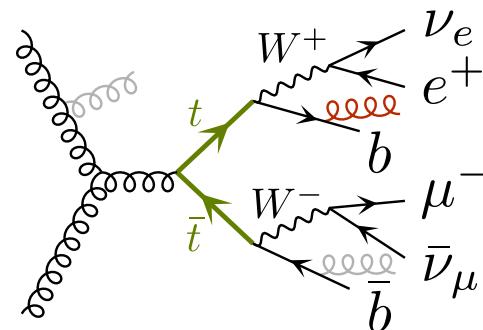
[†][Ježo et al., JHEP 12 (2015) 065], [Ježo et al., JHEP 10 (2023) 008]

Resonance-aware POWHEG method (POWHEG RES)

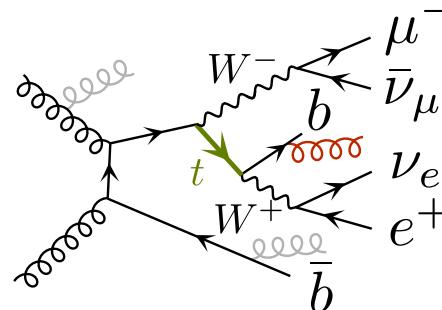
How to overcome this?[†]

1. Introduce resonance histories

- Decompose each configuration into contributions with definite internal resonances (t, W, H, \dots)
- Each parton is attributed either to production or to the decay of a specific resonance
- Example:



[21, 21, 6, -6, 24, -24, -11, 12, 5, 13, -14, 5, 21]
[0, 0, 0, 0, 3, 4, 5, 5, 3, 6, 6, 4, 3]



[21, 21, 6, 24, -24, -11, 12, 5, 13, -14, 5, 21]
[0, 0, 0, 3, 0, 4, 4, 3, 5, 5, 0, 3]

[†][Ježo et al., JHEP 12 (2015) 065], [Ježo et al., JHEP 10 (2023) 008]

Resonance-aware POWHEG method (POWHEG RES)

How to overcome this?[†]

1. Introduce resonance histories
 - Decompose each configuration into contributions with definite internal resonances (t, W, H, \dots)
 - Each parton is attributed either to production or to the decay of a specific resonance
2. Resonance-preserving mappings (used throughout the POWHEG formula)
 - For each history and each singular region α , define $\Phi_R \leftrightarrow (\Phi_B, \Phi_{\text{rad}}^{\{\alpha\}})$ such that $M_r^2(\Phi_R) = M_r^2(\Phi_B)$ for all resonances r in that history
 - Recoil distributed within the production system or a given decay system, not across resonances
 - Example: mapping from $t \rightarrow bgW^+$ to $t \rightarrow bW^+$
 - go to the top rest frame, recombine $b + g$ to set the b' direction, apply on-shell $1 \rightarrow 2$ kinematics $t \rightarrow b'W^+$, then boost back to the lab frame

[†][Ježo et al., JHEP 12 (2015) 065], [Ježo et al., JHEP 10 (2023) 008]

Resonance-aware POWHEG method (POWHEG RES)

How to overcome this?[†]

1. Introduce resonance histories
 - Decompose each configuration into contributions with definite internal resonances (t, W, H, \dots)
 - Each parton is attributed either to production or to the decay of a specific resonance
2. Resonance-preserving mappings (used throughout the POWHEG formula)
 - For each history and each singular region α , define $\Phi_R \leftrightarrow (\Phi_B, \Phi_{\text{rad}}^{\{\alpha\}})$ such that $M_r^2(\Phi_R) = M_r^2(\Phi_B)$ for all resonances r in that history
 - Recoil distributed within the production system or a given decay system, not across resonances
3. Resonance-aware FKS[‡] subtraction
 - new mappings are resonance history dependent: \bar{B} and R/B must be partitioned
 - within one resonance history they are basically the original FKS mappings but now applied in resonance rest frames instead of the lab frame
 - FKS needs re-deriving, since the reference frame is no longer fixed: soft mismatch

[†][Ježo et al., JHEP 12 (2015) 065], [Ježo et al., JHEP 10 (2023) 008]

[‡]This is also available in CS [Höche et al., Eur.Phys.J.C 79 (2019) 728]

Resonance histories (nay, singular regions on steroids)

- In standard POWHEG, singular regions α defined only by collinearity of external legs:
 - radiation from a b in the top decay can still compete with ISR gluon
- In POWHEG RES, each singular region is refined to a pair (α, h) :
 - h = resonance history
 - an emission in resonance decay only competes with other emissions in the same decay

Resonance histories (nay, singular regions on steroids)

- In standard POWHEG, singular regions α defined only by collinearity of external legs:
 - radiation from a b in the top decay can still compete with ISR gluon
- In POWHEG RES, each singular region is refined to a pair (α, h) :
 - h = resonance history
 - an emission in resonance decay only competes with other emissions in the same decay
- Additional resonance-history–phase-space partition:
 - for each real phase-space point Φ_R construct weights $\Pi_{h(\Phi_R)}$ with $\Pi_{h(\Phi_R)} \geq 0$ and $\sum_h \Pi_{h(\Phi_R)} = 1$
 - per default: Π_h are built from Breit–Wigner–like factors for the resonances in history h (top, W , ...), so the history with resonances closest to shell dominates

$$\Pi_{h_{t\bar{t}}}(\Phi) = \frac{w_{h_{t\bar{t}}}(\Phi)}{\sum_{h'} w_{h'}(\Phi)}, \quad w_{h_{t\bar{t}}}(\Phi) = F_t\left(M_t^2(\Phi)\right)F_{\bar{t}}\left(M_{\bar{t}}^2(\Phi)\right)F_{W^+}\left(M_{W^+}^2(\Phi)\right)F_{W^-}\left(M_{W^-}^2(\Phi)\right)$$
$$F_R\left(M_R^2(\Phi)\right) = m_R^4 / \left(\left(M_R^2(\Phi) - m_R^2 \right)^2 + m_R^2 \Gamma_R^2 \right)$$

- for $t\bar{t}$: there is also a custom matrix element based separation
- the real matrix element is split as $R(\Phi_R) = \sum_h R^{h(\Phi_R)}$ with $R^{h(\Phi_R)} = \Pi_{h(\Phi_R)} R(\Phi_R)$, and then further into singular pieces $R_\alpha^{h(\Phi_R)}$ for POWHEG

Multiple-radiation scheme

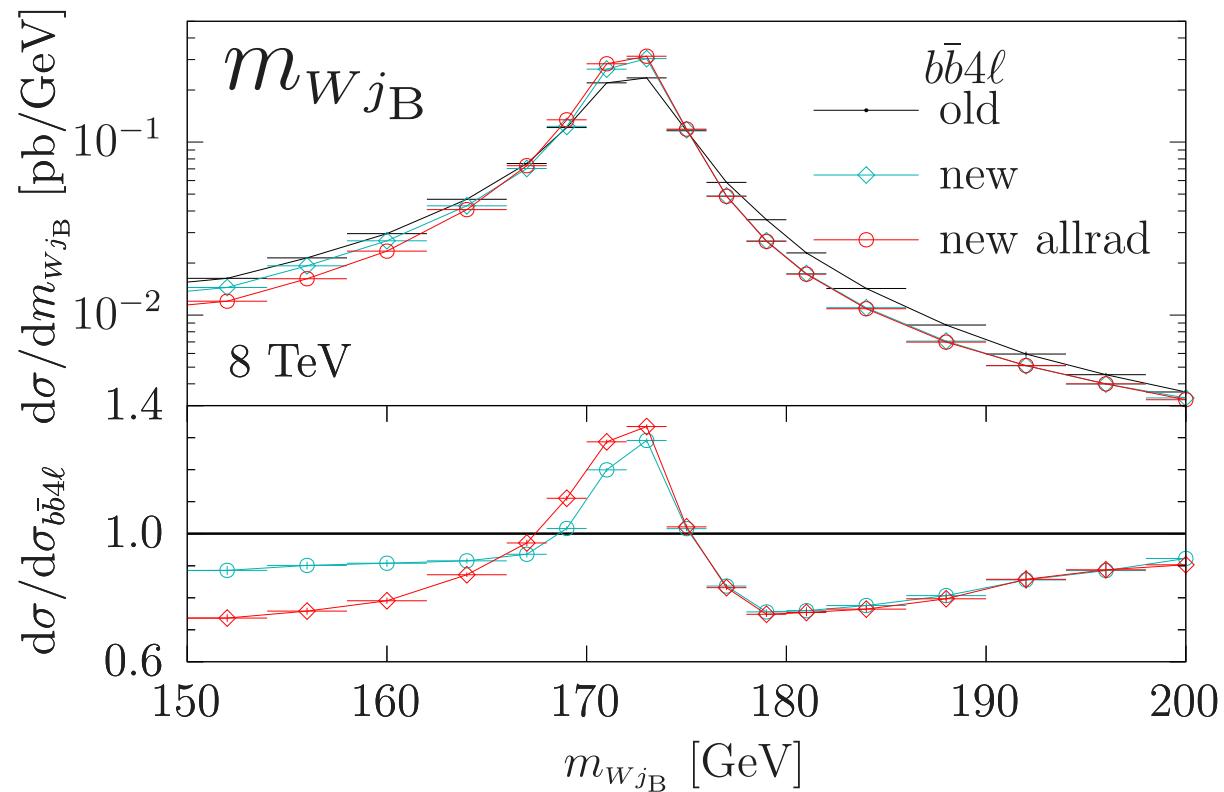
- Motivation
 - In standard NLO+PS matching only one hardest emission is corrected
 - In $pp \rightarrow t\bar{t}$ the hardest emission is almost always ISR, so radiation in decays is down to PS
- Idea
 - We can keep up to $n_h + 1$ POWHEG emissions: one from production ($r = 0$) and one from each resonance decay ($h = 1, \dots, n_h$)

$$d\sigma = \bar{B}(\Phi_B) \prod_{h=0}^{n_h} \left[\Delta_h(t_0) + \int d\Phi_{\text{rad}}^h \Delta_h(p_T^h(\Phi_{\text{rad}}^h)) \frac{R_h(\Phi_B, \Phi_{\text{rad}}^h)}{B(\Phi_B)} \right]$$

- One emission – the usual NLO correction, multiple emissions – formally higher order
- Product over h turns into a sum upon expansion $\prod_h [\Delta_h(t_0) + \dots] = \Delta_h(t_0) + \sum_h R_{h,c} \frac{\Phi_{R,c}}{B_h(\Phi_B)}, d\Phi_{\text{rad},c}$
- Why the extra higher orders are useful
 - Observables built from decay-product kinematics (e.g. lepton angles, reconstructed resonance masses), NLO corrections in **production** act largely as a flat K -factor

Multiple-radiation scheme

- Why the extra higher orders are useful
 - Observables built from decay-product kinematics (e.g. lepton angles, reconstructed resonance masses), NLO corrections in **production** act largely as a flat K -factor



Checkpoint

Are there any questions?

POWHEG method implementations

- POWHEG method implementations:
 - POWHEG BOX V2: generic NLO+PS framework for many LHC processes
 - POWHEG BOX RES: resonance-aware extension (production \otimes decay)
 - Herwig Matchbox: also implements POWHEG (and MC@NLO)
- [New!] Fortran codes, now hosted on gitlab.com
- A long list of available processes (examples)
 - Drell-Yan: W, Z, γ^* (with QCD and EW corrections); vector boson(s) + jets: $Wj, Zj, V + 2j, WW, WZ, ZZ, \text{VBF } VVjj$; Higgs + jets: $ggH, \text{VBF}, VH, H + j, Hjj, \text{tops}$: t, \bar{t} , single-top (s -, t -, tW -channel)

POWHEG method implementations

- POWHEG method implementations:
 - POWHEG BOX V2: generic NLO+PS framework for many LHC processes
 - POWHEG BOX RES: resonance-aware extension (production \otimes decay)
 - Herwig Matchbox: also implements POWHEG (and MC@NLO)
- [New!] Fortran codes, now hosted on gitlab.com
- A long list of available processes (examples)
 - Drell-Yan: W, Z, γ^* (with QCD and EW corrections); vector boson(s) + jets: $W j, Z j, V + 2j, WW, WZ, ZZ, VBF VV jj$; Higgs + jets: $ggH, VBF, VH, H + j, Hjj, \text{tops}$: t, \bar{t} , single-top (s -, t -, tW -channel)
- Philosophy
 - BOX core: interface to MEs, phase space, subtraction, POWHEG Sudakovs, and LHE interface, ...
 - Each process: in its own directory and is implemented largely independently on top of the core
- No full automation
 - downside: no “one-click” NLO+PS like MG5_aMC
 - upside: if a process is in the BOX, it usually has
 - a dedicated publication and thorough validation
 - with recommended settings and options, reference plots / benchmarks to reproduce

From POWHEG events to parton showers

- POWHEG output:
 - events in LHE: particles with momenta and colour, weight, scalup, ...
- Pythia
 - reads LHE state and starts ISR/FSR shower from there
 - uses scalup as a veto scale: no emission with $p_T > \text{'scalup'}$ (also via PowhegHooks)
- Herwig
 - ordering variable is emission angle, so the hardest p_T emission is not necessarily the first
 - formally needs a **truncated shower**: soft wide-angle emissions above the POWHEG scale generated before the hardest emission, then the usual shower below it
 - practically small impact (in processes that were studied)
- Resonance-aware showers
 - POWHEG-RES requires multiple scalups not possible in LHE
 - Pythia / Herwig need dedicated interfaces
 - shower then typically preserves resonance virtualities

Summary

- Resonance-aware POWHEG:
 - standard $\Phi_R \leftrightarrow (\Phi_B, \Phi_{\text{rad}})$ mapping distorts internal resonances: on-shell in R , off-shell in $B \rightarrow$ large R/B , Sudakov suppresses the peak
 - RES introduces resonance histories and resonance-preserving mappings: recoil is confined within each resonance system, resonance virtualities are identical in real and underlying Born kinematics
- Resonance histories and multiple radiation:
 - phase space is partitioned with resonance projectors $\Pi_{h(\Phi)}$: $R(\Phi) = \sum_h R^{h(\Phi)}$, each h a definite pattern of intermediate tops, W 's, ...
 - singular regions become (h, c) and the Sudakov per history uses a sum over splitting kernels; multi-rad scheme allows one POWHEG emission from production and from each resonance decay, adding useful higher-order structure in the decay chains while keeping NLO accuracy
- Showering POWHEG events:
 - Shower Monte Carlo's (Pythia, Herwig) read LHE files, and attach further emissions respecting POWHEG shower starting scale

Backup

Backup slides follow

Resonance-aware mapping for $t \rightarrow bgW^+$

Go to the top rest frame, recombine $p_b + k$ to define the direction of the Born b' , and perform a standard 2-body decay $t \rightarrow b' + W^+$ by rescaling $|(p_b)|$ and $|(p_W)|$ to the on-shell 2-body kinematics while keeping their back-to-back directions (with b' along $p_b + k$). Then boost the resulting $p_{b'}$ and $p_{W'}$ back to the lab frame with the inverse top boost $B_t^{\{-1\}}$.

Setup

- Real decay in lab frame: $t(p_t) \rightarrow b(p_b) + g(k) + W^+(p_W)$, with $p_t = p_b + k + p_W$.
- Underlying Born decay: $t(p_t) \rightarrow b'(p_{b'}) + W^+(p_{W'})$, with $p_t = p_{b'} + p_{W'}$.

1. Go to the top rest frame

- Boost with B_t such that in this frame $p_t = (m_t, 0)$.
- Real momenta in this frame: $p_b \rightarrow B_t p_b$, $k \rightarrow B_t k$, $p_W \rightarrow B_t p_W$.

2. Recombine $b + g$ and fix direction

- Combined emitter momentum: $q = p_b + k$.
- Take unit vector along it: $\hat{q} = \frac{q}{\|q\|}$.

Resonance-aware mapping for $t \rightarrow bgW^+$

3. Two-body kinematics for $t \rightarrow b'W^+$

- Treat the Born decay as a $1 \rightarrow 2$ decay $t \rightarrow b' + W^+$.
- Common three-momentum magnitude: $p^* = \frac{\sqrt{\lambda(m_t^2, m_b^2, m_W^2)}}{2m_t}$ with $\lambda(a, b, c) = a^2 + b^2 + c^2 - 2ab - 2ac - 2bc$.
- Energies: $E_b^* = \sqrt{(p^*)^2 + m_b^2}$, $E_W^* = \sqrt{(p^*)^2 + m_W^2}$.
- Define Born momenta in the top rest frame: $p_{b'} = (E_b^*, +p^* \hat{q})$, $p_{W'} = (E_W^*, -p^* \hat{q})$.
- Then $p_{b'}^2 = m_b^2$, $p_{W'}^2 = m_W^2$ and $p_{b'} + p_{W'} = (m_t, 0) = p_t$.

4. Boost back to the lab frame

- Final underlying-Born momenta: $p_{b'} \rightarrow B_t^{\{-1\}} p_{b'}$, $p_{W'} \rightarrow B_t^{\{-1\}} p_{W'}$.
- In words: go to the top rest frame, recombine $b + g$ to set the b' direction, apply on-shell $1 \rightarrow 2$ kinematics $t \rightarrow b'W^+$, then boost back to the lab frame

Matching and merging

Part 2: Merging

Tomáš Ježo (tomas.jezo@uni-muenster.de)

Outline, Part 2: Merging

Multi-jet merging

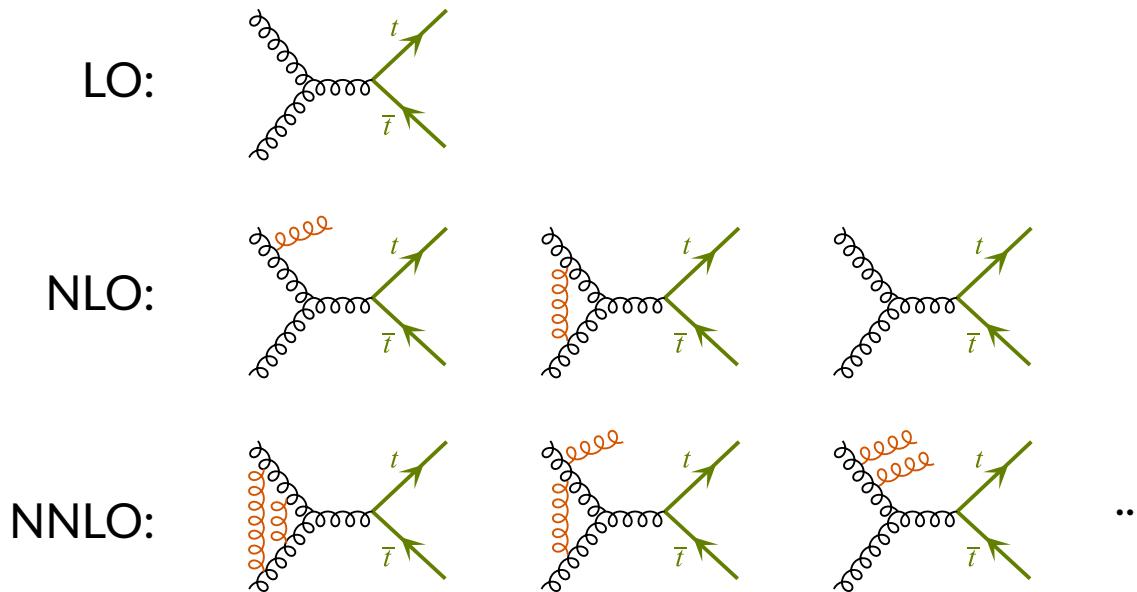
- Jet multiplicity and accuracy
- Concepts behind merging
- Shower branching history
- LO Merging formula

Merging via matching

- Suppressing singularities with Sudakovs
- MiNLO and MiNLO'

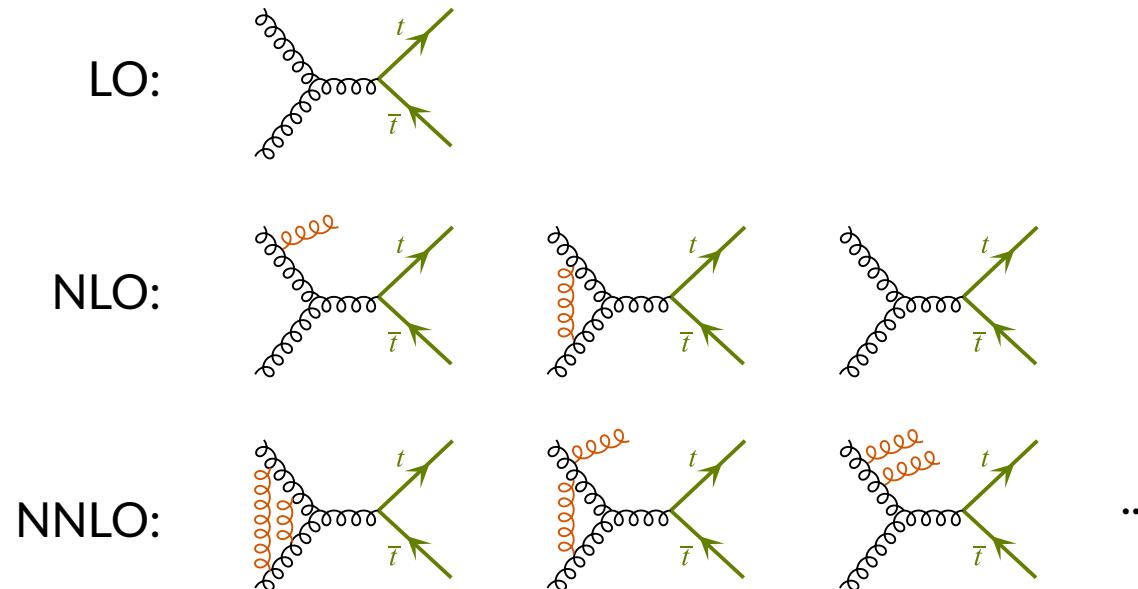
Jet multiplicity and accuracy

- Consider top-pair production at FO



Jet multiplicity and accuracy

- Consider top-pair production at FO



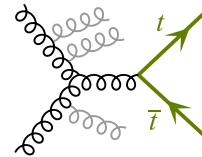
- What is the accuracy of the prediction for $t\bar{t} + n_j$ cross section?

calculation vs jet multiplicity	$n_j \geq 0$	$n_j \geq 1$	$n_j \geq 2$	$n_j \geq 3$
LO	LO	-	-	-
NLO	NLO	LO	-	-
NNLO	NNLO	NLO	LO	-

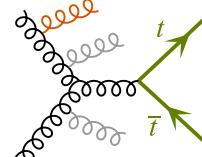
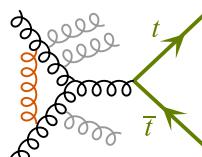
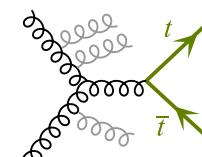
Jet multiplicity and accuracy

- Consider top-pair production at **FO** matched to **PS**

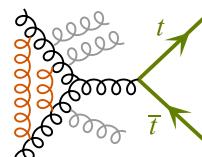
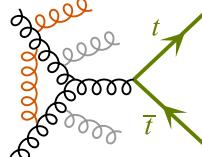
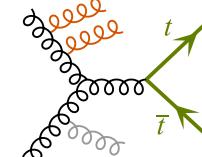
LO+PS:



NLO+PS:



NNLO+PS:



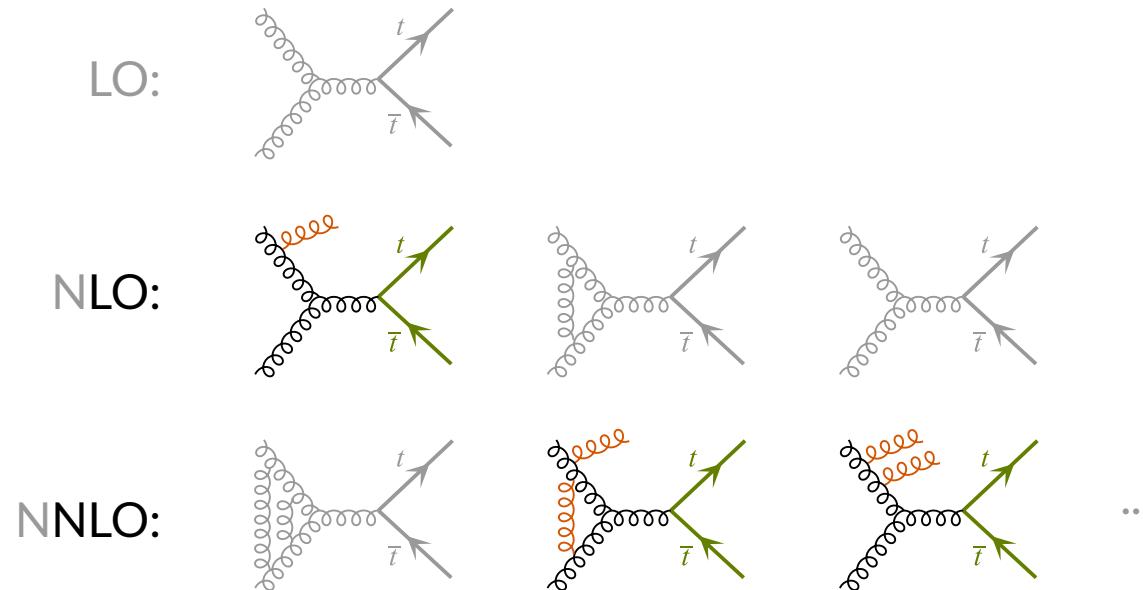
...

- What is the accuracy of the prediction for $t\bar{t} + n_j$ cross section?

calculation vs jet multiplicity	$n_j \geq 0$	$n_j \geq 1$	$n_j \geq 2$	$n_j \geq 3$
LO+PS	LO	PS	PS	PS
NLO+PS	NLO	LO	PS	PS
NNLO+PS	NNLO	NLO	LO	PS

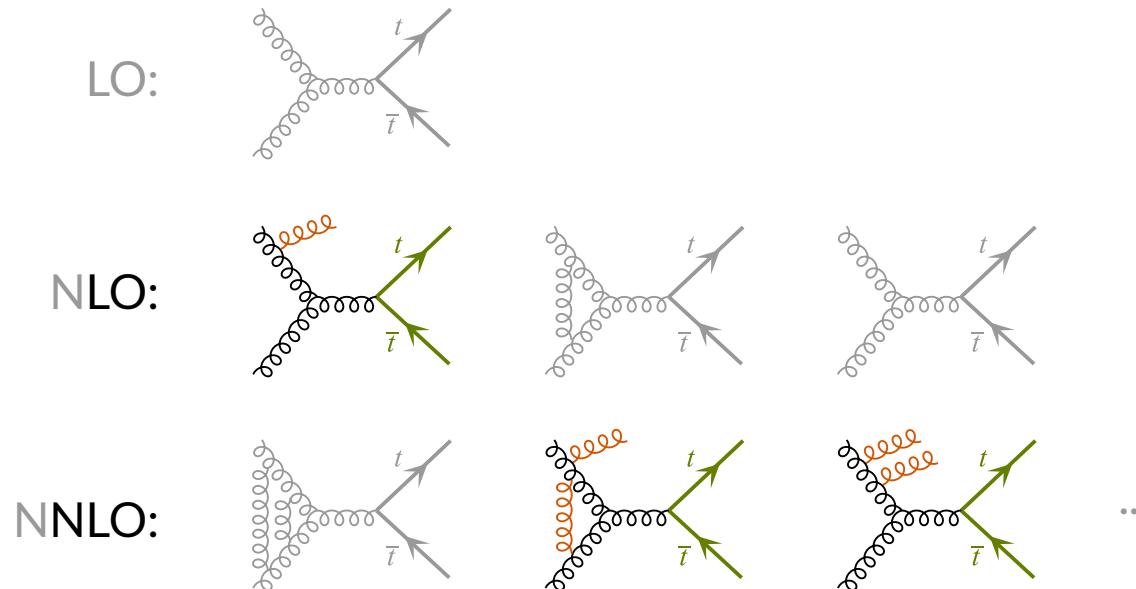
Jet multiplicity and accuracy

- Consider top-pair production in association with a jet at **FO**



Jet multiplicity and accuracy

- Consider top-pair production in association with a jet at **FO**



- What is the accuracy of the prediction for $t\bar{t} + n_j$ cross section?

calculation vs jet multiplicity	$n_j \geq 0$	$n_j \geq 1$	$n_j \geq 2$	$n_j \geq 3$
LO	∞	LO	-	-
NLO	∞	NLO	LO	-

Checkpoint

Are there any questions?

Merging

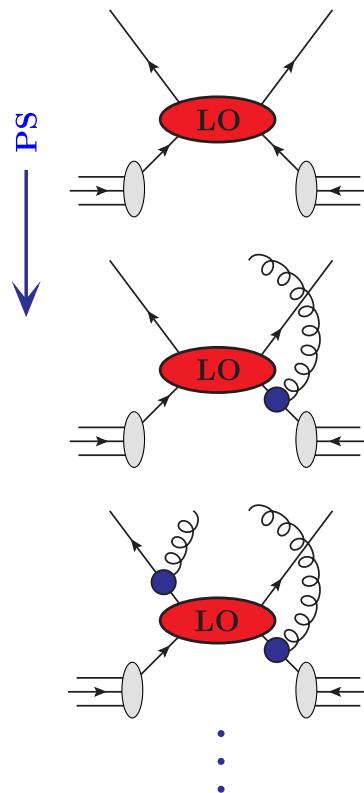
- **Matching FO** calculations with **PS**
 - N^n LO+PS describe observables dominated by topologies of a single multiplicity
 - But many observables receive contributions from many final state multiplicities, e.g. $p_{T,t\bar{t}}$
 - NLO+PS will describe this observable the low end at NLO accuracy, an intermediate region at LO accuracy, and the high end at PS accuracy only
 - If we want to describe such observables as uniformly as possible we need multi-jet merging

calculation vs jet multiplicity	≥ 0 jets	≥ 1 jet	≥ 2 jets	≥ 3 jets
LO+PS	LO	PS	PS	PS
(LO+j)+PS		LO	PS	PS
MEPS@LO (0-2j)	LO	LO	LO	PS

- **Merging** combines several **FO** samples with different jet multiplicities with **PS**
 - avoids double counting between matrix elements of different multiplicities and the **PS**

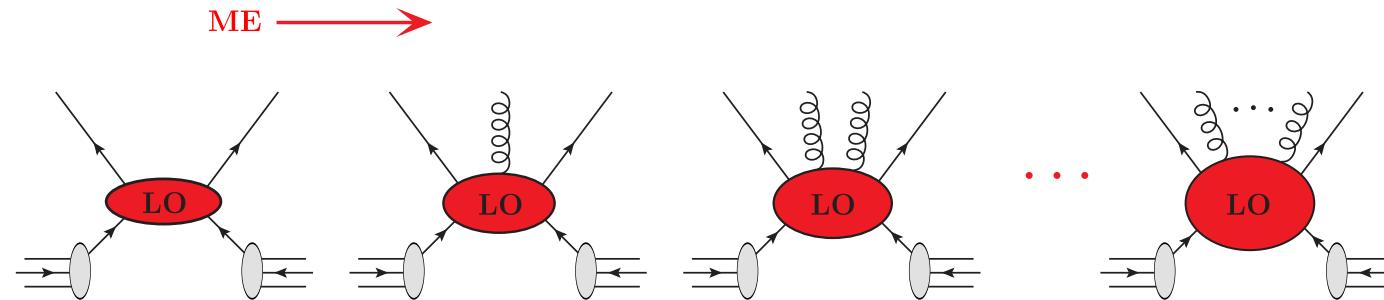
Merging

- **Merging** combines several **FO** samples with different jet multiplicities with **PS**



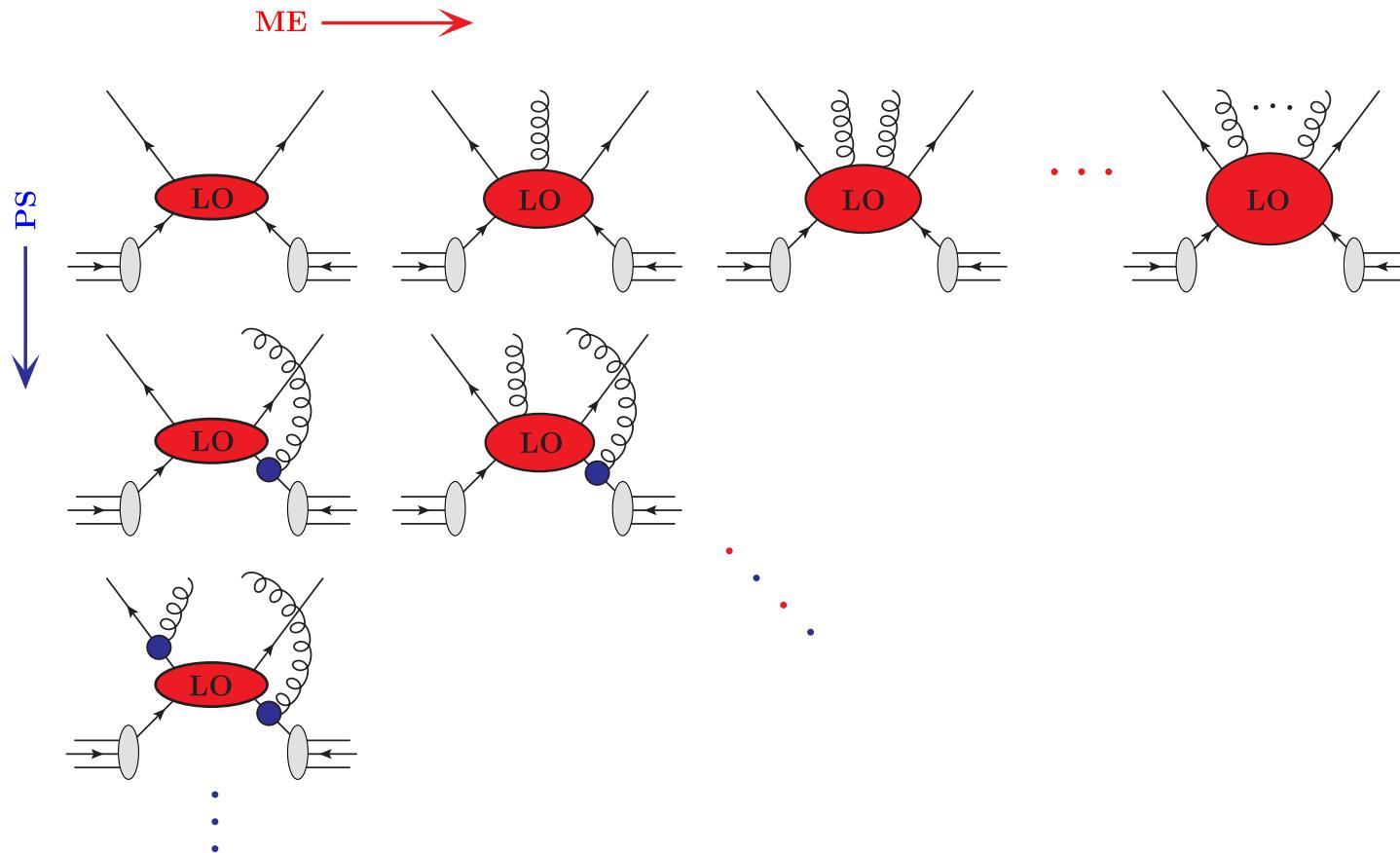
Merging

- **Merging** combines several **FO** samples with different jet multiplicities with **PS**



Merging

- **Merging** combines several **FO** samples with different jet multiplicities with **PS**



Shower branching history

- How a p_T -ordered shower builds an event
 - Start from a hard process at scale Q (e.g. $m_{t\bar{t}}$)
 - The shower emits partons with decreasing transverse momentum: $p_{T,1} > p_{T,2} > \dots > p_{T,\min}$
 - $p_{T,1}$ = hardest emission, $p_{T,2}$ = 2nd-hardest, etc; $\{p_{T,i}\}$ encode **PS** branching history ordered in p_T

Shower branching history

- How a p_T -ordered shower builds an event
 - Start from a hard process at scale Q (e.g. $m_{t\bar{t}}$)
 - The shower emits partons with decreasing transverse momentum: $p_{T,1} > p_{T,2} > \dots > p_{T,\min}$
 - $p_{T,1}$ = hardest emission, $p_{T,2}$ = 2nd-hardest, etc; $\{p_{T,i}\}$ encode **PS** branching history ordered in p_T
- In order to replace some **PS** emissions by **FO**
 - Choose a merging scale $p_{T,\text{cut}}$:
 - jets with $p_T > p_{T,\text{cut}}$ → described by **FO**
 - jets with $p_T < p_{T,\text{cut}}$ → left to the shower
 - To know “which **FO** sample owns an event”, we need the full sequence $\{p_{T,i}\}$, not just $p_{T,\text{cut}}$:
 - 1-jet **FO** region: $p_{T,1} > p_{T,\text{cut}}$ and $p_{T,2} < p_{T,\text{cut}}$
 - 2-jet **FO** region: $p_{T,2} > p_{T,\text{cut}}$ and $p_{T,3} < p_{T,\text{cut}}$
 - etc.
 - $\{p_{T,i}\}$ are obtained by clustering **FO** samples
 - They classify the event as a 0-jet, 1-jet, 2-jet, ... ME configuration by counting how many emissions lie above $p_{T,\text{cut}}$

Checkpoint

Are there any questions?

Merging formula (schematic)

$$\begin{aligned} d\sigma^{\text{MEPS}} = & \int d\Phi_n B_n(\Phi_n) \text{PS}_n \Theta(p_{T,\text{cut}} - p_{T,n+1}) \\ & + \int d\Phi_{n+1} B_{n+1}(\Phi_{n+1}) \Theta(p_{T,n+1} - p_{T,\text{cut}}) \Delta_n(p_{T,n+1}, p_{T,n}) \Theta(p_{T,\text{cut}} - p_{T,n+2}) \text{PS}_{n+1} \\ & + \dots \end{aligned}$$

where $\text{PS}_i = [\Delta_i(p_{T,\text{min}}) + K_{\text{PS},i} \Delta_i(p_T) d\Phi_{\text{rad}}]$, $p_{T,n}$... the scale of the hard process

1. Generate $n + 0j$ sample, shower below $p_{T,\text{cut}}$
2. Generate $n + 1j$ sample
 - for each event calculate branching history and keep only those with $p_{T,n+1} > p_{T,\text{cut}} > p_{T,n+2}$
 - reweight with probability of no emissions harder than $p_{T,n+1}$, all the way to $p_{T,n}$
3. Generate $n + 2j$ sample
 - for each event calculate branching history and keep only those with $p_{T,n+2} > p_{T,\text{cut}} > p_{T,n+1}$
 - reweight with probability of no emissions harder than $p_{T,n+2}$, up to $p_{T,n+1}$
4. etc.

Merging formula (schematic)

$$\begin{aligned} d\sigma^{\text{MEPS}} = & \int d\Phi_n B_n(\Phi_n) \text{PS}_n \Theta(p_{T,\text{cut}} - p_{T,n+1}) \\ & + \int d\Phi_{n+1} B_{n+1}(\Phi_{n+1}) \Theta(p_{T,n+1} - p_{T,\text{cut}}) \Delta_n(p_{T,n+1}, p_{T,n}) \Theta(p_{T,\text{cut}} - p_{T,n+2}) \text{PS}_{n+1} \\ & + \dots \end{aligned}$$

where $\text{PS}_i = [\Delta_i(p_{T,\text{min}}) + K_{\text{PS},i} \Delta_i(p_T) d\Phi_{\text{rad}}]$, $p_{T,n}$... the scale of the hard process

1. Generate $n + 0j$ sample, shower below $p_{T,\text{cut}}$
2. Generate $n + 1j$ sample
 - for each event calculate branching history and keep only those with $p_{T,n+1} > p_{T,\text{cut}} > p_{T,n+2}$
 - reweight with probability of no emissions harder than $p_{T,n+1}$, all the way to $p_{T,n}$
3. Generate $n + 2j$ sample
 - for each event calculate branching history and keep only those with $p_{T,n+2} > p_{T,\text{cut}} > p_{T,n+3}$
 - reweight with probability of no emissions harder than $p_{T,n+2}$, up to $p_{T,n+1}$
4. etc.

Merging formula (schematic)

$$\begin{aligned} d\sigma^{\text{MEPS}} = & \int d\Phi_n B_n(\Phi_n) \text{PS}_n \Theta(p_{T,\text{cut}} - p_{T,n+1}) \\ & + \int d\Phi_{n+1} B_{n+1}(\Phi_{n+1}) \Theta(p_{T,n+1} - p_{T,\text{cut}}) \Delta_n(p_{T,n+1}, p_{T,n}) \Theta(p_{T,\text{cut}} - p_{T,n+2}) \text{PS}_{n+1} \\ & + \dots \end{aligned}$$

where $\text{PS}_i = [\Delta_i(p_{T,\text{min}}) + K_{\text{PS},i} \Delta_i(p_T) d\Phi_{\text{rad}}]$, $p_{T,n}$... the scale of the hard process

1. Generate $n + 0j$ sample, shower below $p_{T,\text{cut}}$
2. Generate $n + 1j$ sample
 - for each event calculate branching history and keep only those with $p_{T,n+1} > p_{T,\text{cut}} > p_{T,n+2}$
 - reweight with probability of no emissions harder than $p_{T,n+1}$, all the way to $p_{T,n}$
3. Generate $n + 2j$ sample
 - for each event calculate branching history and keep only those with $p_{T,n+2} > p_{T,\text{cut}} > p_{T,n+3}$
 - reweight with probability of no emissions harder than $p_{T,n+2}$, up to $p_{T,n+1}$
4. etc.

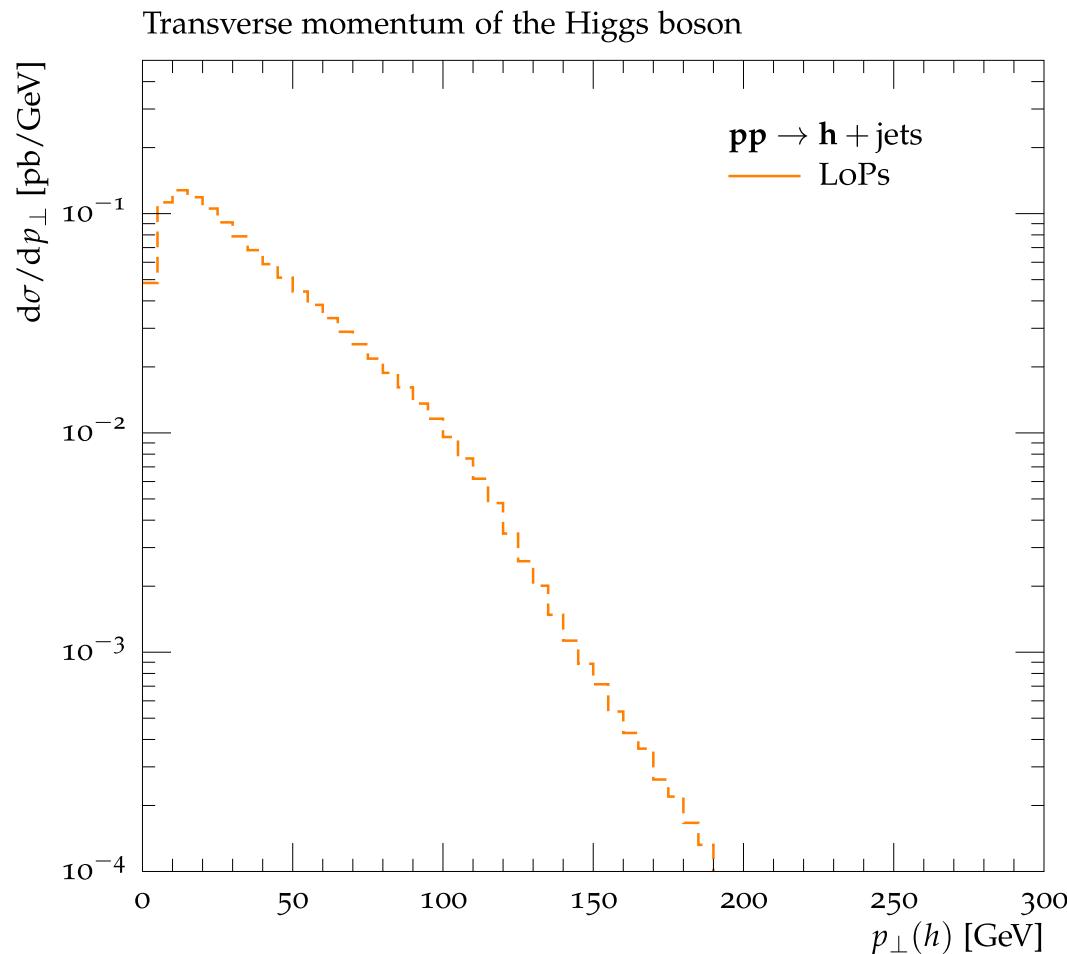
Merging formula (schematic)

$$\begin{aligned} d\sigma^{\text{MEPS}} = & \int d\Phi_n B_n(\Phi_n) \text{PS}_n \Theta(p_{T,\text{cut}} - p_{T,n+1}) \\ & + \int d\Phi_{n+1} B_{n+1}(\Phi_{n+1}) \Theta(p_{T,n+1} - p_{T,\text{cut}}) \Delta_n(p_{T,n+1}, p_{T,n}) \Theta(p_{T,\text{cut}} - p_{T,n+2}) \text{PS}_{n+1} \\ & + \dots \end{aligned}$$

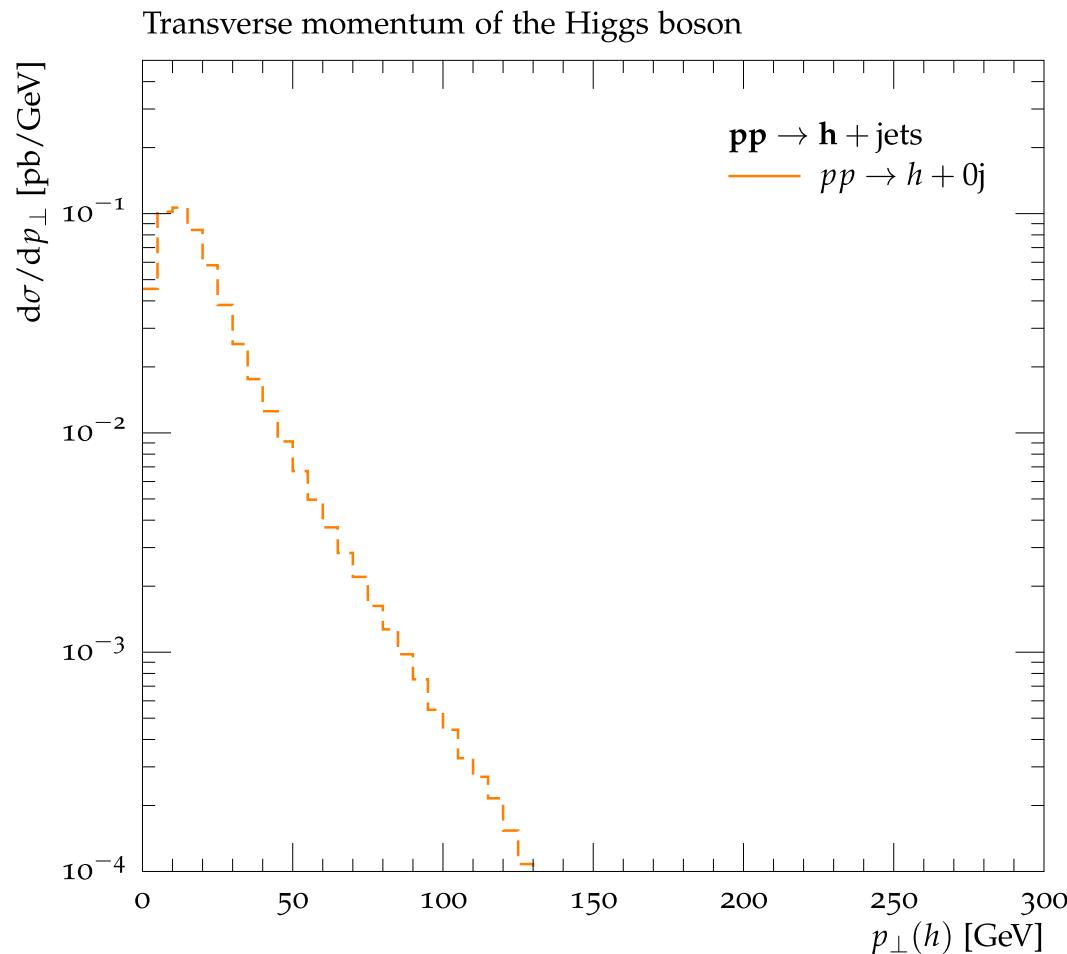
where $\text{PS}_i = [\Delta_i(p_{T,\text{min}}) + K_{\text{PS},i} \Delta_i(p_T) d\Phi_{\text{rad}}]$, $p_{T,n}$... the scale of the hard process

1. Generate $n + 0j$ sample, shower below $p_{T,\text{cut}}$
2. Generate $n + 1j$ sample
 - for each event calculate branching history and keep only those with $p_{T,n+1} > p_{T,\text{cut}} > p_{T,n+2}$
 - reweight with probability of no emissions harder than $p_{T,n+1}$, all the way to $p_{T,n}$
3. Generate $n + 2j$ sample
 - for each event calculate branching history and keep only those with $p_{T,n+2} > p_{T,\text{cut}} > p_{T,n+3}$
 - reweight with probability of no emissions harder than $p_{T,n+2}$, up to $p_{T,n+1}$
4. etc.
- singularities in **FO** are avoided by never integrating below $p_{T,\text{cut}}$

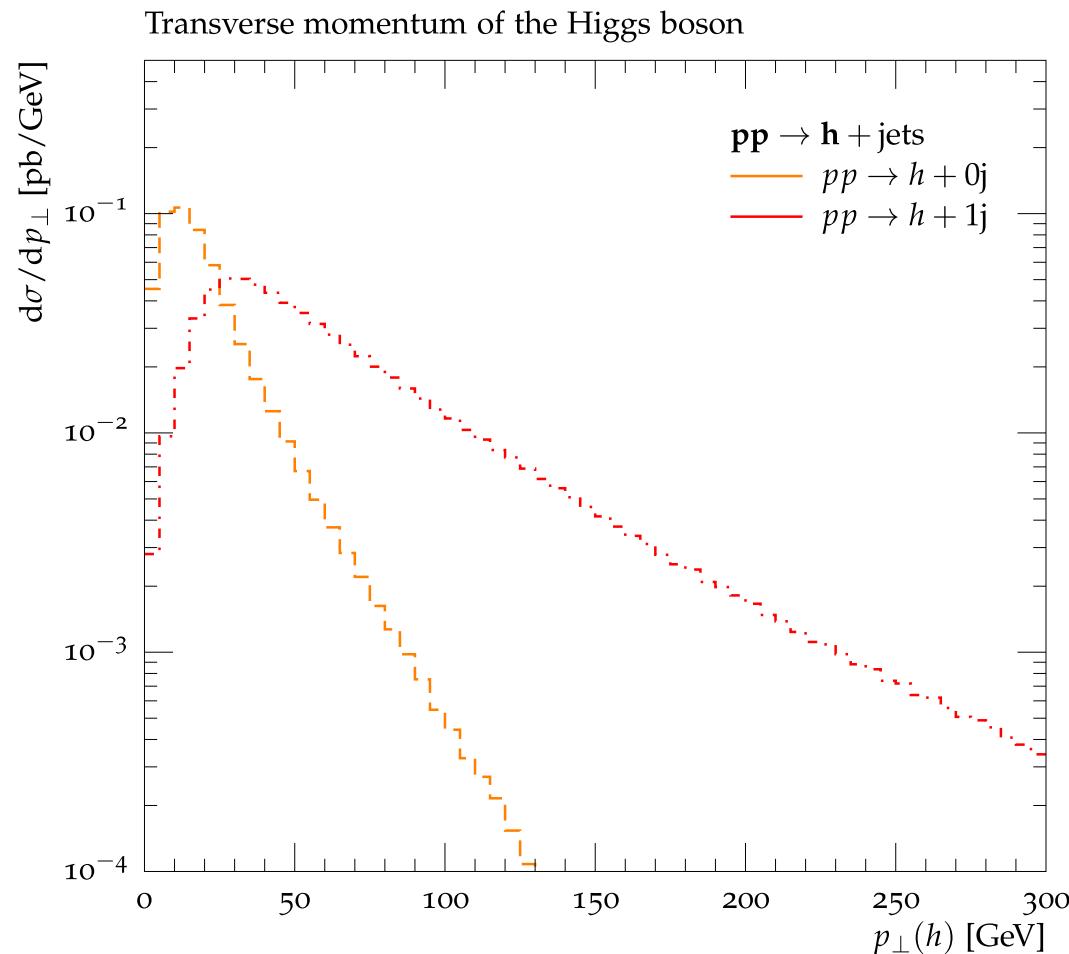
Higgs p_T at MEPS@LO (0-3j)



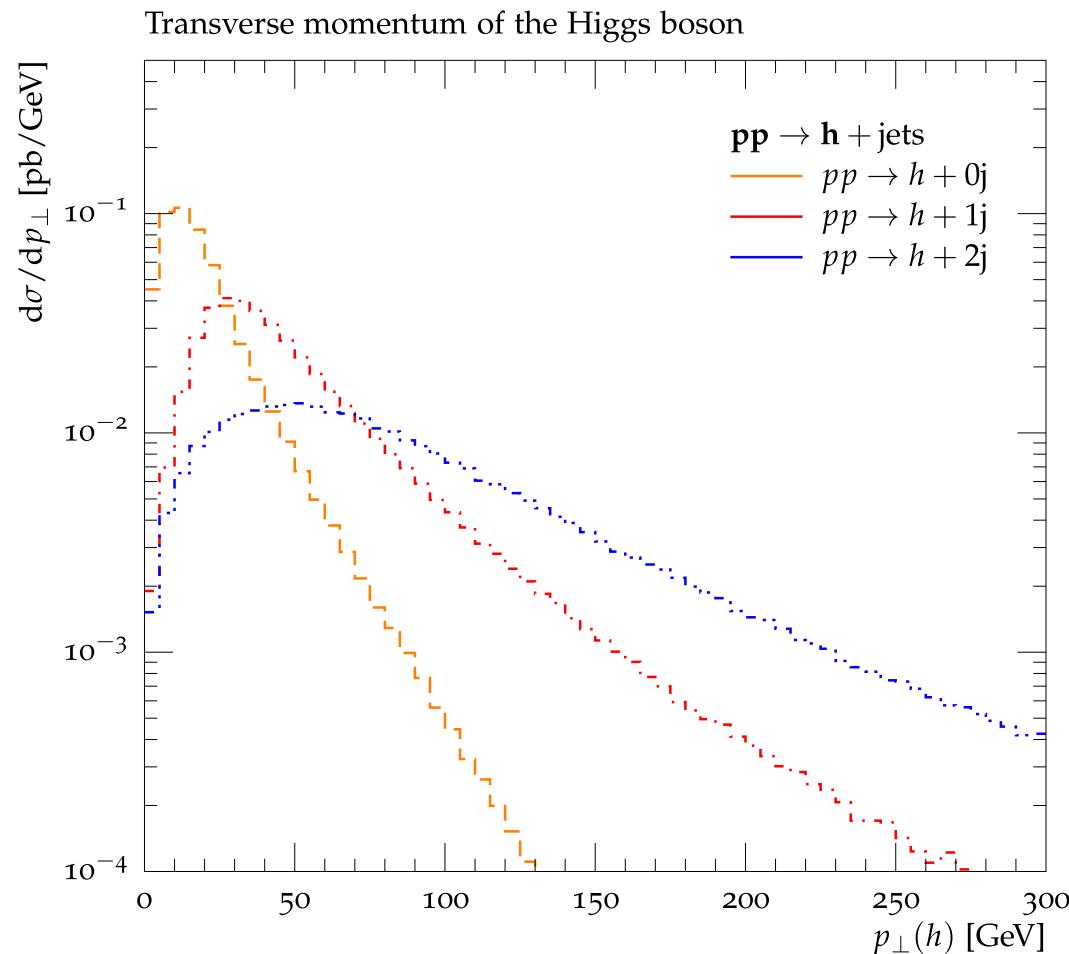
Higgs p_T at MEPS@LO (0-3j)



Higgs p_T at MEPS@LO (0-3j)



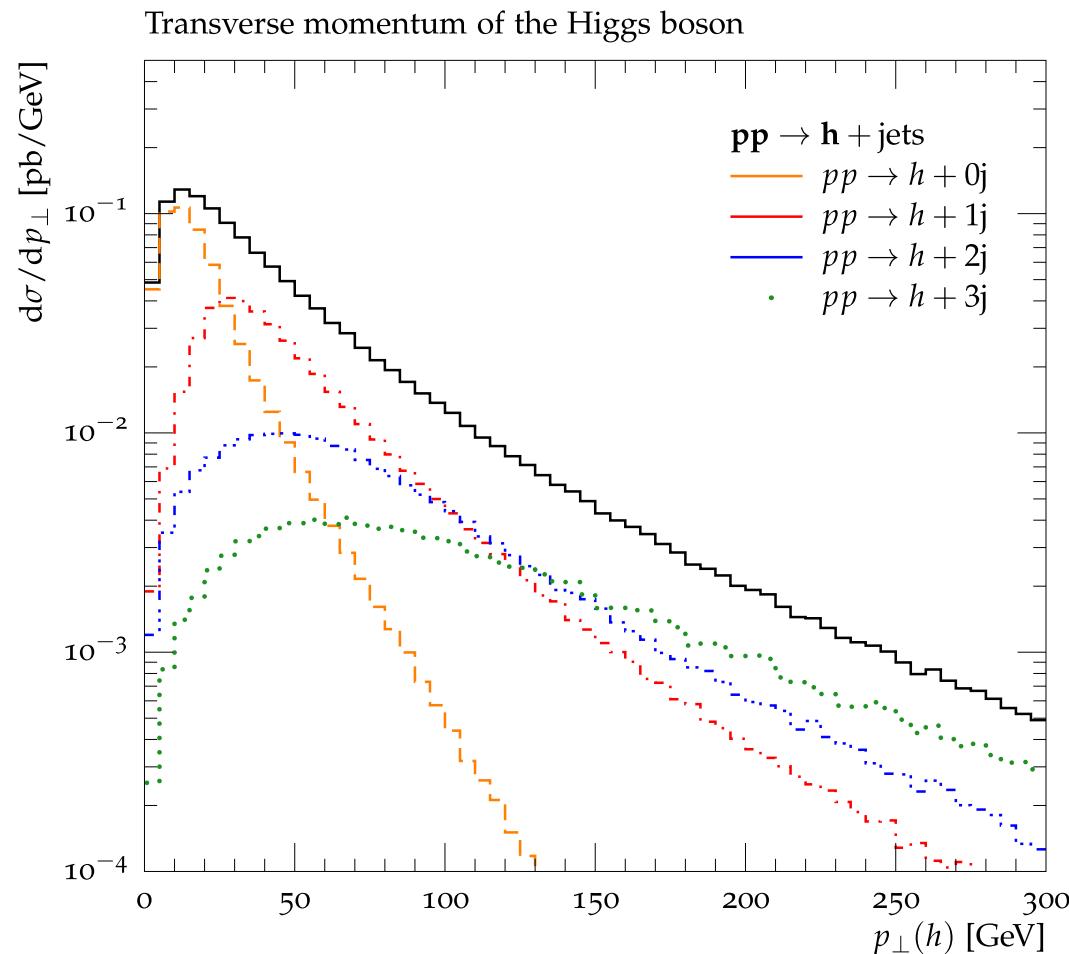
Higgs p_T at MEPS@LO (0-3j)



Higgs p_T at MEPS@LO (0-3j)



Higgs p_T at MEPS@LO (0-3j)



Available multi-jet merging methods (LO & NLO)

LO merging

- CKKW [Catani et al., JHEP 0111 (2001) 063]
- CKKW-L [Lönnblad, JHEP 0205 (2002) 046]
- MLM [Mangano et al., JHEP 0307 (2003) 001]
- UMEPS [Lönnblad & Prestel, JHEP 1203 (2012) 019]

NLO merging

- MEPS@NLO [Höche et al., JHEP 1304 (2013) 027]
- FxFx [Frederix & Frixione, JHEP 1212 (2012) 061]
- UNLOPS [Lönnblad & Prestel, JHEP 1303 (2013) 166]
- MENLOPS [Hamilton, Nason, JHEP 1006 (2010) 039]

Summary

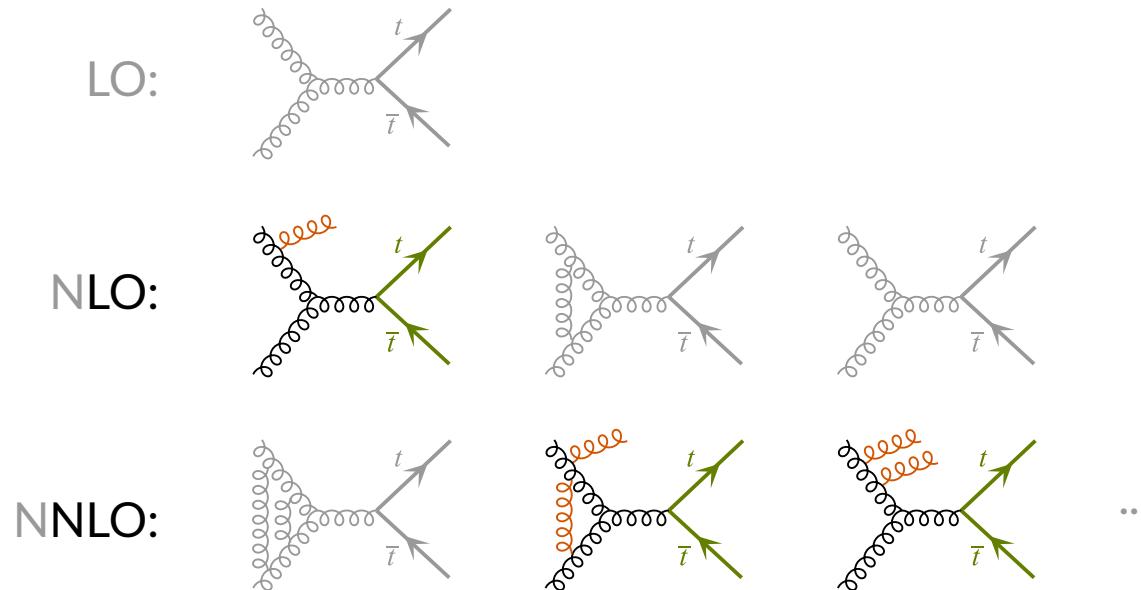
- Jet multiplicity vs fixed order
 - LO: only core process → “ ≥ 0 jets” LO, no prediction for higher jet bins
 - NLO: first real emission → “ ≥ 1 jet” LO, “ ≥ 0 jets” NLO
 - etc.
- Why merging
 - LO+PS gives many jets but only LL accuracy for hard ones
 - Separate 0, 1, 2, ...-jet **FO** samples overlap; need a clean way to assign phase space and avoid double counting
- Shower branching history and $p_{T,i}$
 - A p_T -ordered shower generates a ladder $p_{T,1} > p_{T,2} > \dots$
 - In **FO** sample obtained by clustering and used to (a) count how many jets are above $p_{T,\text{cut}}$ and (b) attach Sudakovs $\Delta(p_{T,i}, p_{T,i-1})$
- Schematic multi-jet merging picture
 - For each multiplicity k : use B_k only when exactly k emissions have $p_T > p_{T,\text{cut}}$, multiply by Sudakovs built from the underlying lower-multiplicity process, and shower below $p_{T,\text{cut}}$

Checkpoint

Are there any questions?

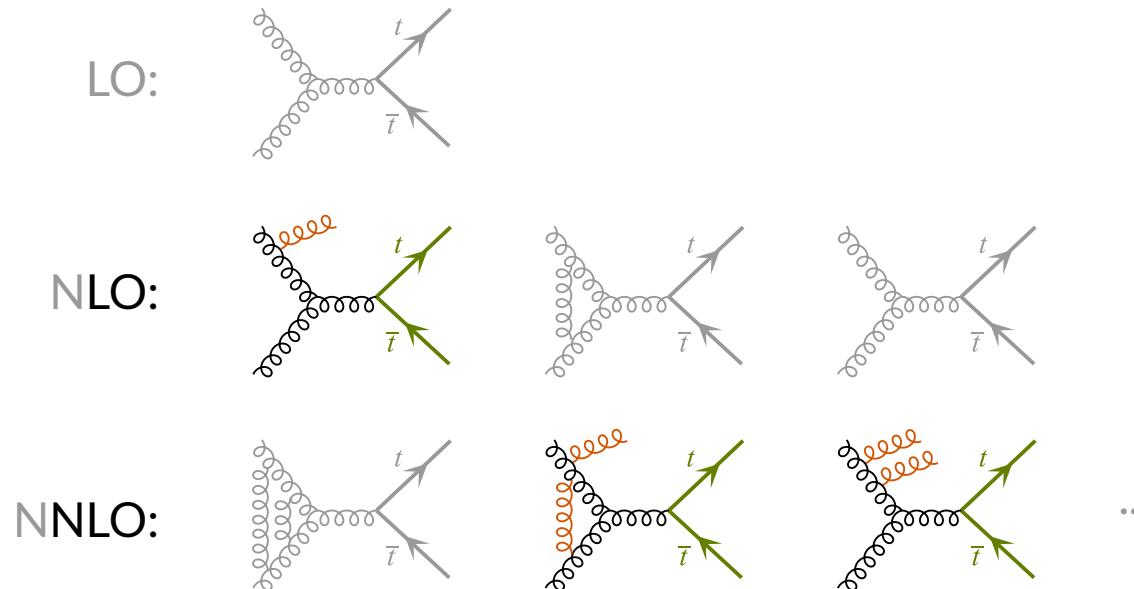
Jet multiplicity and accuracy, repeated

- Consider top-pair production in association with a jet at **FO**



Jet multiplicity and accuracy, repeated

- Consider top-pair production in association with a jet at **FO**



- What is the accuracy of the prediction for $t\bar{t} + n_j$ cross section?

calculation vs jet multiplicity	$n_j \geq 0$	$n_j \geq 1$	$n_j \geq 2$	$n_j \geq 3$
LO	∞	LO	-	-
NLO	∞	NLO	LO	-

Singularity? Sudakov please!

- What is the accuracy of the prediction for $t\bar{t} + n_j$ cross section?

calculation vs jet multiplicity	$n_j \geq 0$	$n_j \geq 1$	$n_j \geq 2$	$n_j \geq 3$
LO	∞	LO	-	-
NLO	∞	NLO	LO	-

- when the extra parton becomes soft/collinear, the matrix element behaves like $B_{t\bar{t}+1j}(p_T) \propto 1/p_T^2$
- the inclusive contribution from this region is $\sigma_{t\bar{t}+1j} \sim \int_0^{Q^2} dp_T^2/p_T^2$, which diverges as $p_T \rightarrow 0$
- Cure: multiply by a Sudakov form factor
 - introduce $\Delta(Q, p_T) \approx \exp(-\alpha\alpha_s \ln^2(Q/p_T))$: probability of no emissions between the hard scale Q and an emission with scale p_T
 - then $\sigma \sim \int_0^{Q^2} dp_T^2/p_T^2 \Delta(Q, p_T)$ becomes finite, since $\Delta(Q, p_T) \rightarrow 0$ rapidly as $p_T \rightarrow 0$

Merging via matching

- MiNLO (Multi-scale improved NLO):
 - Start from an implementation of “process +1j” (e.g. $t\bar{t} + 1j$) at NLO in POWHEG
 - Evaluate each power of α_s at the corresponding scale from the branching history
 - Multiply by $\Delta(Q, p_T)$ built from the known small- p_T resummation of the underlying process
 - Result: 1-jet region still NLO accurate, 0-jet region finite with the correct “log structure”

Merging via matching

- MiNLO (Multi-scale improved NLO):
 - Start from an implementation of “process +1j” (e.g. $t\bar{t} + 1j$) at NLO in POWHEG
 - Evaluate each power of α_s at the corresponding scale from the branching history
 - Multiply by $\Delta(Q, p_T)$ built from the known small- p_T resummation of the underlying process
 - Result: 1-jet region still NLO accurate, 0-jet region finite with the correct “log structure”
- MiNLO’ refinement:
 - Standard analytic resummation of the underlying process yields a process-dependent constant (often called B_2) in the exponential
 - MiNLO construction supplemented with this B_2 term leads to, after integrating over the jet, to NLO accuracy for the lower multiplicity
 - Net effect: a single MiNLO’ generator is NLO in the 1-jet region and NLO for inclusive $H / t\bar{t}$, without an explicit 0-jet sample or a separate merging step

calculation vs jet multiplicity	$n_j \geq 0$	$n_j \geq 1$	$n_j \geq 2$	$n_j \geq 3$
MiNLO’	NLO	NLO	LO	-

Merging via matching

- MiNLO (Multi-scale improved NLO):
 - Start from an implementation of “process +1j” (e.g. $t\bar{t} + 1j$) at NLO in POWHEG
 - Evaluate each power of α_s at the corresponding scale from the branching history
 - Multiply by $\Delta(Q, p_T)$ built from the known small- p_T resummation of the underlying process
 - Result: 1-jet region still NLO accurate, 0-jet region finite with the correct “log structure”
- MiNLO’ refinement:
 - Standard analytic resummation of the underlying process yields a process-dependent constant (often called B_2) in the exponential
 - MiNLO construction supplemented with this B_2 term leads to, after integrating over the jet, to NLO accuracy for the lower multiplicity
 - Net effect: a single MiNLO’ generator is NLO in the 1-jet region and NLO for inclusive $H / t\bar{t}$, without an explicit 0-jet sample or a separate merging step

calculation vs jet multiplicity	$n_j \geq 0$	$n_j \geq 1$	$n_j \geq 2$	$n_j \geq 3$
MiNLO’	NLO	NLO	LO	-

- MiNNLOPS: NNLO+PS matching building on to of the MiNLO’ idea

Summary

- For “process +1j”, as $p_T \rightarrow 0$ the ME behaves like $B \propto \frac{1}{p_T^2} \rightarrow$ non-integrable divergence
- Multiplying by a Sudakov $\Delta(Q, p_T)$ (no-emission probability) suppresses the small- p_T region: the product $B\Delta$ is integrable and has the correct small- p_T logarithmic structure
 - here the Sudakov argument p_T is the hardest scale in the branching history (from clustering the event)
- This idea supplemented with a process-dependent constant (the B_2 term from p_T resummation) yields a sample in which the inclusive lower-multiplicity is at NLO
 - so there are two multiplicities at the same accuracies with explicit merging
- Foundation for NNLO+PS matching

Backup: MiNLO and the correct log structure

- Fixed order at small p_T
 - For colour-singlet Q ,

$$d \frac{\sigma}{dp_T^2} \sim \sum_n \alpha_s^n \sum_{k=0}^{2n-1} c_{n,k} L^k, \quad L = \ln(Q^2/p_T^2)$$

- As $p_T \rightarrow 0$ ($L \rightarrow \infty$), each order has large terms like $\alpha_s L^2, \alpha_s^2 L^4, \dots \rightarrow$ FO breaks down / diverges
- Resummation: reorganise the series into a Sudakov exponent

$$d \frac{\sigma}{dp_T^2} \sim H(Q) \exp[L g_1(\alpha_s L) + g_2(\alpha_s L) + \alpha_s g_3(\alpha_s L) + \dots]$$

- $g_1 = \text{LL terms}, g_2 = \text{NLL}, \text{etc.}$
- The Sudakov $\Delta(Q, p_T)$ suppresses the cross section as $p_T \rightarrow 0$ and makes the integral finite
- “Correct log structure”
 - If we expand $\Delta(Q, p_T)$ used in MiNLO/MiNLO’, the coefficients of $\alpha_s^n L^{\{2n\}}, \alpha_s^n L^{\{2n-1\}}, \dots$ match the known LL/NLL (...) coefficients for the underlying process
 - So “Correct log structure” in the 0-jet region means:
 - finite as $p_T \rightarrow 0$, and
 - the same Sudakov suppression pattern as in the standard p_T resummation