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Event Generators

Crucial for precision Collider Physics

Combine different physics at different scales:
● Hard Process
● Parton Shower
● Underlying Interaction
● Hadronization
● QED FSR
● Hadron Decays
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Event Generators

• Event simulation factorised into


• Hard Process 

• Parton Shower 

• PDF/Underlying event 

• Hadronisation 

• Hadron Decays
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Intro
• We know a lot about filed theory and QCD in certain cases and 

limits, PS is an attempt to do our best in all limits at once 


• Compatibility with semi-classical Bremsstrahlung


• General behavior of FO matrix elements


• Collinear limits  fragmentation functions follow DGLAP evolution


• Soft+Collinear limits  reproduce results from resummed 
calculations for certain (classes of) observables


• What I will try here:


• Go through theoretical arguments entering shower development, 
with eye on previous lectures, try to pin-point relations

→

→

In the beginning: Bremsstrahlung

When an electron is kicked into a new direction,
the field does not have time fully to react:

e−

Initial State Radiation (ISR):
part of it continues → in original direction of e

Final State Radiation (FSR):
the field needs to be regenerated around outgoing e,
and transients are emitted → around outgoing e direction

Emission rate provided by equivalent photon flux in both cases.
Approximate cuto!s related to timescale of process:
the more violent the hard collision, the more radiation!

Torbjörn Sjöstrand Introduction to Event Generators 2 slide 5/59

Resummation of jet 
observables in QCD

A n d r e a  
B a n f i  

DESY – 26-27 November 2025 – Hamburg
1
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Reading (and sources for this lecture)

• See lecture 1 for standard particle/
collider physics books:


• “QCD and Collider Physics”


• “Introduction to Parton Shower 
Event Generators” TASI lecture by 
Stefan Höche

Contents.

5

• QCD basics 
• Colour & Lagrangian 
• Perturbation theory & Running coupling 

• Soft & collinear singularities 
• concepts of jets & parton showers 
• QCD for processes with incoming protons 
• Monte-Carlo event generators

• much of the material based on Steffen Schumann’s 2012 
HASCO lectures 

• further reeding: Ellis, Stirling and Webber: „QCD and Collider 
Physics“ (aka „the pink book of QCD“); Dissertori, Knowles and 
Schmelling: „QCD High Energy Experiments and Theory“

Textbook literature examples

B.R. Martin and G. Shaw, “Particle Physics”,
Wiley (2017, 4th edition)

G. Kane, “Modern Elementary Particle Physics”,
Cambridge University Press (2017, 2nd edition)

D. Gri!ths, “Introduction to Elementary Particles”,
Wiley (2008, 2nd edition)

M. Thomson, “Modern Particle Physics”,
Cambridge University Press (2013)

A. Rubbia, “Phenomenology of Particle Physics”,
Cambridge University Press (2022) (1100 pp!)

P. Skands, “Introduction to QCD”,
arXiv:1207.2389 [hep-ph] (v5 2017)

G. Salam, “Toward Jetography”,
arXiv:0906.1833 [hep-ph]

Torbjörn Sjöstrand Introduction to Event Generators 1 slide 4/66

Event generator literature

A. Buckley et al.,
“General-purpose event generators for LHC physics”,
Phys. Rep. 504 (2011) 145, arXiv:1101.2599 [hep-ph], 89 pp

J.M. Campbell et al.,
“Event Generators for High-Energy Physics Experiments”,
for Snowmass 2021, arXiv:2203.11110 [hep-ph], 153 pp

C. Bierlich et al., “A comprehensive guide
to the physics and usage of PYTHIA 8.3”,
SciPost PhysCodeb 2022, 8, arXiv:2203.11601 [hep-ph], 315
pp

MCnet annual summer schools
Monte Carlo network from → 10 European universities,
see further https://www.montecarlonet.org/,
with 2026 school at CERN, 31 May — 5 June

Other schools arranged by CTEQ, DESY, CERN, . . .

Torbjörn Sjöstrand Introduction to Event Generators 1 slide 5/66

https://arxiv.org/pdf/1411.4085
https://arxiv.org/pdf/1411.4085
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Recap: Unitary Parton Shower Algorithms

• Start with state (i.e. ingoing and outgoing partons with specified momentum, 
flavour and charges) determined by hard process


• Given some probability to split a parton, assume unitarity, i.e.


• Select new scale and kinematics according to this, produce splitting


• Repeat until we reach some cutoff scale

P(no splitting) = 1 − P(any splittings) = 1 − ∑
n

P(n ordered splitting)

= 1 − ∑
n

1
n!

Pn(one splitting) = exp (−P (one splitting))
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Recap: Unitary Parton Shower Algorithms

• Start with state (i.e. ingoing and outgoing partons with specified momentum, 
flavour and charges) determined by hard process


• Given some probability to split a parton, assume unitarity, i.e.


• Select new scale and kinematics according to this, produce splitting


• Repeat until we reach some cutoff scale

P(no splitting) = 1 − P(any splittings) = 1 − ∑
n

P(n ordered splitting)

= 1 − ∑
n

1
n!

Pn(one splitting) = exp (−P (one splitting))

The veto algorithm: solution

The veto algorithm

1 start with i = 0 and t0 = 0

2 i = i + 1

3 t = ti = G
→1(G (ti→1) → ln R), i.e ti > ti→1

4 y = R g(t)

5 while y > f (t) cycle to 2

That is, when you fail, you keep on going from the time when you
failed, and do not restart at time t = 0. (Memory!)

Torbjörn Sjöstrand Introduction to Event Generators 1 slide 61/66

Reminder: Algorithmically solved by veto 
algorithm, see lecture by Torbjörn!
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jet evolution - qualitative picture

• Start from simple partonic state

Multiple gluon emissions.

37

q

q

start out with the  systemqq̄
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Recap: Unitary Parton shower Algorithms

• Main ingredients to a shower:


1. splitting kernels  captures 
soft and collinear limits of matrix 
elements


2. fill phase space ordered in 
evolution variable ( , , , )


3. generate new final state after 
emission according to recoil 
scheme

P(z)

kt θ q2 …

η

ln
kt

Q
longitudinal momentum 

     conservation:    η < ln kt /Q

softer

particles

more collinear

particles
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Collinear Splitting Functions

• Calculate for example g → qq̄

2

II. SPLITTING FUNCTIONS

The precise form of the splitting functions is one of the main systematic uncertainties in any parton-shower sim-
ulation. Stringent criteria exist only for the leading terms in gluon energy in the soft gluon limit, and for the
leading terms in transverse momentum in the collinear limit. These terms are determined by the known soft [83]
and collinear [84–89] factorization properties of QCD amplitudes. It is often assumed that away from the limits, the
splitting function can be used as is, without the need to account for the precise definition of the splitting variable.
While it is certainly true that changes in its definition only induce sub-leading corrections (of higher power in the
soft or collinear expansion parameter), the precise definition of the splitting kernels plays an important role and can
be used to capture non-leading e↵ects. A prominent example is the sub-leading power correction to the soft splitting
function [90–92], which originates in classical radiative e↵ects [93] and extends the naive soft limit to a physically
more meaningful result. Corrections of this type should clearly be included due to their importance for the physics
performance of the Monte-Carlo simulation. A similarly important point is that the collinear splitting functions can
be computed as o↵-shell matrix elements in a physical gauge [94], which implies that they contain information on the
structure of QCD amplitudes beyond the collinear limit. If this structure is to be retained, it is necessary that the
splitting functions be evaluated with the exact same definition of splitting variable that was used in their derivation.
A change in the kinematics parametrization must lead to identical physics predictions, but it may require a di↵erent
form of the splitting functions, including power suppressed terms. In the following, we will recall how to derive the
collinear splitting functions, using the algorithm of [94]. In Secs. III A and III B we will then determine their correct
arguments in terms of the kinematical parameters used in the parton-shower.

A. Purely collinear splitting functions

If two partons, i and j, of an n-parton QCD amplitude become collinear, the squared amplitude factorizes as

nh1, . . . , n|1, . . . , nin =
X

�,�0=±
n�1

D
1, . . . , i\(ij), . . . , j\, . . . , n

���
8⇡↵s P

��0

(ij)i(z)

2pipj

���1, . . . , i\(ij), . . . , j\, . . . , n

E

n�1
, (1)

where the notation i\ indicates that parton i is removed from the original amplitude, and where (ij) is the progenitor
of partons i and j. The P

��0

ab (z) are the spin-dependent DGLAP splitting functions, which depend on the momentum
fraction z of parton i with respect to the mother parton, (ij), and on the helicities � [84–89].

These splitting functions can be derived using the following Sudakov parametrization of the momenta of the splitting
products

p
µ
i = zip̂

µ
ij +

�k
2
t

zi 2pij n̄
n̄
µ + k

µ
t , p

µ
j = zj p̂

µ
ij +

�k
2
t

zj 2pij n̄
n̄
µ

� k
µ
t . (2)

In this context, p̂
µ
ij = p

µ
ij � p

2
ij/(2pij n̄)n̄µ, and n̄

µ is a light-like auxiliary vector, linearly independent of p̂
µ
ij and k

µ
t .

Equation (2) implies that we can compute the light-cone momentum fractions, zi and zj as

zi =
pin̄

pij n̄
, and zj =

pj n̄

pij n̄
. (3)

The tree-level g ! qq̄ and g ! gg collinear splitting functions are obtained by projecting the O(↵s) expression
for the discontinuity of the gluon propagator onto the physical degrees of freedom of the gluon field, using the
polarization sum in a physical gauge [94]. Gauge invariance of the underlying Born matrix element and the relation
k
2
t = �2pipj zizj , derived from Eq. (2), result in the familiar expressions

P
µ⌫
gq (pi, pj , n̄) = TR


� g

µ⌫ + 4zizj
k
µ
t k

⌫
t

k
2
t

�
,

P
µ⌫
gg (pi, pj , n̄) = CA


� g

µ⌫

✓
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zj
+

zj
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◆
� 2(1 � ") zizj

k
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t k

⌫
t

k
2
t

�
.

(4)

The spin-averaged quark splitting function in the collinear limit can be obtained by projecting the vertex function
onto the collinear direction [94], leading to

Pqq(pi, pj , n̄) = CF


2zi

zj
+ (1 � ")(1 � zi)

�
. (5)
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assume Sudakov decomposition like
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Born amplitude. This e↵ect can be analyzed more e�ciently with the help of soft emission theorems [74–83]. The
feature is independent of the gluon polarization and also exists for o↵-shell gluon emission. In particular, we find the
gluon-spin dependent quark-to-quark splitting tensor in axial gauge

P
µ⌫

q!q
(p1, p2) = P

µ⌫

q̃!q̃
(p1, p2) + P

(f)µ⌫
q!q

(p1, p2) . (25)

Its scalar and purely fermionic components are given by

P
µ⌫

q̃!q̃
(p1, p2) = CF p

2
12 S

µ(p1, p2)S
⌫(p1, p2) , P

(f)µ⌫
q!q

(p1, p2) = � CF

"
g
µ⌫
z2 � g

µ⌫
p
2
2

p212

+
p
µ

2p
⌫
2

p212

#
. (26)

The scalar component is not suppressed by z1, as could naively be expected by analyzing the contribution from
squared scalar emission vertices alone.

2. Gluon initial state

The Feynman diagrams leading to the tree-level g ! qq̄ and g ! gg splitting tensors are shown in Figs. 1(b)
and (c), respectively. The algebraic expressions are obtained from Eq. (20) as follows [15].

P
µ⌫

g!q
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2p2
ij

d
µ

⇢
(pij , n̄)Tr[ /pi�

⇢
/pj�

� ]d⌫
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2p2
ij

d
µ

�
(pij , n̄)�

↵�(pi, pj)�
⇢�⌧ (pi, pj)d⇢(pi, n̄)d

⌫

⌧
(pij , n̄) ,

(27)

where �µ⌫⇢(p, q)implements the Lorentz structure of the three-gluon vertex, and where the Lorentz indices ↵ and �

refer to the final-state gluon with momentum pj , while the indices µ and ⌫ refer to the initial-state gluon. Computing
the gluon-to-quark splitting tensor is straightforward, and we obtain

P
µ⌫

g!q
(pi, pj) = TR �ss0
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+ p

2
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�
. (28)

Using the mapping of Sec. A 1 with ↵ = 1, taking the collinear limit, and summing over quark spins, we can write
Eq. (28) in the familiar form of the spin-dependent DGLAP splitting kernel

P
µ⌫

g!q
(pi, pj) ! TR


� g

µ⌫ + 4zizj
k
µ

?k
⌫

?
k2?

�
. (29)

The computation of the gluon-to-gluon splitting tensor is aided by the observation that any function multiplying this
object must be symmetric in the Lorentz indices µ and ⌫. It is known that, in the on-shell case, this causes all interfer-
ences between the three components of �µ⌫⇢ to vanish [84]. In the following, we derive the corresponding expression
including some of the o↵-shell e↵ects needed in Sec. IVD. We assume that p2

i
= 0, which is su�cient to compute all fac-

torizable components of the three-parton splitting functions. In this case, the relation d
µ⇢(pi, n̄)d⌫⇢(pi, n̄) = d

µ⌫(pi, n̄)
can be exploited to factorize the triple-gluon vertex functions in Eq. (27). We separate the resulting splitting tensor
into a symmetric and an interference part
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The symmetric component is given by the sum of squared scalar emission and decay vertices
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(31)

The interference component is better understood by contracting P
µ⌫,��

g!g,(i)(pi, pj) with the polarization tensors for the

decay of gluon j. The definitions in Eqs. (19) lead to

S⌫(pi, pj)d
µ⌫(pj , n̄) =

2 k̂µ
i,j

zj
+ . . . , S⌫(pj , pi)d
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2 k̂µ
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+ . . . , D

µ(pi, pj) = 2 k̂µ
i,j

+ . . . , (32)

• evaluate in collinear limit:
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the gluon-to-quark splitting tensor is straightforward, and we obtain
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Using the mapping of Sec. A 1 with ↵ = 1, taking the collinear limit, and summing over quark spins, we can write
Eq. (28) in the familiar form of the spin-dependent DGLAP splitting kernel
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The computation of the gluon-to-gluon splitting tensor is aided by the observation that any function multiplying this
object must be symmetric in the Lorentz indices µ and ⌫. It is known that, in the on-shell case, this causes all interfer-
ences between the three components of �µ⌫⇢ to vanish [84]. In the following, we derive the corresponding expression
including some of the o↵-shell e↵ects needed in Sec. IVD. We assume that p2

i
= 0, which is su�cient to compute all fac-

torizable components of the three-parton splitting functions. In this case, the relation d
µ⇢(pi, n̄)d⌫⇢(pi, n̄) = d

µ⌫(pi, n̄)
can be exploited to factorize the triple-gluon vertex functions in Eq. (27). We separate the resulting splitting tensor
into a symmetric and an interference part

P
µ⌫,↵�

g!g
(pi, pj) = P

µ⌫,↵�

g!g,(s)(pi, pj) + P
µ⌫,↵�

g!g,(i)(pi, pj) + P
⌫µ,�↵

g!g,(i)(pi, pj) . (30)

The symmetric component is given by the sum of squared scalar emission and decay vertices
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(31)

The interference component is better understood by contracting P
µ⌫,��

g!g,(i)(pi, pj) with the polarization tensors for the

decay of gluon j. The definitions in Eqs. (19) lead to
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By summing over all partitions and relabeling gluon momenta, we can reduce this expression to the simple form
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(9)

We have defined F
c

ab
= if

acb to make the radiation pattern explicit. The quark-induced contribution to the gluon
current, J̄µ, is given by
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We use the identity {/p, /n}/(2pn) = 1, with n an auxiliary vector, to rewrite this in the following form
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Using �
µ
/n+ /n�

µ = 2nµ, and working in an axial gauge (see the discussion in Sec. II C), this expression simplifies to
a purely magnetic interaction term. The complete gluon current then reads
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(12)

The scalar parts of Eq. (6) and (12) are similar to the eikonal interaction Hamiltonians obtained, for example in [43, 44],
but they include e↵ects of kinematical recoil, which is important when computing higher-point splitting functions.

C. Origin of infrared singularities

Before we discuss the factorization properties of amplitudes, we will comment on the gauge choices for our calcula-
tions. We employ the background field method [35–41], which allows the usage of separate gauges for tree-level and
one-loop calculations. In the one-loop case, we simplify the computations by using the Feynman gauge and including
ghosts. To compute tree-level expressions, we use an axial gauge instead, because it benefits from being ghost free [53–
57]. This is a consequence of the fact that axial gauges encode only the physical degrees of freedom [27–34, 58]. The
corresponding polarization tensor,

d
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µ⌫ +
p
µ
n
⌫ + p

⌫
n
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�

n
2
p
µ
p
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, (13)

polarisation tensor:

• spin average: → TR [1 − 2zizj] = [1 − 2z(1 − z)]
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Collinear Splitting Functions

• Calculate for example g → qq̄

2

II. SPLITTING FUNCTIONS

The precise form of the splitting functions is one of the main systematic uncertainties in any parton-shower sim-
ulation. Stringent criteria exist only for the leading terms in gluon energy in the soft gluon limit, and for the
leading terms in transverse momentum in the collinear limit. These terms are determined by the known soft [83]
and collinear [84–89] factorization properties of QCD amplitudes. It is often assumed that away from the limits, the
splitting function can be used as is, without the need to account for the precise definition of the splitting variable.
While it is certainly true that changes in its definition only induce sub-leading corrections (of higher power in the
soft or collinear expansion parameter), the precise definition of the splitting kernels plays an important role and can
be used to capture non-leading e↵ects. A prominent example is the sub-leading power correction to the soft splitting
function [90–92], which originates in classical radiative e↵ects [93] and extends the naive soft limit to a physically
more meaningful result. Corrections of this type should clearly be included due to their importance for the physics
performance of the Monte-Carlo simulation. A similarly important point is that the collinear splitting functions can
be computed as o↵-shell matrix elements in a physical gauge [94], which implies that they contain information on the
structure of QCD amplitudes beyond the collinear limit. If this structure is to be retained, it is necessary that the
splitting functions be evaluated with the exact same definition of splitting variable that was used in their derivation.
A change in the kinematics parametrization must lead to identical physics predictions, but it may require a di↵erent
form of the splitting functions, including power suppressed terms. In the following, we will recall how to derive the
collinear splitting functions, using the algorithm of [94]. In Secs. III A and III B we will then determine their correct
arguments in terms of the kinematical parameters used in the parton-shower.

A. Purely collinear splitting functions

If two partons, i and j, of an n-parton QCD amplitude become collinear, the squared amplitude factorizes as

nh1, . . . , n|1, . . . , nin =
X
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n�1

D
1, . . . , i\(ij), . . . , j\, . . . , n
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where the notation i\ indicates that parton i is removed from the original amplitude, and where (ij) is the progenitor
of partons i and j. The P

��0

ab (z) are the spin-dependent DGLAP splitting functions, which depend on the momentum
fraction z of parton i with respect to the mother parton, (ij), and on the helicities � [84–89].

These splitting functions can be derived using the following Sudakov parametrization of the momenta of the splitting
products

p
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In this context, p̂
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µ is a light-like auxiliary vector, linearly independent of p̂
µ
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Equation (2) implies that we can compute the light-cone momentum fractions, zi and zj as

zi =
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pij n̄
, and zj =

pj n̄

pij n̄
. (3)

The tree-level g ! qq̄ and g ! gg collinear splitting functions are obtained by projecting the O(↵s) expression
for the discontinuity of the gluon propagator onto the physical degrees of freedom of the gluon field, using the
polarization sum in a physical gauge [94]. Gauge invariance of the underlying Born matrix element and the relation
k
2
t = �2pipj zizj , derived from Eq. (2), result in the familiar expressions
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(4)

The spin-averaged quark splitting function in the collinear limit can be obtained by projecting the vertex function
onto the collinear direction [94], leading to

Pqq(pi, pj , n̄) = CF


2zi

zj
+ (1 � ")(1 � zi)

�
. (5)
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assume Sudakov decomposition like

8

Born amplitude. This e↵ect can be analyzed more e�ciently with the help of soft emission theorems [74–83]. The
feature is independent of the gluon polarization and also exists for o↵-shell gluon emission. In particular, we find the
gluon-spin dependent quark-to-quark splitting tensor in axial gauge

P
µ⌫

q!q
(p1, p2) = P

µ⌫

q̃!q̃
(p1, p2) + P

(f)µ⌫
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(p1, p2) . (25)

Its scalar and purely fermionic components are given by
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The scalar component is not suppressed by z1, as could naively be expected by analyzing the contribution from
squared scalar emission vertices alone.

2. Gluon initial state

The Feynman diagrams leading to the tree-level g ! qq̄ and g ! gg splitting tensors are shown in Figs. 1(b)
and (c), respectively. The algebraic expressions are obtained from Eq. (20) as follows [15].
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(27)

where �µ⌫⇢(p, q)implements the Lorentz structure of the three-gluon vertex, and where the Lorentz indices ↵ and �

refer to the final-state gluon with momentum pj , while the indices µ and ⌫ refer to the initial-state gluon. Computing
the gluon-to-quark splitting tensor is straightforward, and we obtain
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Using the mapping of Sec. A 1 with ↵ = 1, taking the collinear limit, and summing over quark spins, we can write
Eq. (28) in the familiar form of the spin-dependent DGLAP splitting kernel
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The computation of the gluon-to-gluon splitting tensor is aided by the observation that any function multiplying this
object must be symmetric in the Lorentz indices µ and ⌫. It is known that, in the on-shell case, this causes all interfer-
ences between the three components of �µ⌫⇢ to vanish [84]. In the following, we derive the corresponding expression
including some of the o↵-shell e↵ects needed in Sec. IVD. We assume that p2

i
= 0, which is su�cient to compute all fac-

torizable components of the three-parton splitting functions. In this case, the relation d
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can be exploited to factorize the triple-gluon vertex functions in Eq. (27). We separate the resulting splitting tensor
into a symmetric and an interference part
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The symmetric component is given by the sum of squared scalar emission and decay vertices

P
µ⌫,↵�

g!g,(s)(pi, pj) =
CA

2


p
2
ij
S
↵(pi, pj)S

�(pi, pj)

✓
d
µ⌫(pij , n̄)� p

2
ij

n̄
µ
n̄
⌫

(pij n̄)2

◆

+ 2dµ↵(pij , n̄)d
⌫�(pij , n̄)

✓
2zj
zi

�
2 + zi

zi

p
2
j

p2
ij

◆
+ 4p2

ij
d
↵�(pi, n̄)D

µ(pi, pj)D
⌫(pi, pj)

�
.

(31)

The interference component is better understood by contracting P
µ⌫,��

g!g,(i)(pi, pj) with the polarization tensors for the

decay of gluon j. The definitions in Eqs. (19) lead to
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• evaluate in collinear limit:
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The scalar component is not suppressed by z1, as could naively be expected by analyzing the contribution from
squared scalar emission vertices alone.
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the gluon-to-quark splitting tensor is straightforward, and we obtain

P
µ⌫

g!q
(pi, pj) = TR �ss0

✓
1�

p
2
i
+ p

2
j

p2
ij

◆
d
µ⌫(pij , n̄) + (p2

i
+ p

2
j
)
n̄
µ
n̄
⌫

(pij n̄)2
� p

2
ij
D

µ(pi, pj)D
⌫(pi, pj)

�
. (28)

Using the mapping of Sec. A 1 with ↵ = 1, taking the collinear limit, and summing over quark spins, we can write
Eq. (28) in the familiar form of the spin-dependent DGLAP splitting kernel

P
µ⌫

g!q
(pi, pj) ! TR


� g

µ⌫ + 4zizj
k
µ

?k
⌫

?
k2?

�
. (29)

The computation of the gluon-to-gluon splitting tensor is aided by the observation that any function multiplying this
object must be symmetric in the Lorentz indices µ and ⌫. It is known that, in the on-shell case, this causes all interfer-
ences between the three components of �µ⌫⇢ to vanish [84]. In the following, we derive the corresponding expression
including some of the o↵-shell e↵ects needed in Sec. IVD. We assume that p2

i
= 0, which is su�cient to compute all fac-

torizable components of the three-parton splitting functions. In this case, the relation d
µ⇢(pi, n̄)d⌫⇢(pi, n̄) = d

µ⌫(pi, n̄)
can be exploited to factorize the triple-gluon vertex functions in Eq. (27). We separate the resulting splitting tensor
into a symmetric and an interference part

P
µ⌫,↵�

g!g
(pi, pj) = P

µ⌫,↵�

g!g,(s)(pi, pj) + P
µ⌫,↵�

g!g,(i)(pi, pj) + P
⌫µ,�↵

g!g,(i)(pi, pj) . (30)

The symmetric component is given by the sum of squared scalar emission and decay vertices
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�
.

(31)

The interference component is better understood by contracting P
µ⌫,��

g!g,(i)(pi, pj) with the polarization tensors for the

decay of gluon j. The definitions in Eqs. (19) lead to

S⌫(pi, pj)d
µ⌫(pj , n̄) =

2 k̂µ
i,j

zj
+ . . . , S⌫(pj , pi)d

µ⌫(pi, n̄) = �
2 k̂µ

i,j

zi
+ . . . , D

µ(pi, pj) = 2 k̂µ
i,j

+ . . . , (32)

4

By summing over all partitions and relabeling gluon momenta, we can reduce this expression to the simple form
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(9)

We have defined F
c

ab
= if

acb to make the radiation pattern explicit. The quark-induced contribution to the gluon
current, J̄µ, is given by

J̄
a

µ
(p↵) = i

dµ⌫(p↵)

p2
↵

X

{�,�}2
P (↵,2)

 ̄i(p� ,±m)(�igsT
a

ij
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(10)

We use the identity {/p, /n}/(2pn) = 1, with n an auxiliary vector, to rewrite this in the following form
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(11)

Using �
µ
/n+ /n�

µ = 2nµ, and working in an axial gauge (see the discussion in Sec. II C), this expression simplifies to
a purely magnetic interaction term. The complete gluon current then reads
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2(p� + p�)n
 j(p�)

�
.

(12)

The scalar parts of Eq. (6) and (12) are similar to the eikonal interaction Hamiltonians obtained, for example in [43, 44],
but they include e↵ects of kinematical recoil, which is important when computing higher-point splitting functions.

C. Origin of infrared singularities

Before we discuss the factorization properties of amplitudes, we will comment on the gauge choices for our calcula-
tions. We employ the background field method [35–41], which allows the usage of separate gauges for tree-level and
one-loop calculations. In the one-loop case, we simplify the computations by using the Feynman gauge and including
ghosts. To compute tree-level expressions, we use an axial gauge instead, because it benefits from being ghost free [53–
57]. This is a consequence of the fact that axial gauges encode only the physical degrees of freedom [27–34, 58]. The
corresponding polarization tensor,

d
µ⌫(p, n) = �g

µ⌫ +
p
µ
n
⌫ + p

⌫
n
µ

pn
�

n
2
p
µ
p
⌫

(pn)2
, (13)

polarisation tensor:

• spin average: → TR [1 − 2zizj] = [1 − 2z(1 − z)]

Full set of DGLAP equations from 
introduction lectures:

The DGLAP equations

Generalizes to

DGLAP (Dokshitzer–Gribov–Lipatov–Altarelli–Parisi)

dPa→bc =
ωs

2ε

dQ2

Q2
Pa→bc(z) dz

Pq→qg =
4

3

1 + z2

1 → z

Pg→gg = 3
(1 → z(1 → z))2

z(1 → z)

Pg→qq =
nf
2

(z2 + (1 → z)2) (nf = no. of quark flavours)

Universality: any matrix element reduces to DGLAP in collinear limit.

e.g.
dϑ(H0 ↑ qqg)

dϑ(H0 ↑ qq)
=

dϑ(Z0 ↑ qqg)

dϑ(Z0 ↑ qq)
in collinear limit

Torbjörn Sjöstrand Introduction to Event Generators 2 slide 14/59
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DGLAP parton showers

• DGLAP equation determines collinear evolution


• of IS PDFs


• or FS: fragmentation functions


• introduce Sudakov factor 


• leads to integral equation

�EEBD���+++ 64"5C�7:8 $C:�6$C8�E8C"D ��EEBD���7$� $C:��� ������,2
���	��
����� ��

.$+#!$4787�9C$"��EEBD���+++ 64"5C�7:8 $C:�6$C8 ��/�1�0�5C4C,��$#����1$*����	�4E��	��
��
��D)5 86E�E$�E�8��4"5C�7:8��$C8�E8C"D�$9�)D8��4*4�!45!8�4E

�EEBD���+++ 64"5C�7:8 $C:�6$C8�E8C"D ��EEBD���7$� $C:��� ������,2
���	��
����� ��

.$+#!$4787�9C$"��EEBD���+++ 64"5C�7:8 $C:�6$C8 ��/�1�0�5C4C,��$#����1$*����	�4E��	��
��
��D)5 86E�E$�E�8��4"5C�7:8��$C8�E8C"D�$9�)D8��4*4�!45!8�4E

�EEBD���+++ 64"5C�7:8 $C:�6$C8�E8C"D ��EEBD���7$� $C:��� ������,2
���	��
����� ��

.$+#!$4787�9C$"��EEBD���+++ 64"5C�7:8 $C:�6$C8 ��/�1�0�5C4C,��$#����1$*����	�4E��	��
��
��D)5 86E�E$�E�8��4"5C�7:8��$C8�E8C"D�$9�)D8��4*4�!45!8�4E
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DGLAP parton showers

�EEBD���+++ 64"5C�7:8 $C:�6$C8�E8C"D ��EEBD���7$� $C:��� ������,2
���	��
����� ��

.$+#!$4787�9C$"��EEBD���+++ 64"5C�7:8 $C:�6$C8 ��/�1�0�5C4C,��$#����1$*����	�4E��	��
��
��D)5 86E�E$�E�8��4"5C�7:8��$C8�E8C"D�$9�)D8��4*4�!45!8�4E

Evolution between 
 and  without 

any splitting
t t0 Evolution between 

 and  without 
any splitting
t t′￼

Splitting at  with 
momentum 
fraction 

t′￼

z

t

x

Select size of  stept Select size of  stepx
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Towards Coherent Branching

• Collinear enhancements under control at all orders


• What about soft gluons emissions?


• Limit of splitting functions enhanced by


• Is that all? Lets have a closer look!

∼
1

1 − z
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QCD calculations — soft limit

56 3 QCD in electron-positron annihilation

(a)

Fig. 3.2. Feynman diagrams for the O(as) corrections to the total hadronic
cross section in e+e~ annihilation.

These results are valid for massless quarks; the effect of a non-zero quark
mass will be discussed in Section 3.2.

With q = u,..., 6, Eq. (3.7) gives R =11/3 = 3.67 and (with sin2 0W =
0.23) Rz = 20.09. For the latter, the measured value at LEP is 20.79±0.04
[1], some 3.5% higher than the lowest-order prediction. In fact the differ-
ence is largely due to higher-order QCD corrections, and the comparison
between theory and experiment provides a determination of the strong
coupling constant, as we shall see in Chapter 12.

The O(as) corrections to the total hadronic cross section are calculated
from the real and virtual gluon diagrams shown in Fig. 3.2. For simplicity,
we shall consider only the photon-exchange contribution in detail. For the
real gluon diagrams, Fig. 3.2(b), it is convenient to write the three-body
phase space integration as

1 — dadcos(id^dxi dx2 , (3.9)
° (2TT)5 32

where a,/?,7 are Euler angles, and xi = 2Eq/yfs and x2 = 2Eq/y/s are
the energy fractions of the final-state quark and antiquark. The matrix
element squared for eJt{qx) + e~(q2) —>• q(pi) + 9(^2) + g(k) is obtained
using the Feynman rules given in Chapter 1:

1
4 \M\2 =

' Q2 Pi ' k p 2
(3.10)

where the sum is over spins and colours. If we integrate out the Euler an-
gles then the matrix element depends only on xi and x2. The contribution

�((BD,��+++ 64"5C�7:8 $C:�6$C8�(8C"D ��((BD,��7$� $C:��� �����.�2��
�
����
�

 ��	
/$+#!$4787�9C$"��((BD,��+++ 64"5C�7:8 $C:�6$C8 �/)C�4"�3#�*8CD�(,�0�5C4C,��$#��	�14C������4(���,
�,
���D)5 86(�($�(�8�.4"5C�7:8�.$C8�(8C"D�$9�)D8��4*4�!45!8�4(

∼ ū(p1)(−igs)tAγα i(p/1 + k/)
(p1 + k)2

(−ie)γμv(p2)ϵα
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QCD calculations — soft limit

56 3 QCD in electron-positron annihilation

(a)

Fig. 3.2. Feynman diagrams for the O(as) corrections to the total hadronic
cross section in e+e~ annihilation.

These results are valid for massless quarks; the effect of a non-zero quark
mass will be discussed in Section 3.2.

With q = u,..., 6, Eq. (3.7) gives R =11/3 = 3.67 and (with sin2 0W =
0.23) Rz = 20.09. For the latter, the measured value at LEP is 20.79±0.04
[1], some 3.5% higher than the lowest-order prediction. In fact the differ-
ence is largely due to higher-order QCD corrections, and the comparison
between theory and experiment provides a determination of the strong
coupling constant, as we shall see in Chapter 12.

The O(as) corrections to the total hadronic cross section are calculated
from the real and virtual gluon diagrams shown in Fig. 3.2. For simplicity,
we shall consider only the photon-exchange contribution in detail. For the
real gluon diagrams, Fig. 3.2(b), it is convenient to write the three-body
phase space integration as

1 — dadcos(id^dxi dx2 , (3.9)
° (2TT)5 32

where a,/?,7 are Euler angles, and xi = 2Eq/yfs and x2 = 2Eq/y/s are
the energy fractions of the final-state quark and antiquark. The matrix
element squared for eJt{qx) + e~(q2) —>• q(pi) + 9(^2) + g(k) is obtained
using the Feynman rules given in Chapter 1:

1
4 \M\2 =

' Q2 Pi ' k p 2
(3.10)

where the sum is over spins and colours. If we integrate out the Euler an-
gles then the matrix element depends only on xi and x2. The contribution

�((BD,��+++ 64"5C�7:8 $C:�6$C8�(8C"D ��((BD,��7$� $C:��� �����.�2��
�
����
�

 ��	
/$+#!$4787�9C$"��((BD,��+++ 64"5C�7:8 $C:�6$C8 �/)C�4"�3#�*8CD�(,�0�5C4C,��$#��	�14C������4(���,
�,
���D)5 86(�($�(�8�.4"5C�7:8�.$C8�(8C"D�$9�)D8��4*4�!45!8�4(

∼ ū(p1)(−igs)tAγα i(p/1 + k/)
(p1 + k)2

(−ie)γμv(p2)ϵα

∼ ū(p1)(−igs)tAϵ/
ip/1

2p1 ⋅ k
(−ie)γμv(p2)

assume massless partons,  and  analyse the 
soft gluon  limit

p2
1 = 0, k2 = 0

k → 0
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QCD calculations — soft limit

56 3 QCD in electron-positron annihilation

(a)

Fig. 3.2. Feynman diagrams for the O(as) corrections to the total hadronic
cross section in e+e~ annihilation.

These results are valid for massless quarks; the effect of a non-zero quark
mass will be discussed in Section 3.2.

With q = u,..., 6, Eq. (3.7) gives R =11/3 = 3.67 and (with sin2 0W =
0.23) Rz = 20.09. For the latter, the measured value at LEP is 20.79±0.04
[1], some 3.5% higher than the lowest-order prediction. In fact the differ-
ence is largely due to higher-order QCD corrections, and the comparison
between theory and experiment provides a determination of the strong
coupling constant, as we shall see in Chapter 12.

The O(as) corrections to the total hadronic cross section are calculated
from the real and virtual gluon diagrams shown in Fig. 3.2. For simplicity,
we shall consider only the photon-exchange contribution in detail. For the
real gluon diagrams, Fig. 3.2(b), it is convenient to write the three-body
phase space integration as

1 — dadcos(id^dxi dx2 , (3.9)
° (2TT)5 32

where a,/?,7 are Euler angles, and xi = 2Eq/yfs and x2 = 2Eq/y/s are
the energy fractions of the final-state quark and antiquark. The matrix
element squared for eJt{qx) + e~(q2) —>• q(pi) + 9(^2) + g(k) is obtained
using the Feynman rules given in Chapter 1:

1
4 \M\2 =

' Q2 Pi ' k p 2
(3.10)

where the sum is over spins and colours. If we integrate out the Euler an-
gles then the matrix element depends only on xi and x2. The contribution

�((BD,��+++ 64"5C�7:8 $C:�6$C8�(8C"D ��((BD,��7$� $C:��� �����.�2��
�
����
�
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�,
���D)5 86(�($�(�8�.4"5C�7:8�.$C8�(8C"D�$9�)D8��4*4�!45!8�4(

∼ ū(p1)(−igs)tAγα i(p/1 + k/)
(p1 + k)2

(−ie)γμv(p2)ϵα

∼ ū(p1)(−igs)tAϵ/
ip/1

2p1 ⋅ k
(−ie)γμv(p2)

∼ ū(p1)(−igs)tA ip1 ⋅ ϵ
p1 ⋅ k

(−ie)γμv(p2)

use  and the Dirac equation ϵ/p/1 = 2ϵ ⋅ p1 − p/1ϵ/ ū(p1)p/1 = 0
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QCD calculations — soft limit

56 3 QCD in electron-positron annihilation

(a)

Fig. 3.2. Feynman diagrams for the O(as) corrections to the total hadronic
cross section in e+e~ annihilation.

These results are valid for massless quarks; the effect of a non-zero quark
mass will be discussed in Section 3.2.

With q = u,..., 6, Eq. (3.7) gives R =11/3 = 3.67 and (with sin2 0W =
0.23) Rz = 20.09. For the latter, the measured value at LEP is 20.79±0.04
[1], some 3.5% higher than the lowest-order prediction. In fact the differ-
ence is largely due to higher-order QCD corrections, and the comparison
between theory and experiment provides a determination of the strong
coupling constant, as we shall see in Chapter 12.

The O(as) corrections to the total hadronic cross section are calculated
from the real and virtual gluon diagrams shown in Fig. 3.2. For simplicity,
we shall consider only the photon-exchange contribution in detail. For the
real gluon diagrams, Fig. 3.2(b), it is convenient to write the three-body
phase space integration as

1 — dadcos(id^dxi dx2 , (3.9)
° (2TT)5 32

where a,/?,7 are Euler angles, and xi = 2Eq/yfs and x2 = 2Eq/y/s are
the energy fractions of the final-state quark and antiquark. The matrix
element squared for eJt{qx) + e~(q2) —>• q(pi) + 9(^2) + g(k) is obtained
using the Feynman rules given in Chapter 1:

1
4 \M\2 =

' Q2 Pi ' k p 2
(3.10)

where the sum is over spins and colours. If we integrate out the Euler an-
gles then the matrix element depends only on xi and x2. The contribution

�((BD,��+++ 64"5C�7:8 $C:�6$C8�(8C"D ��((BD,��7$� $C:��� �����.�2��
�
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∼ ū(p1)(−igs)tAγα i(p/1 + k/)
(p1 + k)2

(−ie)γμv(p2)ϵα

∼ ū(p1)(−igs)tAϵ/
ip/1

2p1 ⋅ k
(−ie)γμv(p2)

∼ ū(p1)(−igs)tA ip1 ⋅ ϵ
p1 ⋅ k

(−ie)γμv(p2)

∼ gstA p1 ⋅ ϵ
p1 ⋅ k

×

56 3 QCD in electron-positron annihilation

(a)

Fig. 3.2. Feynman diagrams for the O(as) corrections to the total hadronic
cross section in e+e~ annihilation.

These results are valid for massless quarks; the effect of a non-zero quark
mass will be discussed in Section 3.2.

With q = u,..., 6, Eq. (3.7) gives R =11/3 = 3.67 and (with sin2 0W =
0.23) Rz = 20.09. For the latter, the measured value at LEP is 20.79±0.04
[1], some 3.5% higher than the lowest-order prediction. In fact the differ-
ence is largely due to higher-order QCD corrections, and the comparison
between theory and experiment provides a determination of the strong
coupling constant, as we shall see in Chapter 12.

The O(as) corrections to the total hadronic cross section are calculated
from the real and virtual gluon diagrams shown in Fig. 3.2. For simplicity,
we shall consider only the photon-exchange contribution in detail. For the
real gluon diagrams, Fig. 3.2(b), it is convenient to write the three-body
phase space integration as

1 — dadcos(id^dxi dx2 , (3.9)
° (2TT)5 32

where a,/?,7 are Euler angles, and xi = 2Eq/yfs and x2 = 2Eq/y/s are
the energy fractions of the final-state quark and antiquark. The matrix
element squared for eJt{qx) + e~(q2) —>• q(pi) + 9(^2) + g(k) is obtained
using the Feynman rules given in Chapter 1:

1
4 \M\2 =

' Q2 Pi ' k p 2
(3.10)

where the sum is over spins and colours. If we integrate out the Euler an-
gles then the matrix element depends only on xi and x2. The contribution

�((BD,��+++ 64"5C�7:8 $C:�6$C8�(8C"D ��((BD,��7$� $C:��� �����.�2��
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soft gluon emissions factorise!
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QCD calculations — soft limit

56 3 QCD in electron-positron annihilation

(a)

Fig. 3.2. Feynman diagrams for the O(as) corrections to the total hadronic
cross section in e+e~ annihilation.

These results are valid for massless quarks; the effect of a non-zero quark
mass will be discussed in Section 3.2.

With q = u,..., 6, Eq. (3.7) gives R =11/3 = 3.67 and (with sin2 0W =
0.23) Rz = 20.09. For the latter, the measured value at LEP is 20.79±0.04
[1], some 3.5% higher than the lowest-order prediction. In fact the differ-
ence is largely due to higher-order QCD corrections, and the comparison
between theory and experiment provides a determination of the strong
coupling constant, as we shall see in Chapter 12.

The O(as) corrections to the total hadronic cross section are calculated
from the real and virtual gluon diagrams shown in Fig. 3.2. For simplicity,
we shall consider only the photon-exchange contribution in detail. For the
real gluon diagrams, Fig. 3.2(b), it is convenient to write the three-body
phase space integration as

1 — dadcos(id^dxi dx2 , (3.9)
° (2TT)5 32

where a,/?,7 are Euler angles, and xi = 2Eq/yfs and x2 = 2Eq/y/s are
the energy fractions of the final-state quark and antiquark. The matrix
element squared for eJt{qx) + e~(q2) —>• q(pi) + 9(^2) + g(k) is obtained
using the Feynman rules given in Chapter 1:

1
4 \M\2 =

' Q2 Pi ' k p 2
(3.10)

where the sum is over spins and colours. If we integrate out the Euler an-
gles then the matrix element depends only on xi and x2. The contribution
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Fig. 3.2. Feynman diagrams for the O(as) corrections to the total hadronic
cross section in e+e~ annihilation.

These results are valid for massless quarks; the effect of a non-zero quark
mass will be discussed in Section 3.2.

With q = u,..., 6, Eq. (3.7) gives R =11/3 = 3.67 and (with sin2 0W =
0.23) Rz = 20.09. For the latter, the measured value at LEP is 20.79±0.04
[1], some 3.5% higher than the lowest-order prediction. In fact the differ-
ence is largely due to higher-order QCD corrections, and the comparison
between theory and experiment provides a determination of the strong
coupling constant, as we shall see in Chapter 12.

The O(as) corrections to the total hadronic cross section are calculated
from the real and virtual gluon diagrams shown in Fig. 3.2. For simplicity,
we shall consider only the photon-exchange contribution in detail. For the
real gluon diagrams, Fig. 3.2(b), it is convenient to write the three-body
phase space integration as

1 — dadcos(id^dxi dx2 , (3.9)
° (2TT)5 32

where a,/?,7 are Euler angles, and xi = 2Eq/yfs and x2 = 2Eq/y/s are
the energy fractions of the final-state quark and antiquark. The matrix
element squared for eJt{qx) + e~(q2) —>• q(pi) + 9(^2) + g(k) is obtained
using the Feynman rules given in Chapter 1:

1
4 \M\2 =
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(3.10)

where the sum is over spins and colours. If we integrate out the Euler an-
gles then the matrix element depends only on xi and x2. The contribution
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Fig. 3.2. Feynman diagrams for the O(as) corrections to the total hadronic
cross section in e+e~ annihilation.

These results are valid for massless quarks; the effect of a non-zero quark
mass will be discussed in Section 3.2.

With q = u,..., 6, Eq. (3.7) gives R =11/3 = 3.67 and (with sin2 0W =
0.23) Rz = 20.09. For the latter, the measured value at LEP is 20.79±0.04
[1], some 3.5% higher than the lowest-order prediction. In fact the differ-
ence is largely due to higher-order QCD corrections, and the comparison
between theory and experiment provides a determination of the strong
coupling constant, as we shall see in Chapter 12.

The O(as) corrections to the total hadronic cross section are calculated
from the real and virtual gluon diagrams shown in Fig. 3.2. For simplicity,
we shall consider only the photon-exchange contribution in detail. For the
real gluon diagrams, Fig. 3.2(b), it is convenient to write the three-body
phase space integration as

1 — dadcos(id^dxi dx2 , (3.9)
° (2TT)5 32

where a,/?,7 are Euler angles, and xi = 2Eq/yfs and x2 = 2Eq/y/s are
the energy fractions of the final-state quark and antiquark. The matrix
element squared for eJt{qx) + e~(q2) —>• q(pi) + 9(^2) + g(k) is obtained
using the Feynman rules given in Chapter 1:

1
4 \M\2 =
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(3.10)

where the sum is over spins and colours. If we integrate out the Euler an-
gles then the matrix element depends only on xi and x2. The contribution
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Fig. 3.2. Feynman diagrams for the O(as) corrections to the total hadronic
cross section in e+e~ annihilation.

These results are valid for massless quarks; the effect of a non-zero quark
mass will be discussed in Section 3.2.

With q = u,..., 6, Eq. (3.7) gives R =11/3 = 3.67 and (with sin2 0W =
0.23) Rz = 20.09. For the latter, the measured value at LEP is 20.79±0.04
[1], some 3.5% higher than the lowest-order prediction. In fact the differ-
ence is largely due to higher-order QCD corrections, and the comparison
between theory and experiment provides a determination of the strong
coupling constant, as we shall see in Chapter 12.

The O(as) corrections to the total hadronic cross section are calculated
from the real and virtual gluon diagrams shown in Fig. 3.2. For simplicity,
we shall consider only the photon-exchange contribution in detail. For the
real gluon diagrams, Fig. 3.2(b), it is convenient to write the three-body
phase space integration as

1 — dadcos(id^dxi dx2 , (3.9)
° (2TT)5 32

where a,/?,7 are Euler angles, and xi = 2Eq/yfs and x2 = 2Eq/y/s are
the energy fractions of the final-state quark and antiquark. The matrix
element squared for eJt{qx) + e~(q2) —>• q(pi) + 9(^2) + g(k) is obtained
using the Feynman rules given in Chapter 1:

1
4 \M\2 =
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(3.10)

where the sum is over spins and colours. If we integrate out the Euler an-
gles then the matrix element depends only on xi and x2. The contribution
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Fig. 3.2. Feynman diagrams for the O(as) corrections to the total hadronic
cross section in e+e~ annihilation.

These results are valid for massless quarks; the effect of a non-zero quark
mass will be discussed in Section 3.2.

With q = u,..., 6, Eq. (3.7) gives R =11/3 = 3.67 and (with sin2 0W =
0.23) Rz = 20.09. For the latter, the measured value at LEP is 20.79±0.04
[1], some 3.5% higher than the lowest-order prediction. In fact the differ-
ence is largely due to higher-order QCD corrections, and the comparison
between theory and experiment provides a determination of the strong
coupling constant, as we shall see in Chapter 12.

The O(as) corrections to the total hadronic cross section are calculated
from the real and virtual gluon diagrams shown in Fig. 3.2. For simplicity,
we shall consider only the photon-exchange contribution in detail. For the
real gluon diagrams, Fig. 3.2(b), it is convenient to write the three-body
phase space integration as

1 — dadcos(id^dxi dx2 , (3.9)
° (2TT)5 32

where a,/?,7 are Euler angles, and xi = 2Eq/yfs and x2 = 2Eq/y/s are
the energy fractions of the final-state quark and antiquark. The matrix
element squared for eJt{qx) + e~(q2) —>• q(pi) + 9(^2) + g(k) is obtained
using the Feynman rules given in Chapter 1:

1
4 \M\2 =
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(3.10)

where the sum is over spins and colours. If we integrate out the Euler an-
gles then the matrix element depends only on xi and x2. The contribution
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Fig. 3.2. Feynman diagrams for the O(as) corrections to the total hadronic
cross section in e+e~ annihilation.

These results are valid for massless quarks; the effect of a non-zero quark
mass will be discussed in Section 3.2.

With q = u,..., 6, Eq. (3.7) gives R =11/3 = 3.67 and (with sin2 0W =
0.23) Rz = 20.09. For the latter, the measured value at LEP is 20.79±0.04
[1], some 3.5% higher than the lowest-order prediction. In fact the differ-
ence is largely due to higher-order QCD corrections, and the comparison
between theory and experiment provides a determination of the strong
coupling constant, as we shall see in Chapter 12.

The O(as) corrections to the total hadronic cross section are calculated
from the real and virtual gluon diagrams shown in Fig. 3.2. For simplicity,
we shall consider only the photon-exchange contribution in detail. For the
real gluon diagrams, Fig. 3.2(b), it is convenient to write the three-body
phase space integration as

1 — dadcos(id^dxi dx2 , (3.9)
° (2TT)5 32

where a,/?,7 are Euler angles, and xi = 2Eq/yfs and x2 = 2Eq/y/s are
the energy fractions of the final-state quark and antiquark. The matrix
element squared for eJt{qx) + e~(q2) —>• q(pi) + 9(^2) + g(k) is obtained
using the Feynman rules given in Chapter 1:

1
4 \M\2 =

' Q2 Pi ' k p 2
(3.10)

where the sum is over spins and colours. If we integrate out the Euler an-
gles then the matrix element depends only on xi and x2. The contribution
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Fig. 3.2. Feynman diagrams for the O(as) corrections to the total hadronic
cross section in e+e~ annihilation.

These results are valid for massless quarks; the effect of a non-zero quark
mass will be discussed in Section 3.2.

With q = u,..., 6, Eq. (3.7) gives R =11/3 = 3.67 and (with sin2 0W =
0.23) Rz = 20.09. For the latter, the measured value at LEP is 20.79±0.04
[1], some 3.5% higher than the lowest-order prediction. In fact the differ-
ence is largely due to higher-order QCD corrections, and the comparison
between theory and experiment provides a determination of the strong
coupling constant, as we shall see in Chapter 12.

The O(as) corrections to the total hadronic cross section are calculated
from the real and virtual gluon diagrams shown in Fig. 3.2. For simplicity,
we shall consider only the photon-exchange contribution in detail. For the
real gluon diagrams, Fig. 3.2(b), it is convenient to write the three-body
phase space integration as

1 — dadcos(id^dxi dx2 , (3.9)
° (2TT)5 32

where a,/?,7 are Euler angles, and xi = 2Eq/yfs and x2 = 2Eq/y/s are
the energy fractions of the final-state quark and antiquark. The matrix
element squared for eJt{qx) + e~(q2) —>• q(pi) + 9(^2) + g(k) is obtained
using the Feynman rules given in Chapter 1:

1
4 \M\2 =

' Q2 Pi ' k p 2
(3.10)

where the sum is over spins and colours. If we integrate out the Euler an-
gles then the matrix element depends only on xi and x2. The contribution
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Fig. 3.2. Feynman diagrams for the O(as) corrections to the total hadronic
cross section in e+e~ annihilation.

These results are valid for massless quarks; the effect of a non-zero quark
mass will be discussed in Section 3.2.

With q = u,..., 6, Eq. (3.7) gives R =11/3 = 3.67 and (with sin2 0W =
0.23) Rz = 20.09. For the latter, the measured value at LEP is 20.79±0.04
[1], some 3.5% higher than the lowest-order prediction. In fact the differ-
ence is largely due to higher-order QCD corrections, and the comparison
between theory and experiment provides a determination of the strong
coupling constant, as we shall see in Chapter 12.

The O(as) corrections to the total hadronic cross section are calculated
from the real and virtual gluon diagrams shown in Fig. 3.2. For simplicity,
we shall consider only the photon-exchange contribution in detail. For the
real gluon diagrams, Fig. 3.2(b), it is convenient to write the three-body
phase space integration as

1 — dadcos(id^dxi dx2 , (3.9)
° (2TT)5 32

where a,/?,7 are Euler angles, and xi = 2Eq/yfs and x2 = 2Eq/y/s are
the energy fractions of the final-state quark and antiquark. The matrix
element squared for eJt{qx) + e~(q2) —>• q(pi) + 9(^2) + g(k) is obtained
using the Feynman rules given in Chapter 1:

1
4 \M\2 =

' Q2 Pi ' k p 2
(3.10)

where the sum is over spins and colours. If we integrate out the Euler an-
gles then the matrix element depends only on xi and x2. The contribution
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Fig. 3.2. Feynman diagrams for the O(as) corrections to the total hadronic
cross section in e+e~ annihilation.

These results are valid for massless quarks; the effect of a non-zero quark
mass will be discussed in Section 3.2.

With q = u,..., 6, Eq. (3.7) gives R =11/3 = 3.67 and (with sin2 0W =
0.23) Rz = 20.09. For the latter, the measured value at LEP is 20.79±0.04
[1], some 3.5% higher than the lowest-order prediction. In fact the differ-
ence is largely due to higher-order QCD corrections, and the comparison
between theory and experiment provides a determination of the strong
coupling constant, as we shall see in Chapter 12.

The O(as) corrections to the total hadronic cross section are calculated
from the real and virtual gluon diagrams shown in Fig. 3.2. For simplicity,
we shall consider only the photon-exchange contribution in detail. For the
real gluon diagrams, Fig. 3.2(b), it is convenient to write the three-body
phase space integration as

1 — dadcos(id^dxi dx2 , (3.9)
° (2TT)5 32

where a,/?,7 are Euler angles, and xi = 2Eq/yfs and x2 = 2Eq/y/s are
the energy fractions of the final-state quark and antiquark. The matrix
element squared for eJt{qx) + e~(q2) —>• q(pi) + 9(^2) + g(k) is obtained
using the Feynman rules given in Chapter 1:

1
4 \M\2 =

' Q2 Pi ' k p 2
(3.10)

where the sum is over spins and colours. If we integrate out the Euler an-
gles then the matrix element depends only on xi and x2. The contribution
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Fig. 3.2. Feynman diagrams for the O(as) corrections to the total hadronic
cross section in e+e~ annihilation.

These results are valid for massless quarks; the effect of a non-zero quark
mass will be discussed in Section 3.2.

With q = u,..., 6, Eq. (3.7) gives R =11/3 = 3.67 and (with sin2 0W =
0.23) Rz = 20.09. For the latter, the measured value at LEP is 20.79±0.04
[1], some 3.5% higher than the lowest-order prediction. In fact the differ-
ence is largely due to higher-order QCD corrections, and the comparison
between theory and experiment provides a determination of the strong
coupling constant, as we shall see in Chapter 12.

The O(as) corrections to the total hadronic cross section are calculated
from the real and virtual gluon diagrams shown in Fig. 3.2. For simplicity,
we shall consider only the photon-exchange contribution in detail. For the
real gluon diagrams, Fig. 3.2(b), it is convenient to write the three-body
phase space integration as

1 — dadcos(id^dxi dx2 , (3.9)
° (2TT)5 32

where a,/?,7 are Euler angles, and xi = 2Eq/yfs and x2 = 2Eq/y/s are
the energy fractions of the final-state quark and antiquark. The matrix
element squared for eJt{qx) + e~(q2) —>• q(pi) + 9(^2) + g(k) is obtained
using the Feynman rules given in Chapter 1:

1
4 \M\2 =

' Q2 Pi ' k p 2
(3.10)

where the sum is over spins and colours. If we integrate out the Euler an-
gles then the matrix element depends only on xi and x2. The contribution
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Fig. 3.2. Feynman diagrams for the O(as) corrections to the total hadronic
cross section in e+e~ annihilation.

These results are valid for massless quarks; the effect of a non-zero quark
mass will be discussed in Section 3.2.

With q = u,..., 6, Eq. (3.7) gives R =11/3 = 3.67 and (with sin2 0W =
0.23) Rz = 20.09. For the latter, the measured value at LEP is 20.79±0.04
[1], some 3.5% higher than the lowest-order prediction. In fact the differ-
ence is largely due to higher-order QCD corrections, and the comparison
between theory and experiment provides a determination of the strong
coupling constant, as we shall see in Chapter 12.

The O(as) corrections to the total hadronic cross section are calculated
from the real and virtual gluon diagrams shown in Fig. 3.2. For simplicity,
we shall consider only the photon-exchange contribution in detail. For the
real gluon diagrams, Fig. 3.2(b), it is convenient to write the three-body
phase space integration as

1 — dadcos(id^dxi dx2 , (3.9)
° (2TT)5 32

where a,/?,7 are Euler angles, and xi = 2Eq/yfs and x2 = 2Eq/y/s are
the energy fractions of the final-state quark and antiquark. The matrix
element squared for eJt{qx) + e~(q2) —>• q(pi) + 9(^2) + g(k) is obtained
using the Feynman rules given in Chapter 1:

1
4 \M\2 =

' Q2 Pi ' k p 2
(3.10)

where the sum is over spins and colours. If we integrate out the Euler an-
gles then the matrix element depends only on xi and x2. The contribution
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Fig. 3.2. Feynman diagrams for the O(as) corrections to the total hadronic
cross section in e+e~ annihilation.

These results are valid for massless quarks; the effect of a non-zero quark
mass will be discussed in Section 3.2.

With q = u,..., 6, Eq. (3.7) gives R =11/3 = 3.67 and (with sin2 0W =
0.23) Rz = 20.09. For the latter, the measured value at LEP is 20.79±0.04
[1], some 3.5% higher than the lowest-order prediction. In fact the differ-
ence is largely due to higher-order QCD corrections, and the comparison
between theory and experiment provides a determination of the strong
coupling constant, as we shall see in Chapter 12.

The O(as) corrections to the total hadronic cross section are calculated
from the real and virtual gluon diagrams shown in Fig. 3.2. For simplicity,
we shall consider only the photon-exchange contribution in detail. For the
real gluon diagrams, Fig. 3.2(b), it is convenient to write the three-body
phase space integration as

1 — dadcos(id^dxi dx2 , (3.9)
° (2TT)5 32

where a,/?,7 are Euler angles, and xi = 2Eq/yfs and x2 = 2Eq/y/s are
the energy fractions of the final-state quark and antiquark. The matrix
element squared for eJt{qx) + e~(q2) —>• q(pi) + 9(^2) + g(k) is obtained
using the Feynman rules given in Chapter 1:

1
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where the sum is over spins and colours. If we integrate out the Euler an-
gles then the matrix element depends only on xi and x2. The contribution
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Fig. 3.2. Feynman diagrams for the O(as) corrections to the total hadronic
cross section in e+e~ annihilation.

These results are valid for massless quarks; the effect of a non-zero quark
mass will be discussed in Section 3.2.

With q = u,..., 6, Eq. (3.7) gives R =11/3 = 3.67 and (with sin2 0W =
0.23) Rz = 20.09. For the latter, the measured value at LEP is 20.79±0.04
[1], some 3.5% higher than the lowest-order prediction. In fact the differ-
ence is largely due to higher-order QCD corrections, and the comparison
between theory and experiment provides a determination of the strong
coupling constant, as we shall see in Chapter 12.

The O(as) corrections to the total hadronic cross section are calculated
from the real and virtual gluon diagrams shown in Fig. 3.2. For simplicity,
we shall consider only the photon-exchange contribution in detail. For the
real gluon diagrams, Fig. 3.2(b), it is convenient to write the three-body
phase space integration as
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where a,/?,7 are Euler angles, and xi = 2Eq/yfs and x2 = 2Eq/y/s are
the energy fractions of the final-state quark and antiquark. The matrix
element squared for eJt{qx) + e~(q2) —>• q(pi) + 9(^2) + g(k) is obtained
using the Feynman rules given in Chapter 1:
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where the sum is over spins and colours. If we integrate out the Euler an-
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These results are valid for massless quarks; the effect of a non-zero quark
mass will be discussed in Section 3.2.

With q = u,..., 6, Eq. (3.7) gives R =11/3 = 3.67 and (with sin2 0W =
0.23) Rz = 20.09. For the latter, the measured value at LEP is 20.79±0.04
[1], some 3.5% higher than the lowest-order prediction. In fact the differ-
ence is largely due to higher-order QCD corrections, and the comparison
between theory and experiment provides a determination of the strong
coupling constant, as we shall see in Chapter 12.

The O(as) corrections to the total hadronic cross section are calculated
from the real and virtual gluon diagrams shown in Fig. 3.2. For simplicity,
we shall consider only the photon-exchange contribution in detail. For the
real gluon diagrams, Fig. 3.2(b), it is convenient to write the three-body
phase space integration as
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where a,/?,7 are Euler angles, and xi = 2Eq/yfs and x2 = 2Eq/y/s are
the energy fractions of the final-state quark and antiquark. The matrix
element squared for eJt{qx) + e~(q2) —>• q(pi) + 9(^2) + g(k) is obtained
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Fig. 3.2. Feynman diagrams for the O(as) corrections to the total hadronic
cross section in e+e~ annihilation.

These results are valid for massless quarks; the effect of a non-zero quark
mass will be discussed in Section 3.2.

With q = u,..., 6, Eq. (3.7) gives R =11/3 = 3.67 and (with sin2 0W =
0.23) Rz = 20.09. For the latter, the measured value at LEP is 20.79±0.04
[1], some 3.5% higher than the lowest-order prediction. In fact the differ-
ence is largely due to higher-order QCD corrections, and the comparison
between theory and experiment provides a determination of the strong
coupling constant, as we shall see in Chapter 12.

The O(as) corrections to the total hadronic cross section are calculated
from the real and virtual gluon diagrams shown in Fig. 3.2. For simplicity,
we shall consider only the photon-exchange contribution in detail. For the
real gluon diagrams, Fig. 3.2(b), it is convenient to write the three-body
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where a,/?,7 are Euler angles, and xi = 2Eq/yfs and x2 = 2Eq/y/s are
the energy fractions of the final-state quark and antiquark. The matrix
element squared for eJt{qx) + e~(q2) —>• q(pi) + 9(^2) + g(k) is obtained
using the Feynman rules given in Chapter 1:
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56 3 QCD in electron-positron annihilation
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Fig. 3.2. Feynman diagrams for the O(as) corrections to the total hadronic
cross section in e+e~ annihilation.

These results are valid for massless quarks; the effect of a non-zero quark
mass will be discussed in Section 3.2.

With q = u,..., 6, Eq. (3.7) gives R =11/3 = 3.67 and (with sin2 0W =
0.23) Rz = 20.09. For the latter, the measured value at LEP is 20.79±0.04
[1], some 3.5% higher than the lowest-order prediction. In fact the differ-
ence is largely due to higher-order QCD corrections, and the comparison
between theory and experiment provides a determination of the strong
coupling constant, as we shall see in Chapter 12.

The O(as) corrections to the total hadronic cross section are calculated
from the real and virtual gluon diagrams shown in Fig. 3.2. For simplicity,
we shall consider only the photon-exchange contribution in detail. For the
real gluon diagrams, Fig. 3.2(b), it is convenient to write the three-body
phase space integration as
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° (2TT)5 32

where a,/?,7 are Euler angles, and xi = 2Eq/yfs and x2 = 2Eq/y/s are
the energy fractions of the final-state quark and antiquark. The matrix
element squared for eJt{qx) + e~(q2) —>• q(pi) + 9(^2) + g(k) is obtained
using the Feynman rules given in Chapter 1:
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where the sum is over spins and colours. If we integrate out the Euler an-
gles then the matrix element depends only on xi and x2. The contribution
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Fig. 3.2. Feynman diagrams for the O(as) corrections to the total hadronic
cross section in e+e~ annihilation.

These results are valid for massless quarks; the effect of a non-zero quark
mass will be discussed in Section 3.2.

With q = u,..., 6, Eq. (3.7) gives R =11/3 = 3.67 and (with sin2 0W =
0.23) Rz = 20.09. For the latter, the measured value at LEP is 20.79±0.04
[1], some 3.5% higher than the lowest-order prediction. In fact the differ-
ence is largely due to higher-order QCD corrections, and the comparison
between theory and experiment provides a determination of the strong
coupling constant, as we shall see in Chapter 12.

The O(as) corrections to the total hadronic cross section are calculated
from the real and virtual gluon diagrams shown in Fig. 3.2. For simplicity,
we shall consider only the photon-exchange contribution in detail. For the
real gluon diagrams, Fig. 3.2(b), it is convenient to write the three-body
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1 — dadcos(id^dxi dx2 , (3.9)
° (2TT)5 32

where a,/?,7 are Euler angles, and xi = 2Eq/yfs and x2 = 2Eq/y/s are
the energy fractions of the final-state quark and antiquark. The matrix
element squared for eJt{qx) + e~(q2) —>• q(pi) + 9(^2) + g(k) is obtained
using the Feynman rules given in Chapter 1:
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where the sum is over spins and colours. If we integrate out the Euler an-
gles then the matrix element depends only on xi and x2. The contribution
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These results are valid for massless quarks; the effect of a non-zero quark
mass will be discussed in Section 3.2.

With q = u,..., 6, Eq. (3.7) gives R =11/3 = 3.67 and (with sin2 0W =
0.23) Rz = 20.09. For the latter, the measured value at LEP is 20.79±0.04
[1], some 3.5% higher than the lowest-order prediction. In fact the differ-
ence is largely due to higher-order QCD corrections, and the comparison
between theory and experiment provides a determination of the strong
coupling constant, as we shall see in Chapter 12.

The O(as) corrections to the total hadronic cross section are calculated
from the real and virtual gluon diagrams shown in Fig. 3.2. For simplicity,
we shall consider only the photon-exchange contribution in detail. For the
real gluon diagrams, Fig. 3.2(b), it is convenient to write the three-body
phase space integration as
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where a,/?,7 are Euler angles, and xi = 2Eq/yfs and x2 = 2Eq/y/s are
the energy fractions of the final-state quark and antiquark. The matrix
element squared for eJt{qx) + e~(q2) —>• q(pi) + 9(^2) + g(k) is obtained
using the Feynman rules given in Chapter 1:

1
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where the sum is over spins and colours. If we integrate out the Euler an-
gles then the matrix element depends only on xi and x2. The contribution
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Fig. 3.2. Feynman diagrams for the O(as) corrections to the total hadronic
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These results are valid for massless quarks; the effect of a non-zero quark
mass will be discussed in Section 3.2.

With q = u,..., 6, Eq. (3.7) gives R =11/3 = 3.67 and (with sin2 0W =
0.23) Rz = 20.09. For the latter, the measured value at LEP is 20.79±0.04
[1], some 3.5% higher than the lowest-order prediction. In fact the differ-
ence is largely due to higher-order QCD corrections, and the comparison
between theory and experiment provides a determination of the strong
coupling constant, as we shall see in Chapter 12.

The O(as) corrections to the total hadronic cross section are calculated
from the real and virtual gluon diagrams shown in Fig. 3.2. For simplicity,
we shall consider only the photon-exchange contribution in detail. For the
real gluon diagrams, Fig. 3.2(b), it is convenient to write the three-body
phase space integration as
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where a,/?,7 are Euler angles, and xi = 2Eq/yfs and x2 = 2Eq/y/s are
the energy fractions of the final-state quark and antiquark. The matrix
element squared for eJt{qx) + e~(q2) —>• q(pi) + 9(^2) + g(k) is obtained
using the Feynman rules given in Chapter 1:
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These results are valid for massless quarks; the effect of a non-zero quark
mass will be discussed in Section 3.2.

With q = u,..., 6, Eq. (3.7) gives R =11/3 = 3.67 and (with sin2 0W =
0.23) Rz = 20.09. For the latter, the measured value at LEP is 20.79±0.04
[1], some 3.5% higher than the lowest-order prediction. In fact the differ-
ence is largely due to higher-order QCD corrections, and the comparison
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where a,/?,7 are Euler angles, and xi = 2Eq/yfs and x2 = 2Eq/y/s are
the energy fractions of the final-state quark and antiquark. The matrix
element squared for eJt{qx) + e~(q2) —>• q(pi) + 9(^2) + g(k) is obtained
using the Feynman rules given in Chapter 1:
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Factorisation with “eikonal” factor!

2

Note: phase 
space factorises 
as well 
dϕqq̄g = dϕqq̄dϕ+1
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Eikonal factor

2p1 ⋅ p2

(p1 ⋅ k)(p2 ⋅ k)
observation: divergent if  or  or 


 collinear and soft/infrared limits

k | |p1 k | |p2 k → 0

⇒
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Eikonal factor

2p1 ⋅ p2

(p1 ⋅ k)(p2 ⋅ k)
observation: divergent if  or  or 


 collinear and soft/infrared limits

k ∥ p1 k ∥ p2 k → 0

⇒

Explicitly in some reference frame, use 


 divergencies visible for  (collinear) and  (soft)

pi ⋅ k = EiEk(1 − cos θik)

⇒ θik → 0 Ek → 0

2p1 ⋅ p2

(p1 ⋅ k)(p2 ⋅ k)
=

1
E2

k

1 − cos θ12

(1 − cos θ1k)(1 − cos θ2k)
≡

W12,k

E2
k
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Coherent Branching - Angular Ordering

2

The price for such a generic scheme is a dependence of the parton shower splitting functions on the azimuthal angle
between the decay plane and the plane defined by the emitting parton and its color spectator. Our new formulation
presents a major extension of existing parton shower formalisms in this regard, and it introduces the most generic form
of a spin-averaged splitting function in four dimensions, with a dependence on all three phase-space variables of the
radiated parton. Based on previous analyses [73, 74], it seems plausible that this scheme will considerably simplify the
inclusion of higher-order corrections to the splitting kernels. We provide a first implementation of the new algorithm
in the numerical code Alaric1, which will be made available as part of the event generator Sherpa [75–77].

This manuscript is organized as follows: In Sec. II we revisit the soft singularity structure of QCD amplitudes
and introduce our new decomposition of the soft eikonal. In Sec. III we discuss the novel phase-space mapping and
the corresponding phase-space factorization. In Sec. IV we detail how soft and collinear emissions are generated in a
probabilistic picture. Section V is dedicated to the analytic proof of logarithmic accuracy, and the numerical validation
in the ↵s ! 0 limit. Section VI presents first numerical results for the process e+e� ! hadrons, and Sec. VII contains
an outlook.

II. THE MATCHING OF SOFT TO COLLINEAR RADIATORS

We start the discussion by recalling the singularity structure of n-parton QCD amplitudes in the infrared limits.
If two partons, i and j, become collinear, the squared amplitude factorizes as

nh1, . . . , n|1, . . . , nin =
X

�,�0=±

n�1

D
1, . . . , i\(ij), . . . , j\, . . . , n

���
8⇡↵s

2pipj
P��

0

(ij)i(z)
���1, . . . , i\(ij), . . . , j\, . . . , n

E

n�1
, (1)

where the notation i\ indicates that parton i is removed from the original amplitude, and where (ij) is the progenitor
of partons i and j. The functions P��

0

ab
(z) are the spin-dependent DGLAP splitting functions. They depend on

the momentum fraction z of parton i with respect to the mother parton, (ij), and on the helicities � [3–6]. In the
collinear limit, the momentum fraction is equal to an energy or light-cone momentum fraction. In this manuscript
we will consider only spin-averaged splitting functions; algorithms for spin-dependent evolution are discussed in [23–
26, 78].

In the limit that gluon j becomes soft, the squared amplitude factorizes as [79]

nh1, . . . , n|1, . . . , nin = �8⇡↵s

X

i,k 6=j

n�1

⌦
1, . . . , j\, . . . , n

��TiTk wik,j

��1, . . . , j\, . . . , n
↵
n�1

, (2)

where Ti and Tk are the color insertion operators defined in [72]. In the remainder of this section we will discuss the
case of massless radiators only and focus on the eikonal factor, wik,j , and how it can be rewritten in a suitable form
to match the spin-averaged splitting functions Pab(z) in the soft-collinear limit. Since our analysis concerns only the
denominator of wik,j , it will apply to spin-correlated evolution as well. The eikonal factor is given by

wik,j =
pipk

(pipj)(pjpk)
, (3)

and it can be written in terms of (frame-dependent) energies and angles as

wik,j =
Wik,j

E2
j

, where Wik,j =
1� cos ✓ik

(1� cos ✓ij)(1� cos ✓jk)
, (4)

We note that Eq. (4) is symmetric in i and k, and that it encapsulates the complete soft singularity structure of the
hard matrix element [79]. If we were to implement Eq. (4) for each of the radiators i and k in the collinear limit, we
would therefore double-count the most singular component of the emission probability [80]. This is known as the soft
double-counting problem, which can be solved by following the technique of [21]. In this approach, Wik,j is written
as a sum of two terms, which are enhanced only in either the ij- or kj-collinear limit:

Wik,j = W̃ i

ik,j
+ W̃ k

ki,j
, where W̃ i

ik,j
=

1

2

✓
1� cos ✓ik

(1� cos ✓ij)(1� cos ✓jk)
+

1

1� cos ✓ij
�

1

1� cos ✓jk

◆
. (5)

1 Alaric is an acronym for A Logarithmically Accurate Resummation In C++

Wik,j = E2
k

2pi ⋅ pk

(pi ⋅ pj)(pk ⋅ pj)
=

1 − cos θik

(1 − cos θij)(1 − cos θjk)

We want to split this up, only divergent in one collinear region (by clever adding 
and subtracting divergent terms):

Eikonal derived in last slides:

Wik,j = W̃i
ik,j + W̃j

ik,j
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Coherent Branching - Angular Ordering

• We have found


• Now perform the phase space integral, in particular angular integrals for 
emission j, choose coordinate system with i along z-axis dΩj = d cos θijdϕj

2

The price for such a generic scheme is a dependence of the parton shower splitting functions on the azimuthal angle
between the decay plane and the plane defined by the emitting parton and its color spectator. Our new formulation
presents a major extension of existing parton shower formalisms in this regard, and it introduces the most generic form
of a spin-averaged splitting function in four dimensions, with a dependence on all three phase-space variables of the
radiated parton. Based on previous analyses [73, 74], it seems plausible that this scheme will considerably simplify the
inclusion of higher-order corrections to the splitting kernels. We provide a first implementation of the new algorithm
in the numerical code Alaric1, which will be made available as part of the event generator Sherpa [75–77].

This manuscript is organized as follows: In Sec. II we revisit the soft singularity structure of QCD amplitudes
and introduce our new decomposition of the soft eikonal. In Sec. III we discuss the novel phase-space mapping and
the corresponding phase-space factorization. In Sec. IV we detail how soft and collinear emissions are generated in a
probabilistic picture. Section V is dedicated to the analytic proof of logarithmic accuracy, and the numerical validation
in the ↵s ! 0 limit. Section VI presents first numerical results for the process e+e� ! hadrons, and Sec. VII contains
an outlook.

II. THE MATCHING OF SOFT TO COLLINEAR RADIATORS

We start the discussion by recalling the singularity structure of n-parton QCD amplitudes in the infrared limits.
If two partons, i and j, become collinear, the squared amplitude factorizes as
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where the notation i\ indicates that parton i is removed from the original amplitude, and where (ij) is the progenitor
of partons i and j. The functions P��

0

ab
(z) are the spin-dependent DGLAP splitting functions. They depend on

the momentum fraction z of parton i with respect to the mother parton, (ij), and on the helicities � [3–6]. In the
collinear limit, the momentum fraction is equal to an energy or light-cone momentum fraction. In this manuscript
we will consider only spin-averaged splitting functions; algorithms for spin-dependent evolution are discussed in [23–
26, 78].

In the limit that gluon j becomes soft, the squared amplitude factorizes as [79]
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where Ti and Tk are the color insertion operators defined in [72]. In the remainder of this section we will discuss the
case of massless radiators only and focus on the eikonal factor, wik,j , and how it can be rewritten in a suitable form
to match the spin-averaged splitting functions Pab(z) in the soft-collinear limit. Since our analysis concerns only the
denominator of wik,j , it will apply to spin-correlated evolution as well. The eikonal factor is given by
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and it can be written in terms of (frame-dependent) energies and angles as
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We note that Eq. (4) is symmetric in i and k, and that it encapsulates the complete soft singularity structure of the
hard matrix element [79]. If we were to implement Eq. (4) for each of the radiators i and k in the collinear limit, we
would therefore double-count the most singular component of the emission probability [80]. This is known as the soft
double-counting problem, which can be solved by following the technique of [21]. In this approach, Wik,j is written
as a sum of two terms, which are enhanced only in either the ij- or kj-collinear limit:
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1 Alaric is an acronym for A Logarithmically Accurate Resummation In C++
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Coherent Branching - Angular Ordering

• We have found


• Now perform the phase space integral, in particular angular integrals for 
emission j, choose coordinate system with i along z-axis :dΩj = d cos θijdϕj

2

The price for such a generic scheme is a dependence of the parton shower splitting functions on the azimuthal angle
between the decay plane and the plane defined by the emitting parton and its color spectator. Our new formulation
presents a major extension of existing parton shower formalisms in this regard, and it introduces the most generic form
of a spin-averaged splitting function in four dimensions, with a dependence on all three phase-space variables of the
radiated parton. Based on previous analyses [73, 74], it seems plausible that this scheme will considerably simplify the
inclusion of higher-order corrections to the splitting kernels. We provide a first implementation of the new algorithm
in the numerical code Alaric1, which will be made available as part of the event generator Sherpa [75–77].
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probabilistic picture. Section V is dedicated to the analytic proof of logarithmic accuracy, and the numerical validation
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Coherent Branching - Angular Ordering

• What does this mean for parton 
shower?


• We should first generate 
splitting at large angle 


• will be generated 
coherently from all more 
collinear partons, so 
generate them first while 
we only have original 
parent

η

ln
kt

Q
longitudinal momentum 

     conservation:    η < ln kt /Q

softer

particles

more collinear

particles
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Coherent Branching - Angular Ordering

• Reminder: Consistent with expectations from QED

Coherence

QED: Chudakov e!ect (mid-fifties)

QCD: colour coherence for soft gluon emission

solved by • requiring emission angles to be decreasing
or • requiring transverse momenta to be decreasing

Torbjörn Sjöstrand Introduction to Event Generators 2 slide 21/59
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Coherent Branching - Angular Ordering

• Reminder: Coherence in resummation of event shapes

Multiple soft-collinear emissions
We first consider an ensemble of soft-collinear emissions widely separated 
in angle (rapidity)

Due to QCD coherence, the multi-gluon matrix element factorises into the 
product of single-emission matrix elements

Contribution of multiple soft-collinear emissions to 

30

virtual corrections, ensure that the inclusive sum over all emissions gives one
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Towards NLL - argument of αS
• Imagine we want to calculate loop corrections to splitting functions:


• This will diverge in UV, need renormalization!


• QCD is renormalized multiplicatively, effect:                                                               
replace bare by renormalized coupling


• On the other hand D-dim phase space w/ Sudakov parametrization

21
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FIG. 10. Feynman diagrams leading to the 1 → 2 quark splitting function at one loop discussed in Sec. IVA1.

in Feynman gauge [58, 59], which substantially simplifies the calculation. For future reference, we introduce the
tree-level quark-splitting amplitude,
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Using the results of App. B, the integration of the abelian contribution in Fig. 10(a) yields
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The non-abelian contribution in Fig. 10(b) is given by
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The self-energy in Fig. 10(c) yields
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The complete splitting amplitude is given by the sum of the above terms and reads [58, 61]
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The scalar one-loop splitting amplitude corresponding to the q ↑ qg case is determined from the three diagrams in
Fig. 10 and the bubble-type diagrams involving seagull vertices. However, the latter vanish in light-like axial gauge.
Upon integration of the loop momentum, the abelian contribution corresponding to the scalar analogue of Fig. 10(a)
is given by
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where we have introduced the tree-level (anti-)triplet scalar amplitude
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The non-abelian contribution, corresponding to the scalar version of Fig. 10(b), reads
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Towards NLL - argument of αS
• Imagine we want to calculate loop corrections to splitting functions:
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FIG. 10. Feynman diagrams leading to the 1 → 2 quark splitting function at one loop discussed in Sec. IVA1.
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The scalar one-loop splitting amplitude corresponding to the q ↑ qg case is determined from the three diagrams in
Fig. 10 and the bubble-type diagrams involving seagull vertices. However, the latter vanish in light-like axial gauge.
Upon integration of the loop momentum, the abelian contribution corresponding to the scalar analogue of Fig. 10(a)
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Essentially this term from lecture by 
Rene:

18

UV renormalization in QCD

Wave functions:

Coupling:

These introduce new diagrams in the perturbative expansions:
A cancellation of all UV divergences

Scheme (massless QCD, covariant gauge):
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FIG. 10. Feynman diagrams leading to the 1 → 2 quark splitting function at one loop discussed in Sec. IVA1.
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The scalar one-loop splitting amplitude corresponding to the q ↑ qg case is determined from the three diagrams in
Fig. 10 and the bubble-type diagrams involving seagull vertices. However, the latter vanish in light-like axial gauge.
Upon integration of the loop momentum, the abelian contribution corresponding to the scalar analogue of Fig. 10(a)
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Towards NLL - the physical coupling scheme

• More higher order corrections


• Full calculation, again in D 
dimensions and and integrate 
inclusive over splitting variables


• In dim. reg. and  scheme gives:


• Can be interpreted as local 
enhancement of gluon splitting, and 
absorbed into strong coupling 
(together with  log from last slide):

MS

kt

3

(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 2. Next-to-leading order real-emission contributions to dipole-shower evolution in the soft limit. The double solid lines
represent hard (identified) partons i.e. Wilson lines.

The diagrams contributing to the gluonic real-emission corrections are schematically displayed in Fig. 2(a)-(e), while
the quark contribution is shown in Fig. 2(f). The vacuum polarization diagrams with gluons have corresponding ghost
diagrams, and all terms also occur in the mirror symmetric configuration. Their sum is given by the soft insertion
operators computed in [31]
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The full real-emission corrections are obtained by adding the cut vacuum polarization diagrams displayed in Fig. 2(g)
and (h), as well as the corresponding terms with the gluons attached to the other Wilson line. They are given by [25]
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To simplify the integration, we define the soft remainder as well as two collinear coe�cients
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Towards NLL - the physical coupling scheme

• More higher order corrections


• Full calculation, again in D 
dimensions and and integrate 
inclusive over splitting variables


• In dim. reg. and  scheme gives:


• Can be interpreted as local 
enhancement of gluon splitting, and 
absorbed into strong coupling 
(together with  log from last slide):
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FIG. 2. Next-to-leading order real-emission contributions to dipole-shower evolution in the soft limit. The double solid lines
represent hard (identified) partons i.e. Wilson lines.

The diagrams contributing to the gluonic real-emission corrections are schematically displayed in Fig. 2(a)-(e), while
the quark contribution is shown in Fig. 2(f). The vacuum polarization diagrams with gluons have corresponding ghost
diagrams, and all terms also occur in the mirror symmetric configuration. Their sum is given by the soft insertion
operators computed in [31]
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The matrix element for two soft-collinear gluons can always be written as the 
sum of an independent and correlated emission part 

Two-gluon correlated emission

47

The correlated emission part, if integrated inclusively, is combined with the 
one-loop one-gluon matrix element to give the running coupling in a physical 
renormalisation scheme

Compare to treatment in resummation 
in Lecture by Andrea:
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Putting things together

• Consider an rIRC safe observable like thrust


• Parton shower (as discussed so far) will produce very similar expression to 
resummation (e.g. CAESAR master formula):


• In practice  not evaluated in strict limit  leftover higher order corrections


• Apart from that, AO shower reproduces resummed  “by construction”

V →

Σ

3.1 Parton showers

and iterating this until a cutoff scale tc is reached. In a typical implementation, tc is
chosen to mark the transition between the perturbative and non-perturbative regime,
e.g ↵s(t)/2⇡ ⇡ 1.

To simplify the computations, in particular in the direct comparison with resummed
calculations for specific observables, the shower will be ordered in the variable

⇠ = k2
T
(1� z)�

2b
a+b . (3.6)

This corresponds, up to a power, to the value of V (k) in Equation (2.17). That can
be verified by inserting the definition of ⌘ in terms of z in the parametrisation given
in Section 2.5. The values of a and b are then chosen according to the observable
that should be resummed in the shower. For the observables studied in this work, the
parameters were given in Table 2.1.

In the semi-analytic CAESAR framework, which will be used for the comparison later,
resummed calculations are performed in terms of the cumulative cross section for an
observable,

⌃ (v) :=
1

�

Z
v

dv̄
d�

dv̄
, (3.7)

i.e. the normalised differential cross section integrated up to a value v of the observable
considered. In the parton shower formalism, this is just

⌃PS(v) =
1X

m=0

mY

i=0

1

m!

Z
d⇠i
⇠i

P(⇠i, ⇠i+1)⇥(v � V (⇠1, . . . , ⇠m)) . (3.8)

Here, m counts the numbers of emissions in a particular event, and is summed over all
possible numbers including no emission. The integral is then over the possible values of
individual scales at which emissions occur. The integrand accordingly that corresponds
to the probability for this emission with no intermediate emissions, or zero if the value
of the observable calculated from an event with those emissions would be larger than v.

Inserting Equation (3.5) and using (3.3), this parton shower result can explicitly be
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3 Resummation of large infrared logarithms

where fi are again the fragmentation functions introduced earlier. To improve the
logarithmic accuracy, it can be argued that the strong coupling constant should actually
be evaluated at a scale of µ = kt [106]. This will be done in the following, i.e. ↵s

should be read as ↵s(k2
T) with kT suitably expressed through the evolution variable t

and the light cone momentum fraction z.

Formally, two solutions at different scales t and t0 can then be related by the integral
equation

f(x, t0) = ⇧(t0, t)f(x, t) +

Z
t

t0

dt00

t00
⇧(t00, t0)

Z
dz

z

↵s

2⇡
P (z)f(x/z, t00) (3.2)

where ⇧ is the so called Sudakov form factor [107]

⇧(t0, t) = e�R(t,t0) , (3.3)

with the single emission probability between two scales and its logarithmic derivative

R(t0, t) =

Z
t

t0

dt̄

t̄
R0(t̄) where R0(t) =

Z
zmax(t)

zmin(t)

dz
↵s

2⇡
P (z) . (3.4)

It is made explicit here that there is some freedom to choose the integration bounds,
zmin and zmax and that they will generally depend on t. It will be seen in the later
Section 3.2.1 on resummation, that they are only partially determined by NLL require-
ments. In a conventional shower algorithm, they are further restricted by the physical
requirement of momentum conservation, that dictates they should be chosen as to
guarantee z(1� z) > k2

T/Q
2, see Section 3.1.2. Feasibility, for example the requirement

not to work with negative weights, will lead to further changes using the ambiguity at
NLL level.

Equation (3.2) is written in a form that has a convenient physical interpretation,
which is exploited in parton shower Monte Carlos. It can be stated as follows:

• The first term describes the possibility that there are no emissions between the
scales t and t0, in which case the distribution remains unchanged.

• The second term integrates over possible additional emissions between the two
scales, with a last emission at scale t00. The dependence of f on t00 in this second
term recursively takes arbitrary many emissions between scales t and t00 into
account.

Thus, the Sudakov form factor ⇧(t0, t) is interpreted as the no-emission probability
between the two scales. A parton shower algorithm implements this by determining
the next scale t0 starting from a given scale t, according to the distribution

P(t0, t) =
d⇧(t0, t)

d ln t0
. (3.5)
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3 Resummation of large infrared logarithms

where fi are again the fragmentation functions introduced earlier. To improve the
logarithmic accuracy, it can be argued that the strong coupling constant should actually
be evaluated at a scale of µ = kt [106]. This will be done in the following, i.e. ↵s

should be read as ↵s(k2
T) with kT suitably expressed through the evolution variable t

and the light cone momentum fraction z.

Formally, two solutions at different scales t and t0 can then be related by the integral
equation

f(x, t0) = ⇧(t0, t)f(x, t) +

Z
t

t0

dt00

t00
⇧(t00, t0)

Z
dz

z

↵s

2⇡
P (z)f(x/z, t00) (3.2)

where ⇧ is the so called Sudakov form factor [107]

⇧(t0, t) = e�R(t,t0) , (3.3)

with the single emission probability between two scales and its logarithmic derivative

R(t0, t) =

Z
t

t0

dt̄

t̄
R0(t̄) where R0(t) =

Z
zmax(t)

zmin(t)

dz
↵s

2⇡
P (z) . (3.4)

It is made explicit here that there is some freedom to choose the integration bounds,
zmin and zmax and that they will generally depend on t. It will be seen in the later
Section 3.2.1 on resummation, that they are only partially determined by NLL require-
ments. In a conventional shower algorithm, they are further restricted by the physical
requirement of momentum conservation, that dictates they should be chosen as to
guarantee z(1� z) > k2

T/Q
2, see Section 3.1.2. Feasibility, for example the requirement

not to work with negative weights, will lead to further changes using the ambiguity at
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Equation (3.2) is written in a form that has a convenient physical interpretation,
which is exploited in parton shower Monte Carlos. It can be stated as follows:

• The first term describes the possibility that there are no emissions between the
scales t and t0, in which case the distribution remains unchanged.

• The second term integrates over possible additional emissions between the two
scales, with a last emission at scale t00. The dependence of f on t00 in this second
term recursively takes arbitrary many emissions between scales t and t00 into
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Thus, the Sudakov form factor ⇧(t0, t) is interpreted as the no-emission probability
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Putting things together

• Consider an rIRC safe observable like thrust


• Parton shower (as discussed so far) will produce very similar expression to 
resummation (e.g. CAESAR master formula):


• In practice  not evaluated in strict limit  leftover higher order corrections


• Apart from that, AO shower reproduces resummed  “by construction”

V →

Σ

3.1 Parton showers

and iterating this until a cutoff scale tc is reached. In a typical implementation, tc is
chosen to mark the transition between the perturbative and non-perturbative regime,
e.g ↵s(t)/2⇡ ⇡ 1.

To simplify the computations, in particular in the direct comparison with resummed
calculations for specific observables, the shower will be ordered in the variable

⇠ = k2
T
(1� z)�

2b
a+b . (3.6)

This corresponds, up to a power, to the value of V (k) in Equation (2.17). That can
be verified by inserting the definition of ⌘ in terms of z in the parametrisation given
in Section 2.5. The values of a and b are then chosen according to the observable
that should be resummed in the shower. For the observables studied in this work, the
parameters were given in Table 2.1.

In the semi-analytic CAESAR framework, which will be used for the comparison later,
resummed calculations are performed in terms of the cumulative cross section for an
observable,

⌃ (v) :=
1
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i.e. the normalised differential cross section integrated up to a value v of the observable
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Here, m counts the numbers of emissions in a particular event, and is summed over all
possible numbers including no emission. The integral is then over the possible values of
individual scales at which emissions occur. The integrand accordingly that corresponds
to the probability for this emission with no intermediate emissions, or zero if the value
of the observable calculated from an event with those emissions would be larger than v.

Inserting Equation (3.5) and using (3.3), this parton shower result can explicitly be
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3 Resummation of large infrared logarithms
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zmin and zmax and that they will generally depend on t. It will be seen in the later
Section 3.2.1 on resummation, that they are only partially determined by NLL require-
ments. In a conventional shower algorithm, they are further restricted by the physical
requirement of momentum conservation, that dictates they should be chosen as to
guarantee z(1� z) > k2

T/Q
2, see Section 3.1.2. Feasibility, for example the requirement

not to work with negative weights, will lead to further changes using the ambiguity at
NLL level.

Equation (3.2) is written in a form that has a convenient physical interpretation,
which is exploited in parton shower Monte Carlos. It can be stated as follows:

• The first term describes the possibility that there are no emissions between the
scales t and t0, in which case the distribution remains unchanged.

• The second term integrates over possible additional emissions between the two
scales, with a last emission at scale t00. The dependence of f on t00 in this second
term recursively takes arbitrary many emissions between scales t and t00 into
account.

Thus, the Sudakov form factor ⇧(t0, t) is interpreted as the no-emission probability
between the two scales. A parton shower algorithm implements this by determining
the next scale t0 starting from a given scale t, according to the distribution
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d ln t0
. (3.5)
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Sudakov form factor
Strategy: split the exponent in two parts 
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Sudakov form factor multiple-emission correction

For example here:
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Putting things together

• Consider an rIRC safe observable like thrust


• Parton shower (as discussed so far) will produce very similar expression to 
resummation (e.g. CAESAR master formula):


• In practice  not evaluated in strict limit  leftover higher order corrections


• Apart from that, AO shower reproduces resummed  “by construction”

V →

Σ

3.1 Parton showers

and iterating this until a cutoff scale tc is reached. In a typical implementation, tc is
chosen to mark the transition between the perturbative and non-perturbative regime,
e.g ↵s(t)/2⇡ ⇡ 1.

To simplify the computations, in particular in the direct comparison with resummed
calculations for specific observables, the shower will be ordered in the variable
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This corresponds, up to a power, to the value of V (k) in Equation (2.17). That can
be verified by inserting the definition of ⌘ in terms of z in the parametrisation given
in Section 2.5. The values of a and b are then chosen according to the observable
that should be resummed in the shower. For the observables studied in this work, the
parameters were given in Table 2.1.
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Here, m counts the numbers of emissions in a particular event, and is summed over all
possible numbers including no emission. The integral is then over the possible values of
individual scales at which emissions occur. The integrand accordingly that corresponds
to the probability for this emission with no intermediate emissions, or zero if the value
of the observable calculated from an event with those emissions would be larger than v.

Inserting Equation (3.5) and using (3.3), this parton shower result can explicitly be
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logarithmic accuracy, it can be argued that the strong coupling constant should actually
be evaluated at a scale of µ = kt [106]. This will be done in the following, i.e. ↵s
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T) with kT suitably expressed through the evolution variable t

and the light cone momentum fraction z.
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It is made explicit here that there is some freedom to choose the integration bounds,
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Equation (3.2) is written in a form that has a convenient physical interpretation,
which is exploited in parton shower Monte Carlos. It can be stated as follows:

• The first term describes the possibility that there are no emissions between the
scales t and t0, in which case the distribution remains unchanged.

• The second term integrates over possible additional emissions between the two
scales, with a last emission at scale t00. The dependence of f on t00 in this second
term recursively takes arbitrary many emissions between scales t and t00 into
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should be read as ↵s(k2
T) with kT suitably expressed through the evolution variable t

and the light cone momentum fraction z.

Formally, two solutions at different scales t and t0 can then be related by the integral
equation

f(x, t0) = ⇧(t0, t)f(x, t) +

Z
t

t0

dt00

t00
⇧(t00, t0)

Z
dz

z

↵s

2⇡
P (z)f(x/z, t00) (3.2)

where ⇧ is the so called Sudakov form factor [107]

⇧(t0, t) = e�R(t,t0) , (3.3)

with the single emission probability between two scales and its logarithmic derivative

R(t0, t) =

Z
t

t0

dt̄

t̄
R0(t̄) where R0(t) =

Z
zmax(t)

zmin(t)

dz
↵s

2⇡
P (z) . (3.4)

It is made explicit here that there is some freedom to choose the integration bounds,
zmin and zmax and that they will generally depend on t. It will be seen in the later
Section 3.2.1 on resummation, that they are only partially determined by NLL require-
ments. In a conventional shower algorithm, they are further restricted by the physical
requirement of momentum conservation, that dictates they should be chosen as to
guarantee z(1� z) > k2

T/Q
2, see Section 3.1.2. Feasibility, for example the requirement

not to work with negative weights, will lead to further changes using the ambiguity at
NLL level.

Equation (3.2) is written in a form that has a convenient physical interpretation,
which is exploited in parton shower Monte Carlos. It can be stated as follows:

• The first term describes the possibility that there are no emissions between the
scales t and t0, in which case the distribution remains unchanged.

• The second term integrates over possible additional emissions between the two
scales, with a last emission at scale t00. The dependence of f on t00 in this second
term recursively takes arbitrary many emissions between scales t and t00 into
account.

Thus, the Sudakov form factor ⇧(t0, t) is interpreted as the no-emission probability
between the two scales. A parton shower algorithm implements this by determining
the next scale t0 starting from a given scale t, according to the distribution

P(t0, t) =
d⇧(t0, t)

d ln t0
. (3.5)
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R(t, t′￼) = ∫
t

t′￼
∫

z+

z−

dz
αs

2π
P(z)
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Non-global Observables - Dipole showers

• The argument that led us to coherent branching and angular ordering 
crucially depended on freely averaging over the azimuth  !


• What if we are interested in observables that distinguish radiation at 
different  ?


• Example: radiation into gap between jets  coherence argument fails!

ϕj

ϕ

⇒

Δη
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Non-global Observables - Dipole showers

• The argument that led us to coherent branching and angular ordering 
crucially depended on freely averaging over the azimuth  !


• What if we are interested in observables that distinguish radiation at 
different  ?


• Example: radiation into gap between jets  coherence argument fails!

ϕj

ϕ

⇒

Δη

Those are exactly the NGLs:

NGLs in the Lund plane
The energy of the harder gluon (real) spans a single-logarithmic region of 
size 

The softer gluon contribution cancels with virtual corrections below the veto 
scale 

59
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Non-global Observables - Dipole showers

• The argument that led us to coherent branching and angular ordering 
crucially depended on freely averaging over the azimuth  !


• What if we are interested in observables that distinguish radiation at 
different  ?


• Example: radiation into gap between jets  coherence argument fails!

ϕj

ϕ

⇒

Δη

Correct Language are dipoles ordered 
in :kt

The BMS equation
The factorisation properties of the amplitude squared in the planar limit 
makes it possible to write closed differential equations for

For                 we obtain the Banfi-Marchesini-Smye (BMS) equation 

62

[AB Marchesini Smye hep-ph/0206076]

ordering variable

The solution of the BMS equation gives the LL resummation of NGLs
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Dipole Showers!

• Correct language for NGLs are dipoles ordered in transverse momentum.


• Simple interpretation for shower:                                                                                         
Probability for emission from dipole  to emit 


• Afterwards, we have new dipoles,  all emitting with 
respective probabilities 

i, k j

(i, k), (i, j), ( j, k)

∼
pipk

(pipj)(pjpk)

→
i

k k

i
j
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Addendum: dipole kinematics and matching

• Dipole showers are the correct language to discuss non-global logarithms


• But also: 


• close correspondence to NLO subtraction schemes, makes matching to 
fixed order significantly simpler


• Probably the main reason for their rapid adoption concurrently with the wide 
availability of automated NLO calculations and PS matching schemes!
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Dipole Recoil

• Preserve 4-momentum locally in 
both,


• Scale , i.e. after every emission 
project back to on-shell state


• within the dipole, i.e.


• See e.g. 

t

3.1 Parton showers

Hence this violates the probability conserving interpretation of a unitary parton shower.

It is well known how to deal with this situation in principle [109, 110, 111], and the
method to do so will be reviewed for this particular situation in Section 4.1. From
the point of view of numerical efficiency, it is however often favourable to avoid the
corresponding negative weights. Most traditional parton showers do not have this
option implemented. For this reason, the default DGLAP based shower used here will
apply the restriction for the soft and collinear term, as shown in Equation (3.10). From
a formal point of view this corresponds to a correction that is suppressed by a power
of v and therefore is not relevant for logarithmic resummation.

3.1.2 Full shower
Conventional parton showers, as used in full fledged Monte Carlo simulations, include
more effects than discussed in the previous section even for the simple born process
of e+e� ! qq̄ considered here [13]. Further, modern parton showers often rely on a
different treatment of the soft double counting problem described above, which is to
factor the soft eikonal. Both will be described here briefly for completeness and as they
are used in the analysis in Section 5.2.

Full DGLAP Showers

Away from the strict soft limit, emissions will cause a recoil on the hard legs present
at born level. Monte Carlo simulations take this into account by generating the four
momenta after an emission according to a particular prescription, in the following
called recoil scheme. The prescription used later is the one given in [112]. This is, for
a parton ij with momentum p̃ij splitting into partons i and j with respective momenta
pi and pj , with a spectator absorbing the recoil k and changing its momentum from p̃k
to pk, the new momenta are assigned as follows:

pi = zp̃ij + (1� z)yp̃k + k? , (3.11)
pj = (1� z)p̃ij + zyp̃k � k? , (3.12)
pk = (1� y)p̃k . (3.13)

Here k? is a four momentum with k2
? = k2

T, the transverse momentum that that is
given in the parton shower in terms of the evolution variable and z.

The requirement that all momenta are on-shell, p2
i
= 0 = p2

j
, leads to a relation

between z, y and k2
T:

k2
T = z(1� z)yQ2 (3.14)

with Q2 the invariant mass of the emitting qq̄ dipole formed from emitter and spectator,
Q2 = 2p̃ij · p̃k.

33

→
i

k k

i
j

p̃ij + p̃k = pi + pj + pk

[Catani, Seymour ’97]
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Treatment of multiple emissions e.g. in CAESAR

• generalized rescaling                                             
[Banfi, Salam, Zanderighi ’05]:

kρ
t = ktρ

ηρ = η − ξ ln ρ
and assume

V(kρ
i ) = ρV(ki)

 numerically 

evaluate phase space

integrals  in this limit

→

ξ =
η

ηmax

( + , − ,kt) ∼ (kteη, kte−η, kt)

∼ (ρ, ρ, ρ)
∼ (1, ρ2, ρ)

* example assuming  for brevityV(kt, η) ∼ kt /Q

∼ (ρ1−ξ, ρ1+ξ, ρ)



Daniel Reichelt Terascale MC School 2025 52

Treatment of multiple emissions e.g. in CAESAR

• generalized rescaling                                             
[Banfi, Salam, Zanderighi ’05]:

kρ
t = ktρ

ηρ = η − ξ ln ρ
and assume

V(kρ
i ) = ρV(ki)

 numerically 

evaluate phase space

integrals  in this limit

→

ξ =
η

ηmax

( + , − ,kt) ∼ (kteη, kte−η, kt)

∼ (ρ, ρ, ρ)
∼ (1, ρ2, ρ)

* example assuming  for brevityV(kt, η) ∼ kt /Q

∼ (ρ1−ξ, ρ1+ξ, ρ)Recursive IRC safety condition 1
The requirement that the observable scales in the same way irrespectively of 
the number of emission is formalised as follows

41

This is the first of the requirements known as “recursive” IRC safety

rIRC safe observables are the only ones that can be resummed so far

Generalized rescaling from Andrea’s 
lecture:
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Effect of  recoil on accuracy

• question: do recoil effects indeed 
vanish in soft limit (i.e. )?* 
[Dasgupta,Dreyer,Hamilton,Monni,Salam ’18]


• consider situation where we first 
emit  from , then emit ,




• transverse momentum of  will be 

 as  


• but, relevant limit is

ρ → 0

p̃ij pa, pb pj

p̃ij → pi, pj

pi

ki
t ∼ kij

t + kj
t → kij

t
kj

t

ki
t

→ 0

3.1 Parton showers

Hence this violates the probability conserving interpretation of a unitary parton shower.

It is well known how to deal with this situation in principle [109, 110, 111], and the
method to do so will be reviewed for this particular situation in Section 4.1. From
the point of view of numerical efficiency, it is however often favourable to avoid the
corresponding negative weights. Most traditional parton showers do not have this
option implemented. For this reason, the default DGLAP based shower used here will
apply the restriction for the soft and collinear term, as shown in Equation (3.10). From
a formal point of view this corresponds to a correction that is suppressed by a power
of v and therefore is not relevant for logarithmic resummation.

3.1.2 Full shower
Conventional parton showers, as used in full fledged Monte Carlo simulations, include
more effects than discussed in the previous section even for the simple born process
of e+e� ! qq̄ considered here [13]. Further, modern parton showers often rely on a
different treatment of the soft double counting problem described above, which is to
factor the soft eikonal. Both will be described here briefly for completeness and as they
are used in the analysis in Section 5.2.

Full DGLAP Showers

Away from the strict soft limit, emissions will cause a recoil on the hard legs present
at born level. Monte Carlo simulations take this into account by generating the four
momenta after an emission according to a particular prescription, in the following
called recoil scheme. The prescription used later is the one given in [112]. This is, for
a parton ij with momentum p̃ij splitting into partons i and j with respective momenta
pi and pj , with a spectator absorbing the recoil k and changing its momentum from p̃k
to pk, the new momenta are assigned as follows:

pi = zp̃ij + (1� z)yp̃k + k? , (3.11)
pj = (1� z)p̃ij + zyp̃k � k? , (3.12)
pk = (1� y)p̃k . (3.13)

Here k? is a four momentum with k2
? = k2

T, the transverse momentum that that is
given in the parton shower in terms of the evolution variable and z.

The requirement that all momenta are on-shell, p2
i
= 0 = p2

j
, leads to a relation

between z, y and k2
T:

k2
T = z(1� z)yQ2 (3.14)

with Q2 the invariant mass of the emitting qq̄ dipole formed from emitter and spectator,
Q2 = 2p̃ij · p̃k.

33

p̃ij pj

Δki
t

ki
t

→
ρkj

t

ρki
t

= 𝒪(1)
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Effect of recoil on accuracy

• With local dipole recoil, effects stay 
relevant even in the soft limit.


• Spoils NLL accuracy of most 
currently used (e.g. by ATLAS/CMS) 
dipole showers.

Momentum mapping in dipole-like showers

[Dasgupta,Dreyer,Hamilton,Monni,Salam] arXiv:1805.09327

↭ Recently identified problem
with standard dipole-like recoil

p
µ
k =

(
1→

p
2
ij

2p̃ij p̃k

)
p̃
µ
k

p
µ
i = z̃ p̃

µ
ij + (1→ z̃)

p
2
ij

2p̃ij p̃k
p̃
µ
k + k

µ
→

p
µ
j = (1→ z̃) p̃

µ
ij + z̃

p
2
ij

2p̃ij p̃k
p̃
µ
k → k

µ
→

↭ Angular correlations across multiple
emissions due to recoil on splitter in
anti-collinear region

↭ Spoils ωs → 0 consistency check

r =
 p

⟂
,2

 / 
p ⟂

,1

Δφ12

ratio of dipole-shower double-soft ME to correct result

0.05

0.1

0.2

0.5

1

-π -π/2 0 π/2 π
 0

 1

 2

|M
2show

er (p
a ,p

b ∈
♢)| / |M

2correct (p
a ,p

b ∈
♢)|

Applies to "diamond" rapidity region

[Dasgupta, Dreyer, Hamilton,Monni, Salam ’18]
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New Parton Showers - NLL accuracy

•  • Several solutions/re-evaluations of parton shower concepts:

• [Dasgupta, Dreyer, Hamilton,Monni, Salam, Soyez ’20], [vanBeekveld, Ferrario Ravasio, Hamilton, 

Salam, Soto-Ontoso,Soyez ’22] …


• partitioning of splitting functions and appropriate choice of evolution 
variable can lead to NLL accurate shower for local and global recoil 
strategies 


• [Forshaw, Holguin, Plätzer ’20]


• Connections between angular ordered and dipole showers

• [Nagy, Soper ’11]


• local transverse, global longitudinal recoil

• [Herren, Höche, Krauss, DR, Schönherr,’22], [Höche, Asse ’23], [Höche, Krauss, DR ‘24]


• global recoil, enables analytic comparison to resummation and proof of NLL 
accuracy 


• [Preuss ’24]


• global recoil in antenna shower Vinca
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Numerical accuracy tests 

• First attempt: try to list all the differences between showers and resummation, 
look at the differences


• General expression:


• Can give either shower or resummed result, depending on choices

Di!erences between pure NLL and parton shower

[Reichelt,Siegert,SH] arXiv:1711.03497

↭ Schematic di!erence between analytic resummation and parton shower
↭ !NLL(v) determined at exactly NLL

↭ !PS(v) determined by unitarity

↭ One can find a unified NLL/PS expression for R(v) and !(v)

! (v) = exp

{
→

∫

v

dω

ω
R

→

>v(ω)→
∫ v

vmin

dω

ω
R

→

<v(ω)

}

↑
↑∑

m=0

1

m!

(
m∏

i=1

∫

vmin

dωi

ωi
R

→

<v(ωi)

)
”

(
v →

m∑

j=1

V (ωi)

)

where

R
→

↭v(ω) =
ε
↭v,soft
s

(
µ
2
↭
)

ϑ

∫ zmax
↭v,soft

zmin
dz

CF

1→ z
→

ε
↭v,coll
s

(
µ
2
↭v

)

ϑ

∫ zmax
↭v,coll

zmin
dz CF

1 + z

2

Di!erences between pure NLL and parton shower

[Reichelt,Siegert,SH] arXiv:1711.03497

↭ Schematic di!erence between analytic resummation and parton shower
↭ !NLL(v) determined at exactly NLL

↭ !PS(v) determined by unitarity

↭ One can find a unified NLL/PS expression for R(v) and !(v)

! (v) = exp

{
→

∫

v

dω

ω
R

→

>v(ω)→
∫ v

vmin

dω

ω
R

→

<v(ω)

}

↑
↑∑

m=0

1

m!

(
m∏

i=1

∫

vmin

dωi

ωi
R

→

<v(ωi)

)
”

(
v →

m∑

j=1

V (ωi)

)

where

R
→

↭v(ω) =
ε
↭v,soft
s

(
µ
2
↭
)

ϑ

∫ zmax
↭v,soft

zmin
dz

CF

1→ z
→

ε
↭v,coll
s

(
µ
2
↭v

)

ϑ

∫ zmax
↭v,coll

zmin
dz CF

1 + z

2

[Höche, DR, Siegert ’17]
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Numerical accuracy tests 

• Can give either shower or resummed result, depending on choices

Di!erences between pure NLL and parton shower

[Reichelt,Siegert,SH] arXiv:1711.03497

↭ Schematic di!erence between analytic resummation and parton shower
↭ !NLL(v) determined at exactly NLL

↭ !PS(v) determined by unitarity

↭ One can find a unified NLL/PS expression for R(v) and !(v)

! (v) = exp

{
→

∫

v

dω

ω
R

→

>v(ω)→
∫ v

vmin

dω

ω
R

→

<v(ω)

}

↑
↑∑

m=0

1

m!

(
m∏

i=1

∫

vmin

dωi

ωi
R

→

<v(ωi)

)
”

(
v →

m∑

j=1

V (ωi)

)

where

R
→

↭v(ω) =
ε
↭v,soft
s

(
µ
2
↭
)

ϑ

∫ zmax
↭v,soft

zmin
dz

CF

1→ z
→

ε
↭v,coll
s

(
µ
2
↭v

)

ϑ

∫ zmax
↭v,coll

zmin
dz CF

1 + z

2

Di!erences between pure NLL and parton shower

↭ Isolated di!erences in terms of resolved/unresolved splitting probability:

R
→

↭v(ω) =
ε
↭v,soft
s

(
µ
2
↭
)

ϑ

∫ zmax
↭v,soft

zmin
dz

CF

1→ z
→

ε
↭v,coll
s

(
µ
2
↭v

)

ϑ

∫ zmax
↭v,coll

zmin
dz CF

1 + z

2

NLL Parton Shower NLL Parton Shower

z
max
>v,soft 1→ (ω/Q2)

a+b
2a z

max
>v,coll 1 1→ (ω/Q2)

a+b
2a

µ
2
>v,soft ω(1→ z)

2b
a+b µ

2
>v,coll ω ω(1→ z)

2b
a+b

ε
>v,soft
s

2-loop CMW ε
>v,coll
s

1-loop 2-loop CMW

z
max
<v,soft 1→ v

1
a 1→ (ω/Q2)

a+b
2a z

max
<v,coll 0 1→ (ω/Q2)

a+b
2a

µ
2
<v,soft Q

2
v

2
a+b (1→ z)

2b
a+b ω(1→ z)

2b
a+b µ

2
<v,coll n.a. ω(1→ z)

2b
a+b

ε
<v,soft
s

1-loop 2-loop CMW ε
<v,coll
s

n.a. 2-loop CMW

↭ Can cast pure NLL into PS language by using NLL expressions in PS

↭ Can study each e!ect in detail by reverting changes back to PS
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Numerical accuracy testsLocal four momentum conservation and unitarity

Analytic NLL ε ! 0
Shower ε = 0.001
z(1 � z) > k2

T/Q2

same plus µ2 = k2
T

Shower ε = 0.001
z(1 � z) > k2

T/Q2, η > 0
same plus µ2 = k2
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(4-momentum conservation)
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(phase-space sectorization)

↭ NLL→PS in µ
2
>v,coll

(conventional)

Analytic NLL ε ! 0
Shower ε = 0.001
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↭ NLL→PS in z
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<v,soft

(from PS unitarity)

↭ NLL→PS in µ
2
<v,soft

(from PS unitarity)

Running coupling and global momentum conservation

Analytic NLL ε ! 0
Shower ε = 0.001
2-loop (< v, soft)
2-loop CMW (< v, soft)
Shower ε = 0.001
2-loop CMW-0.2
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↭ NLL→PS in 2-loop CMW < v, soft

(from PS unitarity)

↭ NLL→PS in 2-loop CMW overall
(conventional)

Analytic NLL ε ! 0
unitary Shower ε = 0.001
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↭ NLL→PS in observable
(use experimental definition)

[Höche, DR, Siegert ’17]
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Numerical accuracy testsLocal four momentum conservation and unitarity

Analytic NLL ε ! 0
Shower ε = 0.001
z(1 � z) > k2

T/Q2

same plus µ2 = k2
T

Shower ε = 0.001
z(1 � z) > k2

T/Q2, η > 0
same plus µ2 = k2
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↭ NLL→PS in zmin/max

(4-momentum conservation)

↭ NLL→PS in z
max
>v,coll

(phase-space sectorization)

↭ NLL→PS in µ
2
>v,coll

(conventional)

Analytic NLL ε ! 0
Shower ε = 0.001
zmax
<v,soft = 1 � (ξ/Q2)

a+b
2a

Shower ε = 0.001
µ2
<v,soft = k2
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↭ NLL→PS in z
max
<v,soft

(from PS unitarity)

↭ NLL→PS in µ
2
<v,soft

(from PS unitarity)

Running coupling and global momentum conservation

Analytic NLL ε ! 0
Shower ε = 0.001
2-loop (< v, soft)
2-loop CMW (< v, soft)
Shower ε = 0.001
2-loop CMW-0.2
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↭ NLL→PS in 2-loop CMW < v, soft

(from PS unitarity)

↭ NLL→PS in 2-loop CMW overall
(conventional)

Analytic NLL ε ! 0
unitary Shower ε = 0.001
z(1 � z) > k2

T/Q2, η > 0
v from 4-momenta-0.2
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↭ NLL→PS in observable
(use experimental definition)

• Significant effects remaining away from strict 
limit where resummation is derived


• Need to probe limit directly if we want to 
learn (or even define) log accuracy of parton 
shower


• Need for  limitαs → 0

[Höche, DR, Siegert ’17]
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Numerical accuracy tests 
• Limit  with  (see 

[Dasgupta, Dreyer, Hamilton et. al. ’20] ) of
αs → 0 λ = αsL = const.
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FIG. 4: NLL test for various event shape observables. See the main text for details.

ΣShower

ΣNLL ∼ exp (fLL
Shower − Lg1(αn

s Ln))
× exp (fNLL

Shower − g2(αn
s Ln))

× exp (𝒪(αn+1
s Ln))

    if shower reproduces 

                LL, NLL logs
→ 1

• Observable: jet resolution  in Cambridge 
jet measure, only largest 
emission matters, check that additional 
shower emissions vanish  

y23
ℱ = 1 → [Herren, Höche, 

Krauss, DR, 
Schönherr,’22]

https://inspirehep.net/literature/1782392
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Numerical accuracy tests

• Most extensive sets of tests by PanScales collaboration

Momentum mapping in dipole-like showers
[Dasgupta,Dreyer,Hamilton,Monni,Salam,Soyez] arXiv:2002.11114

↭ Problem can be solved by partitioning of antenna radiation pattern
and choosing a suitable evolution variable (ω → 1/2)

kT = ωve
ω|ε̄|

ω =

(
sisj

Q2sij

)ω/2

↭ Three di!erent recoil schemes lead to NLL result if ω chosen appropriately:
Local dipole, local antenna, and global antenna

↭ NLL correct for global and non-global observables in e
+
e
→
↑hadrons[Dasgupta, Dreyer, Hamilton et. al. ’20]

https://inspirehep.net/literature/1782392
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Kinematics - global recoil scheme (Alaric example)

5

K̃ p̃i

p̃k

�

n pi

pk~kT pj

K�~kT

FIG. 2: Sketch of the momentum mapping for final-state evolution. See the main text for details. Note that pk does
not participate in the shift, Eq. (17), and only acts as a reference for the azimuthal angle �.

leading logarithmic accuracy. A key requirement for the construction of any momentum mapping therefore is collinear
safety, and all known parton-shower algorithms satisfy this constraint. An example for a problem which may only
be seen in dedicated measurements was identified in [53]. It originates in a modification of existing soft momenta in
subsequent emissions, that introduces an error in the simulated QCD radiation pattern at next-to-leading logarithmic
accuracy. In the following, we will construct a generic, collinear and NLL safe momentum mapping for both final-state
and initial-state radiation, which is inspired by the identified–particle dipole subtraction algorithm in [72]. We will
provide the analytic proof of NLL safety in Sec. VA and sketch the additional steps that are required to match the
parton shower to NLO calculations in Appendix C.

We begin by describing the logic underpinning our new kinematics mapping, {p̃l} ! {pl}. We identify the splitter
momentum, p̃i, and define a recoil momentum, K̃, as the negative sum of all momenta in the radiating QCD multipole,
including the momentum of the splitter (see also Appendix A).3 Together, the momenta K̃ and p̃i define the reference
frame of the splitting, as shown schematically in Fig. 2 (left). The momentum of the color spectator, p̃k, defines an
additional direction, which provides the reference for the azimuthal angle, �. In the first step of the mapping, the
emitter momentum is scaled by a factor z, and the emitted momentum, pj , is constructed with transverse momentum

component ~kT and suitable light-cone momenta. The color spectator remains unchanged, pk = p̃k. The recoil is
absorbed by the overall multipole, such that after the emission we have K 6= K̃, while K2 = K̃2. In particular,
the multipole after the emission acquires a transverse momentum with respect to K̃. This is shown schematically in
Fig. 2 (right). To compensate for both the transverse and the longitudinal recoil, the overall multipole is boosted to
its original frame of reference. This changes all momenta and e↵ectively distributes the recoil among them, generating
changes of the order of kT /

p
K2, which vanish in the infrared limits. We will make use of this fact in Sec. VA.

A collinear safe momentum mapping requires that for any two massless collinear partons, i and j, the momenta
behave as

pi
i||j

�! z p̃i , pj
i||j

�! (1� z) p̃i . (15)

In the exact limit, cos ✓ij = 0, the splitting variable z is uniquely defined and given by

z =
pin

(pi + pj)n
. (16)

where n is an arbitrary auxiliary vector that satisfies p̃in 6= 0. Note that n can be either light-like, time-like or
space-like, as long as p̃in 6= 0. In order to construct a collinear-safe momentum mapping for arbitrary values of the
two-particle virtuality pipj , we can simply use the first part of Eq. (15) away from this limit. This implies in particular
that pi retains its direction, and that all angular radiator functions involving pi remain unchanged.

A second important constraint for the mapping is overall four-momentum conservation. We satisfy this by defining
a vector K̃ to be a combination of the momenta {p̃1, . . . , p̃

µ

j�1, p̃
µ

j+1, . . . , p̃n}, and by using the shift

pi = z p̃i , n = K̃ + (1� z) p̃i , (17)

which implies pi + n = p̃i + K̃. The remaining task is to construct two new vectors, K and pj , such that K2 = K̃2,
and such that pj satisfies the collinear safety constraint, Eq. (15). The momenta in K̃ are mapped to new momenta
by a Lorentz transformation that is defined in terms of K̃ and K. The simplest way to obtain the new momenta is
by means of a light-cone parametrization [81]. With the help of the light-like vector

n̄ = n�
n2

2p̃in
p̃i = K̃ �  p̃i , where  =

K̃2

2p̃iK̃
. (18)

3
This construction di↵ers from the traditional choice in parton and dipole showers, where the splitter and recoil partner are disjoint.

colour spectator

splitter
other momenta ∑ ki

kμ
i → Λμ

νkν
i

pk = p̃k

pi = zp̃i
K2 = K̃2

K̃ + p̃i = K + pi + pj

Λμ
ν = gμ

ν −
(K + K̃)μ(K + K̃)ν

K ⋅ K̃ + K̃2
+ 2

KμK̃ν

K̃2
→ Λμ

νK̃ν = Kμ

• Before splitting: • After splitting:

[Catani, Seymour ’97]

[Herren, Höche, Krauss, DR, Schönherr,’22]
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What about angular ordered showers?

• Original recoil scheme:

• keep momenta off-shell during shower

• at the end, boost jets to globally preserve momentum


• But modern “local” schemes can be problematic:


•  preserving scheme favored by data in hard region, 
but not log-preserving


•  preserving scheme has problems describing data, 
but theoretically solid in the soft limit


• Solution: new “dot product” preserving scheme as 
middle ground 

qT

q2

[Berwick, Ferrario-Ravasio, 
Richardson, Seymour ’19]


Momentum mapping in angular ordered showers

[Bewick,Ferrario-Ravasio,Richardson,Seymour] arXiv:1904.11866

↭ Recoil schemes a!ect logarithmic accuracy
but impact also phase-space coverage

↭ In context of angular ordered Herwig 7
(NLL accurate for global observables)
↭ qT preserving scheme:

Maintains logarithmic accuracy

Overpopulates hard region

↭ q2 preserving scheme:

Breaks logarithmic accuracy

Good description of hard region

↭ Dot product preserving scheme (new):

Maintains logarithmic accuracy

Good description of hard radiation
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