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Preliminaries

What I expect you already know

• Fixed-order (FO) calculations:

‣ Precise predictions for a scattering involving up to a fixed number of final-state particles

𝑂 ≈ 𝛼𝑚
𝑠 𝛼

𝑛𝑂𝑚,𝑛 + 𝛼𝑚+1
𝑠 𝛼𝑛𝑂𝑚+1,𝑛 + 𝛼𝑚

𝑠 𝛼
𝑛+1𝑂𝑚,𝑛+1 +⋯

‣ Example: 𝑡𝑡  production at NLO QCD

‣ Rene’s lecture: Born, virtual and real corrections, treatment of IR singularities, …
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• Fixed-order (FO) calculations:

‣ Precise predictions for a scattering involving up to a fixed number of final-state particles

𝑂 ≈ 𝛼𝑚
𝑠 𝛼

𝑛𝑂𝑚,𝑛 + 𝛼𝑚+1
𝑠 𝛼𝑛𝑂𝑚+1,𝑛 + 𝛼𝑚

𝑠 𝛼
𝑛+1𝑂𝑚,𝑛+1 +⋯

‣ Rene’s lecture: Born, virtual and real corrections, treatment of IR singularities, …

• Parton showers (PS):

‣ Iterated parton branchings based on 𝑛 + 1 ≈ 𝑛 × 1 factorisation in soft/collinear limits

‣ Torbjörn’s lecture: splitting kernels, Sudakov form factor, evolution variable, …

‣ Andera’s lecture: logarithmic expansion in 𝛼𝑆  and 𝐿
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What is matching?

FO versus PS

FO PS

Inclusive rate (normalisation) ✔ ✘

Well-defined (N)𝑖LO accuracy ✔ ✘

Missing HO uncertainties ✔ ✘

Exact wide angle emissions ✔ ✘

Small-𝑝𝑇 /jet-veto region (soft/

collinear log resummation)

✘ ✔

Realistic event structure (many jets) ✘ ✔

Hadronisation ✘ ✔

Underlying event / MPI ✘ ✔

Matching: a recipe to combine FO and PS
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What is matching?

What is matching

• Matching combines hard process, described by FO matrix element, with PS

‣ LO+PS straightforward: shower off the Born legs; the unitary shower keeps the total rate at LO

‣ NLO+PS tricky but mostly worked out†: the FO real correction contains one extra parton, 

already considered in the PS → overlap/potential double counting; need explicit matching 

schemes

‣ going beyond NLO is work in progress

What matching is NOT

• Merging combines several samples with different jet multiplicities with a shower:

‣ avoids double counting between matrix elements of different multiplicities and the PS

Matching vs. Merging

• Matching: one FO process + PS.

• Merging: many FO processes (different multiplicities) + PS.

†Up leading-logarithmic accuracy.
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Outline, Part 1: Matching

NLO+PS matching

• Matching types

• Available schemes

NLO+PS matching with POWHEG

• POWHEG formula

• Singular regions

• Tuning the real cross section

Resonance-aware POWHEG

• Resonance histories

• Multiple-radiation scheme

POWHEG BOX V2/RES

• Note on negative weights

• Les Houches Events and shower interface
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Types of matching schemes: additive vs multiplicative

Additive matching (MC@NLO-type)

𝜎add = 𝜎LO+PS + (𝜎NLO − 𝜎NLO
LO+PS)

• Starts from LO+PS prediction and add a 

correction

• Reproduces the fixed-order high-𝑝𝑇  tail by 

construction

• Shower starting scale is a matching choice

• The correction can be negative and larger 

than the first term: negative weighted events

Multiplicative matching (POWHEG-type)

𝜎mult = 𝜎LO+PS · (
𝜎NLO
𝜎NLO
LO+PS

)

• Starts from LO+PS prediction and rescale it 

with a local NLO K-factor

• The hardest emission is generated with the 

exact real matrix element

• Hardest-emission 𝑝𝑇  defines a natural event-

by-event shower starting scale

• Local K-factor >0 ⇒ positive weighted events

Where: 𝜎LO+PS: LO FO + PS; 𝜎NLO: NLO FO (no shower); 𝜎NLO
LO+PS: NLO expansion of 𝜎LO+PS  (LO+PS 

contribution that is already NLO)
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Available NLO+PS matching schemes

• MC@NLO (additive; shower-dependent): additive matching around the PS; very general and 

widely used, but intrinsically produces negative-weight events.

[ Frixione & Webber, JHEP 0206 (2002) 029 ]

• POWHEG (multiplicative; largely shower-agnostic): hardest emission from an NLO Sudakov, PS 

adds only softer emissions under a veto; positive weights as long as 𝐵(Φ𝐵) > 0.

[ Nason, JHEP 0411 (2004) 040 ]

• KrkNLO (multiplicative; shower-specific): NLO reweighting in a dedicated MC factorisation 

scheme; positive weights but tightly tied to the chosen shower.

[ Jadach et al., JHEP 1510 (2015) 052 ]

• MAcNLOPS (hybrid multiplicative–accumulative): combines MC@NLO- and POWHEG-like ideas 

for better control of logs and reduced negative weights. [ Nason & Salam, JHEP 2201 (2022) 067 ]

• ESME (hybrid; NLL+NLO, positive-weight): PanScales matching scheme with NLL-accurate 

showers and exponentiated subtractions. [ van Beekveld et al., to appear in JHEP (2025) ]
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Checkpoint

Are there any questions?
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POWHEG Method Introduction

Why POWHEG?

• POWHEG = POsitive Weight Hardest Emission Generator

• Goal: combine FO NLO QCD with PS, preserving fully differential NLO accuracy for inclusive 

observables (inclusive w.r.t. radiation)

• Generate (mostly) positive-weight events output in shower-independent Les Houches events 

(same samples can be showered in Pythia and Herwig)

Core Idea

• Compute the FO NLO differential cross section for the underlying Born configuration (𝐵(Φ𝐵))

• Generate the hardest radiation (POWHEG emission) according to a unitary probability 

distribution built from the exact real matrix element (the square bracket)

POWHEG formula: 𝑑𝜎 = 𝐵(Φ𝐵)[Δ(𝑝𝑇, min) + 𝑑ΦradΔ(𝑝𝑇(Φrad))
𝑅(Φ𝐵 , Φrad)

𝐵(Φ𝐵)
]

• Then let the PS add softer, ordered emissions

‣ with a veto to avoid harder emissions than the POWHEG one
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From LO+PS to POWHEG

Starting point: LO+PS master formula

𝑑𝜎LO+PS = 𝐵(Φ𝐵)[ΔPS(𝑡0) + 𝑑ΦradΔPS(𝑡)𝐾PS(Φ𝐵 , Φrad)]

• 𝑡  is the PS evolution variable, 𝐾PS(Φ𝐵 , Φrad) the PS emission kernel, 𝐵(Φ𝐵) the FO LO weight

• The square bracket is unitary: [ΔPS(𝑡0) + ∫ 𝑑ΦradΔPS(𝑡)𝐾PS(Φ𝐵 , Φrad)] = 1

Upgrades that give POWHEG

• 𝑡 = 𝑝𝑇(Φrad)

• 𝐵(Φ𝐵) → 𝐵(Φ𝐵), where 𝐵(Φ𝐵) is the FO NLO weight

• 𝐾PS(Φ𝐵 , Φrad) → 𝑅(Φ𝐵 , Φrad)/𝐵(Φ𝐵), same in soft/collinear limits

• Build the Sudakov with 𝑅 / 𝐵 (which guarantees that the square bracket is still unitary)
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Singular regions

Where do we attach emissions?

• 𝑅(Φ𝑅) can have several collinear singularities (different emitter-emitted pairs)

• The real phase space can be split into pieces with only one collinear singularity, labelled by 𝛼
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𝛼
rad), typically with global recoil
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• For each 𝛼  we also define a corresponding transverse momentum 𝑝𝛼𝑇  that enters the Sudakov

• And we need a decomposition of 𝑅 into contributions labelled by singular regions 𝛼

𝑅(Φ𝐵 , Φ
𝛼
rad) = ∑

𝛼
𝑅𝛼(Φ𝐵 , Φ

𝛼
rad)

‣ In practice this is done with smooth functions 𝐷𝛼(Φ𝐵 , Φ
𝛼
rad) such that ∑𝛼 𝐷𝛼 = 1 and 𝑅𝛼 = 𝐷𝛼𝑅
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Sudakov veto loop

How do we attach emissions?

• Goal is to generate a POWHEG emission according to the unitary square bracket:

[Δ(𝑝𝑇,min) + ∑𝛼 𝑑Φ
𝛼
radΔ(𝑝𝑇 (Φ

𝛼
rad))𝑅(Φ𝐵 , Φ

𝛼
rad)/𝐵(Φ𝐵)]

• For a given Φ𝐵  (chosen with weight 𝐵(Φ𝐵)), start at a maximal scale 𝑡max(Φ𝐵)
• Repeatedly:

1. propose a trial emission at some lower scale 𝑡  with radiation variables Φ𝛼
rad

2. perform a Sudakov veto step to decide whether to accept this emission

†
scalup: shower starting scale
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rad)

• If successive proposals are rejected until 𝑡  drops below 𝑝𝑇, min:

‣ no emission harder than 𝑝𝑇, min  is generated

• Finally: this is done in each singular region and all emissions are sorted by hardness, descending

‣ we keep only the first emission, construct Φ𝑅  and return the event with scalup†=𝑝𝑇 (Φ
𝛼
rad)

‣ if no emissions were generated, the event is kept as a pure Born event with scalup=𝑝𝑇, min

†
scalup: shower starting scale
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Checkpoint

Are there any questions?
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Tuning the real cross section

The idea

• So far real matrix element decomposed into singular regions 𝛼, 𝑅(Φ𝑅) = ∑𝛼 𝑅
𝛼(Φ𝐵 , Φ

𝛼
rad)

• We can now further split each 𝑅𝛼  into

‣ 𝑅𝛼𝑠 : a singular part exponentiated in the Sudakov

‣ 𝑅𝛼𝑓 : a finite part treated purely at fixed order
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𝛼(Φ𝐵 , Φ

𝛼
rad)

• We can now further split each 𝑅𝛼  into

‣ 𝑅𝛼𝑠 : a singular part exponentiated in the Sudakov

‣ 𝑅𝛼𝑓 : a finite part treated purely at fixed order

• With a damping factor 𝐹(𝑝𝑇 ): 𝐹(𝑝𝑇 ) → 1 in the soft/collinear region and 𝐹(𝑝𝑇 ) → 0 far away

• POWHEG’s standard choice: 𝐹(𝑝𝑇 ) = ℎ2damp/(ℎ
2
damp + 𝑝2𝑇 ).

• For each region 𝛼: 𝑅𝛼𝑠 = 𝑅𝛼𝐹(𝑝𝑇 (Φ
𝛼
rad)) and 𝑅𝛼𝑓 = 𝑅𝛼 − 𝑅𝛼𝑠
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𝛼
rad)) and 𝑅𝛼𝑓 = 𝑅𝛼 − 𝑅𝛼𝑠

• POWHEG formula splits into two parts:

‣ Exponentiated, btilde (soft), part: 𝑑𝜎POWHEG → 𝑑𝜎𝑠
POWHEG  with 𝑅𝛼 → 𝑅𝛼𝑠 , including overline 𝐵

‣ remnant (hard) part: 𝑑𝜎 𝑓
POWHEG = ∑𝛼 𝑑Φ

𝛼
𝑅𝑅

𝛼
𝑓 (Φ

𝛼
𝑅)
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• ℎdamp  provides a smooth switch:

‣ for 𝑝𝑇 ≪ ℎdamp: 𝐹(𝑝𝑇 ) ≈ 1 ⇒ fully exponentiated

‣ for 𝑝𝑇 ≫ ℎdamp: 𝐹(𝑝𝑇 ) ≈ 0 ⇒ treated as remnant
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Tuning the real cross section

But why

• Complete 𝑅/𝐵 exponentiation pulls the inclusive NLO 𝐾-factor into the hard tail

‣ for large 𝑝𝑇 : 𝑑𝜎POWHEG ∼ (𝐵/𝐵)𝑅
‣ can noticeably over-enhance the high-𝑝𝑇  region vs fixed-order NLO

• ℎdamp  splits 𝑅 = 𝑅𝑠 + 𝑅𝑓  to localise exponentiation and reduces the local K-factor (𝐵/𝐵), while 

preserving NLO accuracy

‣ 𝑅𝑠 : matches 𝑅 in the soft/collinear region and is exponentiated with 𝐵
‣ 𝑅𝑓 : finite hard part, treated additively, follows fixed-order behaviour
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‣ can noticeably over-enhance the high-𝑝𝑇  region vs fixed-order NLO

• ℎdamp  splits 𝑅 = 𝑅𝑠 + 𝑅𝑓  to localise exponentiation and reduces the local K-factor (𝐵/𝐵), while 

preserving NLO accuracy

‣ 𝑅𝑠 : matches 𝑅 in the soft/collinear region and is exponentiated with 𝐵
‣ 𝑅𝑓 : finite hard part, treated additively, follows fixed-order behaviour

• How to choose ℎdamp? No universal answer! (What does “hard” mean for your process?)

‣ Default is a fixed value, but it can be made dynamic

‣ Experiments tune it

‣ Varying it should be part of the modelling uncertainty
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Tuning the real cross section

A cool sideffect

• There is also bornzerodamp, which shifts all contributions that are “numerically” far away from soft/

collinear approx into remnant

‣ If 𝑅𝛼𝑠 > 𝑁(𝑅𝛼soft + 𝑅𝛼coll − 𝑅𝛼coll-soft) it concludes something goes wrong and shifts the event into the 

remnant. Examples:

– When 𝐵 is zero and 𝑅 is not

– When there is an enhancement spoiled by a recoil (e.g. intermediate resonance, 𝑔 → 𝑏𝑏 

splittings)
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‣ If 𝑅𝛼𝑠 > 𝑁(𝑅𝛼soft + 𝑅𝛼coll − 𝑅𝛼coll-soft) it concludes something goes wrong and shifts the event into the 

remnant. Examples:

– When 𝐵 is zero and 𝑅 is not

– When there is an enhancement spoiled by a recoil (e.g. intermediate resonance, 𝑔 → 𝑏𝑏 

splittings)

Keep in mind

• btilde: one factor of 𝛼𝑠  in 𝑅 is evaluated at 𝑝𝑇 (Φrad) (and is never subject to scale variations), 

remaining powers at 𝜇𝑅
• remnant 𝑅𝑓 : all powers of 𝛼𝑠  are usually taken at 𝜇𝑅
• Caveat: as soon as 𝑅𝑠 ≠ 𝑅 the exact NLO cancellation of 𝜇𝑅  dependence between virtual + real is 

spoiled beyond the singular part

‣ always compare POWHEG 𝜇𝑅 , 𝜇𝐹  variations to the fixed order
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