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Preliminaries

What | expect you already know

e Fixed-order (FO) calculations:
» Precise predictions for a scattering involving up to a fixed number of final-state particles
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Preliminaries

What | expect you already know

e Fixed-order (FO) calculations:
» Precise predictions for a scattering involving up to a fixed number of final-state particles

O~ a?0"0%° +al"03° + e
» Example: tt production at NLO QCD
/ t /
t t t

» Rene’s lecture: Born, virtual and real corrections, treatment of IR singularities, ...
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Preliminaries

What | expect you already know

e Fixed-order (FO) calculations:
» Precise predictions for a scattering involving up to a fixed number of final-state particles

~ ~M~nAMnN m+1 .n~m+1,n m n+1 ~ym,n+1
O=xoa,a’0O™ +a; "a"0O +aa "0 + -
» Rene’s lecture: Born, virtual and real corrections, treatment of IR singularities, ...

e Parton showers (PS):
» lterated parton branchings based onn + 1 =~ n X 1 factorisation in soft/collinear limits

» Torbjorn’s lecture: splitting kernels, Sudakov form factor, evolution variable, ...
» Andera’s lecture: logarithmic expansionin ag and L
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What is matching?

FO versus PS Matching: a recipe to combine FO and PS
FO | PS

Inclusive rate (normalisation)
Well-defined (N)'LO accuracy
Missing HO uncertainties
Exact wide angle emissions
Small-p;/jet-veto region (soft/
collinear log resummation)

X IN|SN|S|TS
N|(X [ X | X | X

Realistic event structure (many jets) X | v
Hadronisation X |/
Underlying event / MPI X |/
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What is matching?

FO versus PS Matching: a recipe to combine FO and PS
FO |PS 3
Inclusive rate (normalisation) /| X
Well-defined (N)'LO accuracy V'
Missing HO uncertainties | X
Exact wide angle emissions VA ¢
Small-p;/jet-veto region (soft/ X |/ sl
collinear log resummation) :

. . . hadronization
Realistic event structure (many jets) X | v
Hadronisation X | /

Underlying event / MPI X |/
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What is matching?

What is matching
e Matching combines hard process, described by FO matrix element, with PS
» LO+PS straightforward: shower off the Born legs; the unitary shower keeps the total rate at LO
» NLO+PS tricky but mostly worked out': the FO real correction contains one extra parton,
already considered in the PS — overlap/potential double counting; need explicit matching
schemes
» going beyond NLO is work in progress

What matching is NOT
e Merging combines several samples with different jet multiplicities with a shower:
» avoids double counting between matrix elements of different multiplicities and the PS

Matching vs. Merging

e Matching: one FO process + PS.
e Merging: many FO processes (different multiplicities) + PS.

TUp leading-logarithmic accuracy.
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Outline, Part 1: Matching

NLO+PS matching
e Matching types
e Available schemes

NLO+PS matching with POWHEG
e POWHEG formula

e Singular regions

e Tuningthereal cross section

Resonance-aware POWHEG

e Resonance histories
e Multiple-radiation scheme

POWHEG BOX V2/RES

e Note on negative weights
e Les Houches Events and shower interface
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Types of matching schemes: additive vs multiplicative

Additive matching (MC@NLO-type) Multiplicative matching (POWHEG-type)
NLO _ ONLO
Oadd = OLO+Ps T (UNLO - GLO+PS) Omult = OLO+PS * ( NLO )
OLo+ps

e Starts from LO+PS prediction and add a e Starts from LO+PS prediction and rescale it

correction with a local NLO K-factor
e Reproduces the fixed-order high-p; tail by e The hardest emission is generated with the

construction exact real matrix element
e Shower starting scale is a matching choice e Hardest-emission p; defines a natural event-
e The correction can be negative and larger by-event shower starting scale

than the first term: negative weighted events @ Local K-factor >0 = positive weighted events

Where: 0o, ps: LO FO + PS; gy, o: NLO FO (no shower); 0, ps: NLO expansion of 0, g, ps (LO+PS
contribution that is already NLO)
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Available NLO+PS matching schemes

e MC@NLO (additive; shower-dependent): additive matching around the PS; very general and
widely used, but intrinsically produces negative-weight events.
[ Frixione & Webber, JHEP 0206 (2002) 029 ]

e POWHEG (multiplicative; largely shower-agnostic): hardest emission from an NLO Sudakov, PS
adds only softer emissions under a veto; positive weights as long as B(®g) > 0.
[ Nason, JHEP 0411 (2004) 040 ]

e KrkNLO (multiplicative; shower-specific): NLO reweighting in a dedicated MC factorisation
scheme; positive weights but tightly tied to the chosen shower.
[ Jadach et al., JHEP 1510 (2015) 052 ]

e MACNLOPS (hybrid multiplicative-accumulative): combines MC@NLO- and POWHEG-like ideas
for better control of logs and reduced negative weights. [ Nason & Salam, JHEP 2201 (2022) 067 |

e ESME (hybrid; NLL+NLO, positive-weight): PanScales matching scheme with NLL-accurate
showers and exponentiated subtractions. [ van Beekveld et al., to appear in JHEP (2025) |
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Checkpoint

Are there any questions?
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POWHEG Method Introduction

Why POWHEG?

e POWHEG = POsitive Weight Hardest Emission Generator

e Goal: combine FO NLO QCD with PS, preserving fully differential NLO accuracy for inclusive
observables (inclusive w.r.t. radiation)

e Generate (mostly) positive-weight events output in shower-independent Les Houches events
(same samples can be showered in Pythia and Herwig)

Coreldea

e Compute the FO NLO differential cross section for the underlying Born configuration (B(®3))
e Generate the hardest radiation (POWHEG emission) according to a unitary probability
distribution built from the exact real matrix element (the square bracket)

— R(®dy, ®
POWHEG formula: do = B(®g)|A(Pr. min) +dcbradA(pT(¢rad)) (B(BCD ;ad)
B
e Thenlet the PS add softer, ordered emissions

» with a veto to avoid harder emissions than the POWHEG one
Tomas JeZo (tomas.jezo@uni-muenster.de)
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From LO+PS to POWHEG

Starting point: LO+PS master formula
doLO+PS = B((DB)[APS(tO) + dq)radAPS(t)KPS((DB’ (Drad)]

e tisthe PSevolution variable, Kps(®g, ®,,4) the PS emission kernel, B(®g) the FO LO weight
e The square bracket is unitary: [Aps(ty) + [ d D, g ps(t)Kps(Pg, Prag)] = 1

Upgrades that give POWHEG

o t= pT(cDrad)_ _

B(®g) —» B(Pg), where B(®g) is the FO NLO weight

Kps(®pg, Pr.q) = R(Pg, P,.q)/B(Pg), same in soft/collinear limits

Build the Sudakov with R / B (which guarantees that the square bracket is still unitary)
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From LO+PS to POWHEG

Starting point: LO+PS master formula
dOLO+PS = B((DB)[APS(tO) + dq)radAPS(t)KPS(cDB’ (Drad)]

e tisthe PSevolution variable, Kps(®g, ®,,4) the PS emission kernel, B(®g) the FO LO weight
e The square bracket is unitary: [Aps(ty) + [ d D, g ps(t)Kps(Pg, Prag)] = 1

Upgrades that give POWHEG

* {=Pro, B

e B(®g) —» B(®g), where B(®p) is the FO NLO weight

o Kps(®Pg, ®,.q) = R(Pg, D,.q)/B(Pg), same in soft/collinear limits

e Build the Sudakov with R / B (which guarantees that the square bracket is still unitary)

R(CDB’ cl)rad)
B(®p)

dGPOWHEG = E(CDB) A(pT,min) + dq)radA(pT((Drad))

where B(®g) = B(Pg) + V(®g) + [dD,(R(Dp, @,) — C(Pg, D,))
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Singular regions

Where do we attach emissions?

e R(®g) can have several collinear singularities (different emitter-emitted pairs)
e The real phase space can be split into pieces with only one collinear singularity, labelled by o

Singular regions:
-(1,5) & (2,5)

- (3,5)

- (495)
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Singular regions

Where do we attach emissions?

e R(®g) can have several collinear singularities (different emitter-emitted pairs)
e The real phase space can be split into pieces with only one collinear singularity, labelled by o

Ra(cDB’ rad)
B(®s)

dGPOWHEG - E((DB pT m|n Z dq)radA pT rad))

where now B(®g) = B(®g) + V(®g) + Y [dDI (R (D, DY) — C(Pg, PF))

e First and foremost we need mappings f* : ®p < (®g, D7), typically with global recoil
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Singular regions

Where do we attach emissions?

e R(®g) can have several collinear singularities (different emitter-emitted pairs)
e The real phase space can be split into pieces with only one collinear singularity, labelled by o

Ra(cDB’ rad)
B(®g)
where now B(®g) = B(®g) + V(®g) + Y [dDI (R (D, DY) — C(Pg, PF))

e First and foremost we need mappings f” : ®

dOpowHEG = E((DB

pT m|n Z dq)radA pT rad))

o (P, d ), typically with global recoil
e For each o we also define a corresponding transverse momentum p7 that enters the Sudakov

e And we need a decomposition of R into contributions labelled by singular regions o
cl)B’ rad Z Ra CDB’ rad

» In practice this is done with smooth functions D, (®g, ®,4) suchthat} D, = 1and R* = DR
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Singular regions

Where do we attach emissions?

e R(®g) can have several collinear singularities (different emitter-emitted pairs)
e The real phase space can be split into pieces with only one collinear singularity, labelled by o

Ra(cDB’ rad)
B(®s)

dGPOWHEG - E((DB pT m|n Z dq)radA pT rad))

where now B(®g) = B(®g) + V(®g) + Y [dDI (R (D, DY) — C(Pg, PF))

e First and foremost we need mappings f* : ®p < (®g, D7), typically with global recoil
e For each o we also define a corresponding transverse momentum p7 that enters the Sudakov
e And we need a decomposition of R into contributions labelled by singular regions o

cl)B’ rad ZRa CDB’ rad

» In practice this is done with smooth functions D, (®g, ®,4) suchthat} D, = 1and R* = DR
e Some of the objects definitions depend on the subtraction scheme (FKS, CS, ...)
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Sudakov veto loop

How do we attach emissions?

e Goalisto generate a POWHEG emission according to the unitary square bracket:
[A(pT,min) + Za dq)fadA(pT( gad))R(iDB’ ?ad)/B((DB)]

e For agiven @y (chosen with weight B(®;)), start at a maximal scale t

e Repeatedly:
1. propose a trial emission at some lower scale t with radiation variables ®__,
2. perform a Sudakov veto step to decide whether to accept this emission

Dp)

max(

Tscalup: shower starting scale
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Sudakov veto loop

How do we attach emissions?

e Goalisto generate a POWHEG emission according to the unitary square bracket:
[A(pT,min) + Za dcbfadA(pT( gad))R(iDB’ ?ad)/B((DB)]

e For agiven @y (chosen with weight B(®g)), start at a maximal scale t,,,, (Pg)

e Repeatedly:
1. propose a trial emission at some lower scale t with radiation variables ®
2. perform a Sudakov veto step to decide whether to accept this emission

e |f a proposalis accepted:

» we return this emission as the hardest emission in region o with t = p;(®r,4)

a
rad

Tscalup: shower starting scale
Tomas JeZo (tomas.jezo@uni-muenster.de) 17 /43


mailto:tomas.jezo@uni-muenster.de

Sudakov veto loop

How do we attach emissions?

e Goalisto generate a POWHEG emission according to the unitary square bracket:
[A(pT,min) + Za dcbfadA(pT( gad))R(iDB’ ?ad)/B((DB)]
e For agiven @y (chosen with weight B(®;)), start at a maximal scale t
e Repeatedly:
1. propose a trial emission at some lower scale t with radiation variables ®
2. perform a Sudakov veto step to decide whether to accept this emission
e |f a proposalis accepted:
» we return this emission as the hardest emission in region o with t = p;(®y, )
e If successive proposals are rejected until t drops below pr i
> no emission harder than pr ..., is generated

Dp)

max(

a
rad

Tscalup: shower starting scale
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Sudakov veto loop

How do we attach emissions?

Goal is to generate a POWHEG emission according to the unitary square bracket:
[A(pT,min) + Za dcbfadA(pT( gad))R(iDB’ ?ad)/B((DB)]

For a given @ (chosen with weight B(®p)), start at a maximal scale t
Repeatedly:

1. propose a trial emission at some lower scale t with radiation variables ®
2. perform a Sudakov veto step to decide whether to accept this emission
If a proposal is accepted:

» we return this emission as the hardest emission in region o with t = p;(®y, )

If successive proposals are rejected until t drops below pr ;.

> no emission harder than pr ..., is generated

Finally: this is done in each singular region and all emissions are sorted by hardness, descending
» we keep only the first emission, construct @, and return the event with scalupT=pT( o d)

rad
> if no emissions were generated, the event is kept as a pure Born event with scalup=p; in

Dp)

max(

o
rad

Tscalup: shower starting scale
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Checkpoint

Are there any questions?
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Tuning the real cross section

The idea

e So far real matrix element decomposed into singular regions o, R(®g) = 3 R%(Pg, Proy)
e We can now further split each R“ into

» R¢:asingular part exponentiated in the Sudakov
> R,‘i‘: a finite part treated purely at fixed order
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Tuning the real cross section

Theidea

e So far real matrix element decomposed into singular regions o, R(®g) = 3 R%(Pg, Proy)
e We can now further split each R“ into

» R¢:asingular part exponentiated in the Sudakov

> R,‘i‘: a finite part treated purely at fixed order

With a damping factor F(p;): F(p;) — 1inthe soft/collinear region and F(p;) — O far away
e POWHEG’s standard choice: F(p;) = hﬁamp/(hﬁamp + p%)

o Foreachregiona: R{ =R°F(p;(Prq)) and Rf =R* —R:

rad
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Tuning the real cross section

The idea

e So far real matrix element decomposed into singular regions o, R(®g) = 3 R%(Pg, Proy)
e We can now further split each R“ into
» R¢:asingular part exponentiated in the Sudakov
> R,‘i‘: a finite part treated purely at fixed order
e With a damping factor F(p;): F(p;) — 1in the soft/collinear region and F(p;) — O far away
e POWHEG’s standard choice: F(p;) = hﬁamp/(hﬁamp + p%)
o Foreachregiona: R{ =R°F(p;(Prq)) and Rf =R* —R:

e POWHEG formula splits into two parts:

» Exponentiated, btilde (soft), part: dopownee = d9powneg With R® — RS, including overline B
» remnant (hard) part: dG£OWHEG =3  dOgR(PR)
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Tuning the real cross section

The idea

So far real matrix element decomposed into singular regions o, R(®g) =3 R*(Pg, Pryg)
We can now further split each R“ into

» R¢:asingular part exponentiated in the Sudakov

> R,‘i‘: a finite part treated purely at fixed order

With a damping factor F(p;): F(p;) — 1inthe soft/collinear region and F(p;) — O far away
POWHEG's standard choice: F(p;) = hﬁamp/(hﬁamp + p%)

Foreachregiona: RS = R*F(p;(®r,q)) and Rf =R“—R{

POWHEG formula splits into two parts:

» Exponentiated, btilde (soft), part: dopownee = d9powneg With R® — RS, including overline B
» remnant (hard) part: dGIQOWHEG =3  dOgR(PR)

hgamp Provides a smooth switch:

» for pr << hyymp: F(pr) = 1= fully exponentiated

» for pr > hy,no: F(pr) ® 0= treated as remnant
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Tuning the real cross section

But why
e Complete R/B exponentiation pulls the inclusive NLO K-factor into the hard tail
» for large pr: dopowhEs ~ (E/B)R
» can noticeably over-enhance the high-p; region vs fixed-order NLO
® hgamp SPlits R = R, + R; to localise exponentiation and reduces the local K-factor (B/B), while
preserving NLO accuracy
» R.:matches R in the soft/collinear region and is exponentiated with B
> R;:finite hard part, treated additively, follows fixed-order behaviour
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Tuning the real cross section

But why

e Complete R/B exponentiation pulls the inclusive NLO K-factor into the hard tail
» for large pr: dopowhEs ~ (§/B)R
» can noticeably over-enhance the high-p; region vs fixed-order NLO
® hgamp SPlits R = R, + R; to localise exponentiation and reduces the local K-factor (B/B), while
preserving NLO accuracy
» R.:matches R in the soft/collinear region and is exponentiated with B
> R;:finite hard part, treated additively, follows fixed-order behaviour

e How to choose hdamp? No universal answer! (What does “hard” mean for your process?)
» Default is a fixed value, but it can be made dynamic
» Experiments tune it
» Varying it should be part of the modelling uncertainty
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Tuning the real cross section

A cool sideffect
e There s also bornzerodamp, which shifts all contributions that are “numerically” far away from soft/

collinear approx into remnant

» IFRY > N(RZ ¢, + RS — RS 1soft) it cONcludes something goes wrong and shifts the event into the

remnant. Examples:
- When B is zero and R is not
- When there is an enhancement spoiled by a recoil (e.g. intermediate resonance, g — bb

splittings)

21/43
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Tuning the real cross section

A cool sideffect
e There s also bornzerodamp, which shifts all contributions that are “numerically” far away from soft/
collinear approx into remnant
» IFRY > N(RZ ¢, + RS — RS 1soft) it cONcludes something goes wrong and shifts the event into the
remnant. Examples:
- When B is zero and R is not
- When there is an enhancement spoiled by a recoil (e.g. intermediate resonance, 3 — bb

splittings)

Keep in mind

e btilde: one factor of a, in Ris evaluated at p; (®,,4) (and is never subject to scale variations),
remaining powers at g

e remnant R;: all powers of a, are usually taken at pp

e Caveat: assoon as R, # R the exact NLO cancellation of u; dependence between virtual + real is
spoiled beyond the singular part
» always compare POWHEG p, ug variations to the fixed order
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