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Brief introduction to jets observables
General principles of resummation of jet observables in QCD
Non-global logarithms

Coherence-violating logarithms



INTRODUCTION TO
JET OBSERVABLES



The description of LHC events involves different levels

JUR V2§ . A hard event, with well separated
S e P i partons = fixed-order QCD

.,‘.:".3 2 %\ éga;q% % - Radiation of secondary soft and

S 'a ﬁ‘%H Cﬁz N collinear gluons from the hard

r:‘ V_Q_%QQ%T % RN partons — Monte Carlo, all-order
et Lol e p fa’”m‘g“” gt resummation

o Hadronisation = Monte Carlo or
analytical models

o Scattering of proton remnants,
underlying event, etc.

The main challenge is to find "good” observables that relate high-multiplicity
events to the dynamics of the underlying quarks and gluons
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EVENTS AT HADRON COLLIDERS

The description of LHC events involves different levels

o A hard event, with well separated
partons = fixed-order QCD

o Radiation of secondary soft and
collinear gluons from the hard
partons —= Monte Carlo, all-order
resummation

o Hadronisation = Monte Carlo or
analytical models

o Scattering of proton remnants,
underlying event, etc.

The main challenge is to find "good” observables that relate high-multiplicity
events to the dynamics of the underlying quarks and gluons
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High-energy hadronic events contain highly collimated jets of hadrons

o Jets are the natural objects that we would like to associate with quarks and
gluons, using the equality 1 jet = 1 parton

o We need to find a mathematical definition of jets that relate what we
observe to what we can compute in QCD



o Inside a QCD jet we find a number of soft and collinear splittings
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Splitting probabilities are singular when emissions are soft (¢ — 1) or collinear
(0 — 0). If these singularities cancel with virtual corrections, then jet
observables are insensitive to

o the addition of any number of soft partons (IR safety)

o an arbitrary number of collinear splittings (collinear safety)
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Sequential algorithms were first introduced in e™ e~ annihilation, where one
has full information on hadron momenta

First-ever sequential algorithm used by experiments is the JADE algorithm:
For any pair of particles, p;, p;, find the minimum “distance”

e
Yij = 0

If ¥i; < Ycut, merge particles Pi,Pjinto a jet

Repeat until all pairs have y;; > ycut. The number of jets is the number of
particles left



Problem: the distance measure of the JADE algorithm is the invariant mass of
two partons. The JADE can cluster together two soft particles collinear to
different legs, leading to spurious large-angle soft jets

k1 + ko

ko k1 f
P2 {(B{ . 9)3)} p1 P2 =~ . =~ p1

Solution: Durham (a.k.a. k;) algorithm. The distance measure is the relative

transverse momentum of the softer particle with respect to the harder one
[Catani Dokshitzer Olsson Turnock Webber PLB 269 (1991) 432]

1

2min{E?, E>}
Yij = 0

(1 —cosb;;)

The Cambridge algorithm is a more sophisticated version that uses angles
only to determine the clustering sequence  [Dokshitzer Leder Moretti Webber hep-ph/9707323]



In hadron collisions, the most-used algorithms are the generalised-k,
algorithms [Cacciari Salam Soyez 0802.1189]

o One finds the minimum over all particles of the distances

min{k,”, k:P} 2 2 2 2
dij = ;{2 4 AR,?] de = ktf AR’Lj e (yz = yj) i (qbz = ¢J)

o If the minimum distance isd;p or d;B, then p; or p; is a jet and is removed
from the list of particles, otherwise p; and p; are merged into a jet

o The procedure is repeated until no particles are left

o The parameter R is the jet “radius”. If there are only two particles, they are
in the same jetonly if R;; < R

o The parameter p identifies the algorithm, and usually assumes values 1 (k;
algorithm), 0 (Cambdridge-Aachen algorithm) and -1 (anti- k, algorithm)
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o After a sequential clustering, all jets withp; > p: min are IRC safe

o IRC safe jet cross sections can be safely computed in massless QCD =
non-perturbative effects associated to quark masses are power suppressed

m L -
dO'pp—>jets (Oés (pt,min)a ) = dO'pp—>jets (Oés (pt,min)7 O) +0 (( > )

Pt min Pt min

o Collimation of the jets is naturally explained in terms of the collinear
enhancement of QCD matrix elements
as[2(1 — 2)0ps min] d6? ; T

27 02 Zl—z

APg—q9 = CF

» Due to asymptotic freedom, as(p¢ min) — 0 for py.min — o0: the higher the
energy, the more collimated the jets =recovery of the equality 1jet = 1
parton in the high-energy limit
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RESUMMATION




In many situations (e.g. WW production), one puts a jet-veto to eliminate
overwhelming top-antitop background

o
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The main object of study is the zero-jet cross section 0o_jet (Pt veto ), Obtained
by imposing that all jets have p: < Pt veto
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The zero-jet cross section is characterised by two scales, the mass of the
produced object M and the jet resolution Pt veto

‘ "Tﬂl:k-:‘:,gm i

In QCD, large logarithms such as In(M /p; veto) appear whenever the phase
space for the emission of soft and/or collinear gluons is restricted
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Example: veto one soft ( £/ < M ) and collinear (6 < 1) gluon

BORN REAL okl o
oF collinear
N
« dE do? : T
1 =l e %
00{ I s E92@(Pt,t ) CW EQQ}

\

colour “charge” of a gluon = Casimir of the adjoint representation of SU(N,)

factorisation of
Qo M
soft radiation 00-jet = 00 {1 — 2C’A—S In” ( )}

T pt,veto
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All-order resummation of large logarithms =>reorganisation of the perturbative
series in the region as L ~ 1, with e.g. L = In(M/p; veto)

Lg(asL)
S
O0—jet ~ Og€  LL X | GolasL)+ asGs(asL)+...
I, S ———————
NLL NNLL
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ALL-ORDER RESUMMATION

All-order resummation of large logarithms =>reorganisation of the perturbative
series in the region o, L ~ 1, with e.g. L = In(M/p; veto)

Lg,(asL)

S, s’ |
00—jet ~ OQ € - X GQ(EESL) EESGg(EESL) o
et et U S————" -
NLL NNLL
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ALL-ORDER RESUMMATION

All-order resummation of large logarithms =>reorganisation of the perturbative
series in the region ags L ~ 1, with e.g. L = In(M/pt veto

Lg,(asL)

00—jet ~ OQ € - X | GolagL EESGg(EESL) o

© Public-Domain { mediadrumworld.com =
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ALL-ORDER RESUMMATION

All-order resummation of large logarithms =>reorganisation of the perturbative
series in the region ags L ~ 1, with e.g. L = In(M/pt veto

Lg,(asL) 1 + as +...
00—jet ~ OQ € - X | GalagL EESGg(EESL) o
et et U S————" -
NLL NNLL

O Ry ot ol X A
KRR f@a B, iﬁ“fff&tz’aiiié‘:@

'*77-——1

© Public-Domain { mediadrumworld.com =
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- We consider a generic IRC safe final-state observable, a function V (p1, ..., pn)
of all final-state momentap1, ..., Pn

o Example: leading jet transverse momentum in Higgs production or thrust in
ete~ — hadrons

. i i
Ptymax _ max Ptj T = max 2i Ipz_} |
mE  j€iets my T 2l
Pencil-likeevents 1T <1 Planar events T 2> 2/3
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o Final-state observables have the property that, for configurations close to
the Born limit (e.g. a back-to-back gg pair), their value is close to zero

o Example: in two-jet events, one minus the thrust is the sum of the invariant
masses of the two jets, which vanishes in the Born limit

39 Surp= 73.3) Ecal(N= 25 SunE= 32.6) Hoal (N=22 Sun= 22.6

i 20718 Ctrk
e °’°“‘"‘“s"'ﬁ’ E(’U) gy PI‘Ob[V (p]_, g ,pn) < ’U]

// v < 1

= ® — =

7

» To quantify the departure from the Born limit, we consider>.(v), the fraction

of events such that V(py,...,p,) <wv
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COMPARISION TO DATA
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o LO predictions generally undershoot data
o NLO predictions have the right size, but diverge at low values of v
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LO predictions generally undershoot data

NLO predictions have the right size, but diverge at low values of v
Resummation (matched to NLO) has the right shape
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LO predictions generally undershoot data

NLO predictions have the right size, but diverge at low values of v

Resummation (matched to NLO) has the

Agreement with data requires including hadronisation corrections
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Soft-collinear emissions can be visualised as points in the Lund plane

1 T <t k Sudakov decomposition
Q = Q —
a o & _____ I‘} .P]_ — 5(1,%) PQ: E(l,—ﬂ,)
: k=20pP +22pP, + k,
1 2(1) 1 A
n_zln(z(?))_lne 8l > 22 Ink /Q
ki~ Q 'H' .
. Collinear limit o F \N%
Q L w2 .,
grEpoer ] ]77| <In|-— Py = %
kt o = 2
¢ £ ) 1“?“#
o Soft-collinear matrix element ;
sdk; . d
dRIM2 (k) ~ 2Cp 22 &5t g &2

/ T ky n27r

colour “charge” of a quark = Casimir of the fundamental representation of SU(N,,)
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Behaviour of the thrust in the soft-collinear limit

Final-state gq pair 9

I ke 1 ‘Zze’H ki
l_T({ﬁ}ﬁklﬁ"':kﬂ)Ezﬂe_lml_}_ Z 2 : 2,
i @ ¢=1,2 Q%1 - Z?ﬁE'Hg S

7
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Behaviour of the thrust in the soft-collinear limit

recoiling ggpair

—T{p}, k1,...

o Soft and collinear

1 - T({#}, k) = ’g; :

Soft and large angle

©

G T({ﬁ}v k) ~ ki

Hard and collinear

©

kil
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Behaviour of an IRC safe observable in the soft-collinear limits

» Soft and collineartoleg ¢/ =1, 2 Ah’lk.-,fQ
. ke \ s )
V({p} k) ~ de 2 9¢(9)
k, vlfath?) Q “-’3\ E
: ﬂ’é:; __ Lk vMEb) Q
o Soft and large angle c

V(D) k) ~ kf

« Hard and collinear

leg 1
parametrization

V{p}, k) ~ kitP

leg 2 leg 1
parametrization parametrization
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o We first consider an ensemble of soft-collinear emissions widely separated
iIn angle (rapidity)

o Due to QCD coherence, the multi-gluon matrix element factorises into the
product of single-emission matrix elements

gt . R

» Contribution of multiple soft-collinear emissions to ¥ (v)

S(v) = e~ J14HIM (k) i %/H[dki]Mz(ki) O(v — V({p},k1,...,kn))

/

virtual corrections, ensure that the inclusive sum over all emissions gives one
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o Strategy: split the exponent in two parts

/ [dk]| M2 (k / [dk] M2 (k) + / U[dk]Mz(k) / [dk)M?(k) = R(v)

v

e {e e EIE ) i % /H[dki]Mz(ki) O(v — V({p}, k1, .- ,kﬂ))}

Sudakov form factor multiple-emission correction
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The Sudakov exponent, a.k.a. as “radiator”, is just the area of the shaded
region in the Lund plane

R(v) = / k)M (k) O(V ({5}, k) — v)

kt Vlf{a+b2) Q b &
- Lk, vl@) Q

1JOs pue 9[3ue 231v|

leg 1
parametrization

leg 2 leg 1
parametrization parametrization

Since it is an area in the Lund plane, its contribution is double logarithmic
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Consider an observable that takes contribution only from the emission for
which V ({p}, k) is the largest

V({ﬁ}! kl: JEIC :kn) = Inax V({fj}, k@) 5 Pt,max — max pt,j
) mg JjEeJets My

O (v— VB, k1,... kn)) = H@ (v—V({p}, ki)

n

»(v) = o~ B(v) e [P [dE] M (k) i % / H[dkz]Mz(kz)@ (v — VP, k)

—R(v)

V
|
®

J

By ]

\ —eJV[dk] M2 (k) y

o The cumulative distribution for such observables is a Sudakov form factor

o Interpretation of the Sudakov form factor: probability that all emissions have
V{p} ki) <v
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o Consider an observable that, in the soft and collinear limit, is the sum of the
contributions of individual emissions

V() koo kn) = ) V({BL: k) e 1—T({Bh, k1. k) >y "gelml

A R
=i,

@(U_V({ﬁ}akla---akn)) =06 U_ZV({ﬁ}akz) =0 (1 _Z<z>

o Change of variable

Gt el S s
Ro)~ [ M) = [ ZRGOC-1) = M) - TR ()
. ) dR = S
« The function R’ (v) = —v— ~ «,L is single-logarithmic

dv
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The logarithmic derivative of the radiator is the boundary of the shaded region

In the Lund plane A
In k, /Q

R'(v) = Ry (v) + Ry(v)

k, vl@b) Q 5
R Lk vMeb) Q

1Jos pue a[Fue aF1e]|

leg 1
parametrization

leg 2 leg 1
paramelrization parametrization

Since it is a line in the Lund plane, its contribution is single logarithmic
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o Consider an observable that, in the soft and collinear limit, is the sum of the
contributions of individual emissions

VY k- k) = D VUBLK) Les 1-T({5},ky,....k Zk“ I

o Multiple-emission correction

= Jo e R ) Z n! /H/ dCZ R’ (¢iv) (1 = Z Cz)

e

cutoff

. Integral over ¢; is finite = ¢; ~ 1 = R'(¢v) ~ R'(v) + O(a)

e dCz e .
6 (12@) XOES
T

NLL function

i
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o Heavy-jet mass
M{ M;
a = 17 b€ = 17 dﬁ =0 17 g€(¢) =1

e~ VER

T

o Total and wide-jet broadening

2B,0) = Z Fei + Z Eti

1€Hy 1€Hy
CL:1, bg:O, dﬁzla gﬁ(¢) =1
BT = Bl S B2 BW = maX(Bl, BQ)

/ / / 2 i 7 R/ R/ R/.
AR —1n R (2F1 (§,1+§,2+§;1)> e IS0 (zFl (2,1+2,2+2,1))

2

.FR/: / . L
P raem - (4 ) T E
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The normalisation of independent soft-collinear emission suggests a Markov-
chain procedure to compute FnLL(R)

o [ &
o [ >R -
+/€ Aig +/€f3“< A
4P (G1) aP(Cs)

R/

o If ¢(; < estop

. Otherwise, generate (;11

oS AN 1 : n
Additive observable: Fyir(R') = B Z (£ ') H/ dCCZ ® (1 & Z Q)
n! '
n=>0 ; & 5 '




NUMERICAL RESUMMATION

If NLL corrections are well-defined, jet observables can be resummed
numerically [Banfi Salam Zanderighi hep-ph/0112156, hep-ph/0407286]
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., The first crucial property that ensures that.F,.(v) does not give rise to
double logarithms is that V' ({p}, k1, ..., k,) ~ v whenever V({p}, k;) ~ v

lim Vph ki Z (; (finite and non-zero)

v—0

In general, for each soft emission collinear to leg ¢ , we can perform the
change of variables (recall V ({p}, k) ~ kfe‘bmm )

1 1

Sp e O _ ¢(®) o © @ S L
Vidok#®k)=Cv: 7 Sl & [ ey

For a general observable, for fixed ¢;. ¢, ) 4) we must have

it ey Shen
lim V({p}a 15 ) )

v—0 V

— Fllcr A, €\ oWl R e el
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The requirement that the observable scales in the same way irrespectively of

the number of emission is formalised as follows

V({ﬁ}a kla STz kn)

lim
v—0

—

Ink,/Q

generalised
rescaling

e S

— finite and non-zero

Ink,/Q

o This is the first of the requirements known as “recursive” IRC safety

o rIRC safe observables are the only ones that can be resummed so far
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In the case of the two-jet rate in the JADE algorithm, double logarithms do not
exponentiate [Brown Stirling PLB 252 (1990) 657]

Gl 1 e e =y
Y (Yeut) =1 — e g e e =
T Ycut 2! 6 T Ycut

This is due to the peculiar way JADE performs sequential recombinations

Yij = 0

The JADE algorithm is able to recombine together two soft emissions collinear
to two different legs = violation of rIRC safety
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The way in which the JADE algorithm performs sequential recombinations
changes the scaling properties of the three-jet resolution

~ Gickp) & ki
Ykip1 — yB({p}a kl) = Q2 = ae i Ycut

¥ ko +p2)?  k
Ykape = Y3({B}, k2) = o Q2 ) 626“2 = Yeut

ko k1 f
P2 \&(—i{{ ® 9)3}} P1 P2 = ° — P

ki1 + ko : e
ykl k.‘g — ( Qz ) = y(z;utgl 62 < yCut <:’\> 61 _l_ 52 < 1

Ys3 ﬁ >k17k2 s Gt
(17} ) — ’!qut&l -2 = depends on yeut = Fye(Yeur) gives double logs

Yeut
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» The second crucial property that ensures that F,.(v) does not give double
logarithms is that the integral over ¢; is finite

. This means that we can neglect all emissions withV ({p}, k;) < ev, with the
cutoff € > v, independent of v

d¢ dR
2 14
[dk] M3 ( E:Rf dg()zﬁ ZRE e

L

~Y R y / (El) L
~ E — | | E d
: g n! /7;:1 </e Gi 7 e, /0 : /0 27 :

< © (1 — lim V({ﬁ}’kl’“"k”)> = FniL(R')

v—0 V
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The fact that we can neglect emissions with (; < ¢ is expressed formally by

rlRC safety condition 2a
SRR b ken] VRN S

V v—0 V

lim
Cn—l—l —0v—0

Ink,/Q

Note the order of the limits: the reversed limit trivially holds because the

observable is IRC safe!
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The matrix element for two soft-collinear gluons can always be written as the
sum of an independent and correlated emission part

MQ(klakQ) = Mz(kl)Mz(kQ) = Mz(kla kQ)

- S

The correlated emission part, if integrated inclusively, is combined with the
one-loop one-gluon matrix element to give the running coupling in a physical
renormalisation scheme

S A Y

ag(ky)

A
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The remainder after the extraction of the coupling

/ 1 ] / [dko] M2 (K1, k2) [© (v — V({P}, k1, k2)) — © (v — V({B}, k1 + k2))]

o Example: in a jet-rate, the two gluons can be clustered into different jets

TS ey

o Potential source of double logarithms, which are however absent for arlIRC
safe observable
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This condition ensures that the contribution of correlated gluon emissions,
hard collinear and soft large-angle emissions is beyond NLL

Amgﬂ

Amhﬂ

v— 0

s
s
rd
&
&
kY -
Y s
ra
i s
kS s
i Vo
. /
11 ey
&
e ®
s
M -
i vi
S #
", 4
- In 1/€ L
— ® =

o At NLL accuracy, relevant emissions are soft and collinear, widely
separated in angle, and in a strip of size Inv X Ine€

o The strip is a line in the Lund plane, hence a single logarithmic contribution
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NLL resummation of rIRC safe observables can be performed with a universal

master formula

[Banfi Salam Zanderighi hep-ph/0407286]

A k,/Q Mo k,/Q

v— 0

&
(S ]2 o

single-logarithmic correctlon FNLL(R)

n

/I

1

n!

V({.ﬁ}}k’ll} JOR

U

1 — lim
v—0

.5 )

>
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In the presence of initial state radiation, the zero-jet cross section inclusive
with respect to hard-collinear emission up to the scale pt,veto
A In k,/Q

hard scattering

hard collinear <€---------

soft collinear

DGLAP resummation /

l soft large angle l

No k-type algorithm can recombine gluons that are widely separated in angle:
perfectly exponentiating observable

~ =1t v
O0—jet — ng(pt,veto) € (Pt vero)
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Jet recombination effects start to matter at NNLL accuracy
[Banfi Monni Salam Zanderighi 1206.4998]

Two nearby gluons clustered in one jet

O0—jet = ‘ng (pt,veto)

(

\

1 _I_ ?S(pt,vet{)) R, (pt,veto) f(R

One gluon giving two jets

) e_R(fpt,veto)

iy

NNLL

The function f(R) ~ In R since the jet radius provides an effective cutoff to the
collinear singularity in gluon splitting. Leading logarithm of the jet radius can

be also resummed at all orders

[Dasgupta Dreyer Salam Soyez 1411.5182]
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