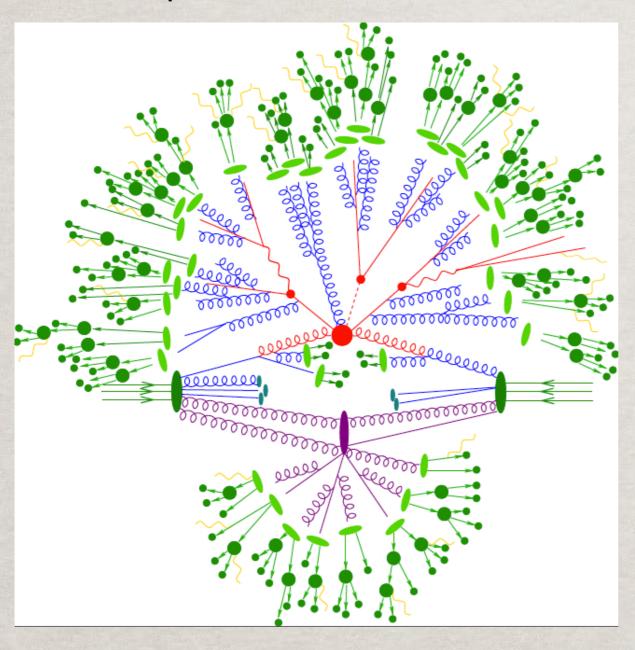

RESUMMATION OF JET OBSERVABLES IN QCD

Andrea Banfi

DESY - 26 November 2025 - Hamburg

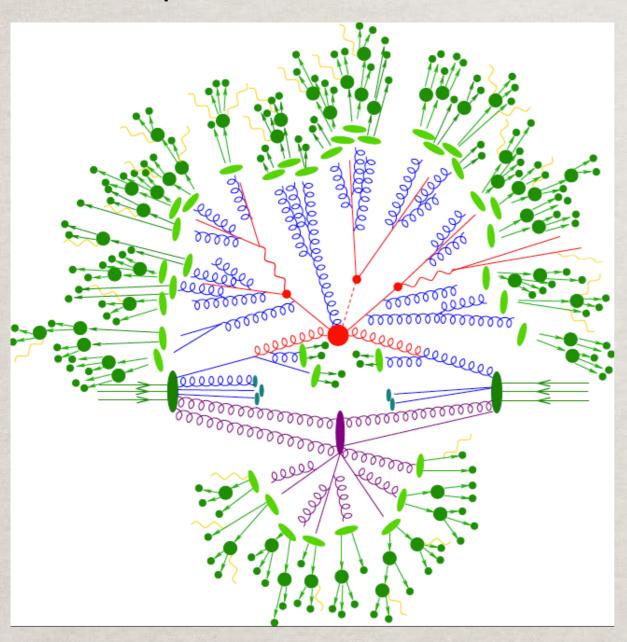

OUTLINE

- Brief introduction to jets observables
- General principles of resummation of jet observables in QCD
- Non-global logarithms
- Coherence-violating logarithms

INTRODUCTION TO JET OBSERVABLES

EVENTS AT HADRON COLLIDERS

The description of LHC events involves different levels

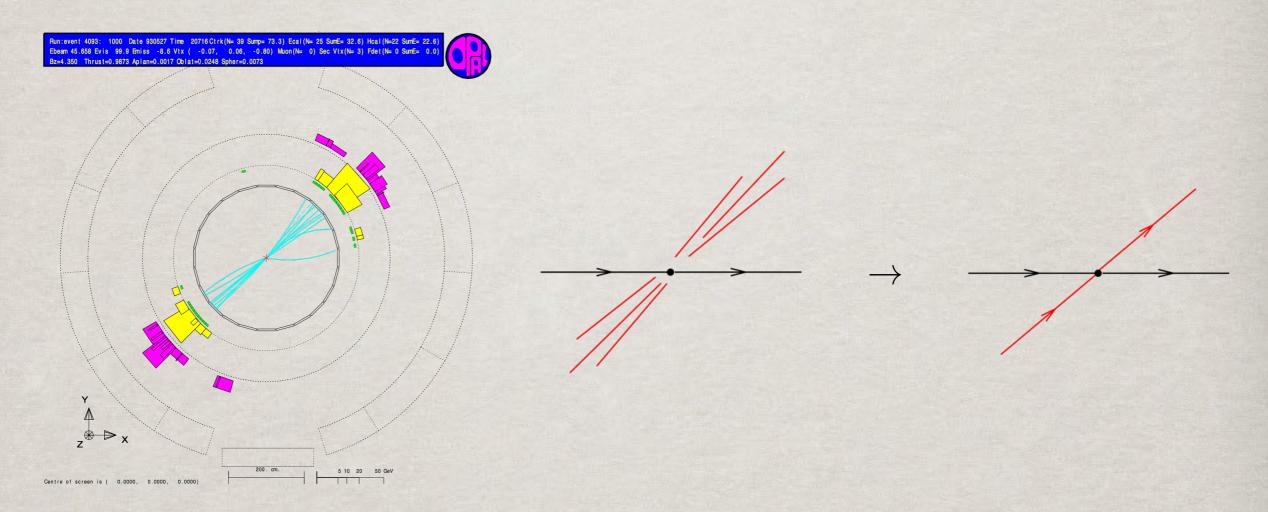


- A hard event, with well separated partons ⇒ fixed-order QCD
- Radiation of secondary soft and collinear gluons from the hard partons ⇒ Monte Carlo, all-order resummation
- Hadronisation ⇒ Monte Carlo or analytical models
- Scattering of proton remnants, underlying event, etc.

The main challenge is to find "good" observables that relate high-multiplicity events to the dynamics of the underlying quarks and gluons

EVENTS AT HADRON COLLIDERS

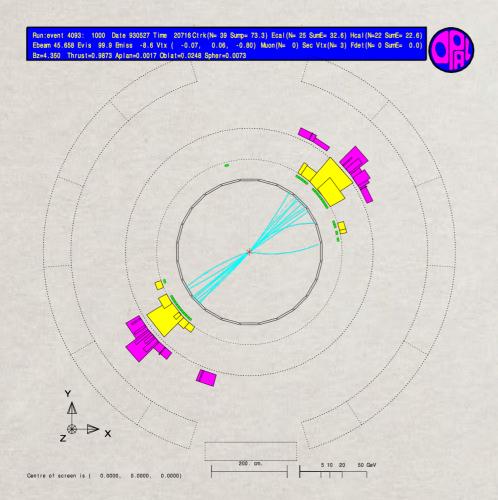
The description of LHC events involves different levels



- A hard event, with well separated partons ⇒ fixed-order QCD
- Radiation of secondary soft and collinear gluons from the hard partons ⇒ Monte Carlo, all-order resummation
- Hadronisation ⇒ Monte Carlo or analytical models
- Scattering of proton remnants, underlying event, etc.

The main challenge is to find "good" observables that relate high-multiplicity events to the dynamics of the underlying quarks and gluons

JETTY EVENTS


High-energy hadronic events contain highly collimated jets of hadrons

- Jets are the natural objects that we would like to associate with quarks and gluons, using the equality 1 jet = 1 parton
- We need to find a mathematical definition of jets that relate what we observe to what we can compute in QCD

INFRARED AND COLLINEAR SAFETY

Inside a QCD jet we find a number of soft and collinear splittings

$$E \simeq \sqrt{s/2}$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

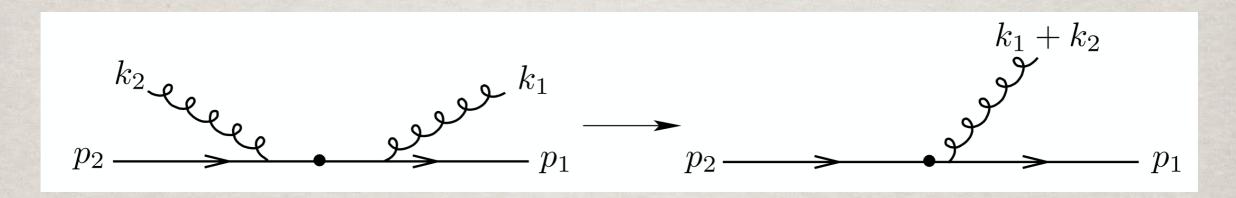
$$E_q \simeq zE$$
 $E_g \simeq (1-z)E$

$$dP_{q\to qg} = C_F \frac{\alpha_s}{2\pi} \frac{d\theta^2}{\theta^2} dz \frac{1+z^2}{1-z}$$

Splitting probabilities are singular when emissions are soft $(z \to 1)$ or collinear $(\theta \to 0)$. If these singularities cancel with virtual corrections, then jet observables are insensitive to

- the addition of any number of soft partons (IR safety)
- an arbitrary number of collinear splittings (collinear safety)

SEQUENTIAL ALGORITHMS


- Sequential algorithms were first introduced in e^+e^- annihilation, where one has full information on hadron momenta
- First-ever sequential algorithm used by experiments is the JADE algorithm: For any pair of particles, p_i, p_j , find the minimum "distance"

$$y_{ij} = \frac{(p_i + p_j)^2}{Q^2}$$

- If $y_{ij} < y_{\text{cut}}$, merge particles p_i, p_j into a jet
- Repeat until all pairs have $y_{ij} > y_{\rm cut}$. The number of jets is the number of particles left

SEQUENTIAL ALGORITHMS

Problem: the distance measure of the JADE algorithm is the invariant mass of two partons. The JADE can cluster together two soft particles collinear to different legs, leading to spurious large-angle soft jets

Solution: Durham (a.k.a. k_t) algorithm. The distance measure is the relative transverse momentum of the softer particle with respect to the harder one

[Catani Dokshitzer Olsson Turnock Webber PLB 269 (1991) 432]

$$y_{ij} = \frac{2\min\{E_i^2, E_j^2\}}{Q^2} (1 - \cos\theta_{ij})$$

The Cambridge algorithm is a more sophisticated version that uses angles only to determine the clustering sequence [Dokshitzer Leder Moretti Webber hep-ph/9707323]

GENERALISED K_T ALGORITHMS

In hadron collisions, the most-used algorithms are the generalised-k_t algorithms [Cacciari Salam Soyez 0802.1189]

One finds the minimum over all particles of the distances

$$d_{ij} = \frac{\min\{k_{ti}^{2p}, k_{tj}^{2p}\}}{R^2} \Delta R_{ij}^2 \qquad d_{iB} = k_{ti}^{2p} \qquad \Delta R_{ij}^2 = (y_i - y_j)^2 + (\phi_i - \phi_j)^2$$

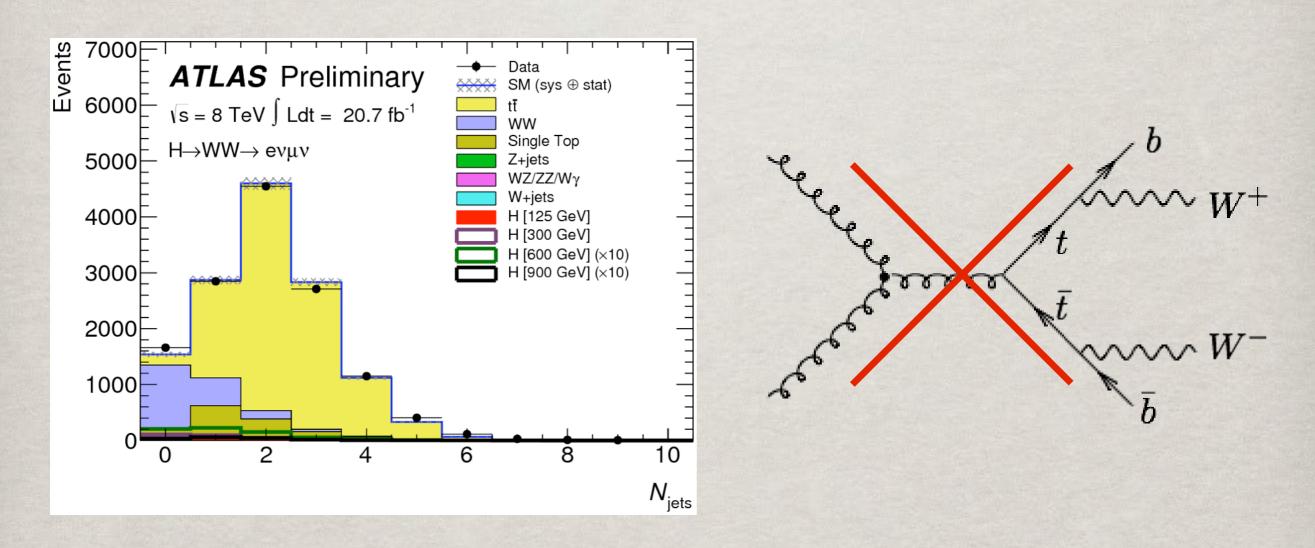
- If the minimum distance is d_{iB} or d_{jB} , then p_i or p_j is a jet and is removed from the list of particles, otherwise p_i and p_j are merged into a jet
- The procedure is repeated until no particles are left
- The parameter R is the jet "radius". If there are only two particles, they are in the same jet only if $R_{ij} < R$
- The parameter p identifies the algorithm, and usually assumes values 1 (k_t algorithm), 0 (Cambdridge-Aachen algorithm) and -1 (anti- k_t algorithm)

IRC SAFE JETS

- After a sequential clustering, all jets with $p_t > p_{t, \min}$ are IRC safe
- IRC safe jet cross sections can be safely computed in massless QCD ⇒ non-perturbative effects associated to quark masses are power suppressed

$$d\sigma_{pp\to \text{jets}}\left(\alpha_s(p_{t,\text{min}}), \frac{m}{p_{t,\text{min}}}\right) = d\sigma_{pp\to \text{jets}}\left(\alpha_s(p_{t,\text{min}}), 0\right) + \mathcal{O}\left(\left(\frac{m}{p_{t,\text{min}}}\right)^p\right)$$

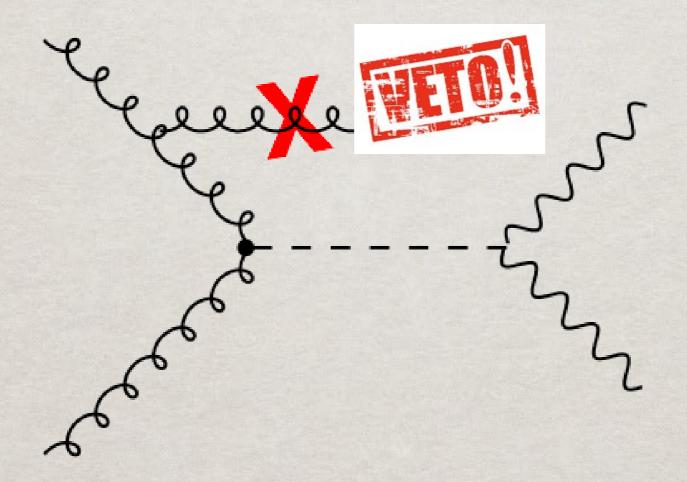
 Collimation of the jets is naturally explained in terms of the collinear enhancement of QCD matrix elements


$$dP_{q \to qg} = C_F \frac{\alpha_s [z(1-z)\theta p_{t,\text{min}}]}{2\pi} \frac{d\theta^2}{\theta^2} dz \frac{1+z^2}{1-z}$$

• Due to asymptotic freedom, $\alpha_s(p_{t,\min}) \to 0$ for $p_{t,\min} \to \infty$: the higher the energy, the more collimated the jets \Rightarrow recovery of the equality 1jet = 1 parton in the high-energy limit

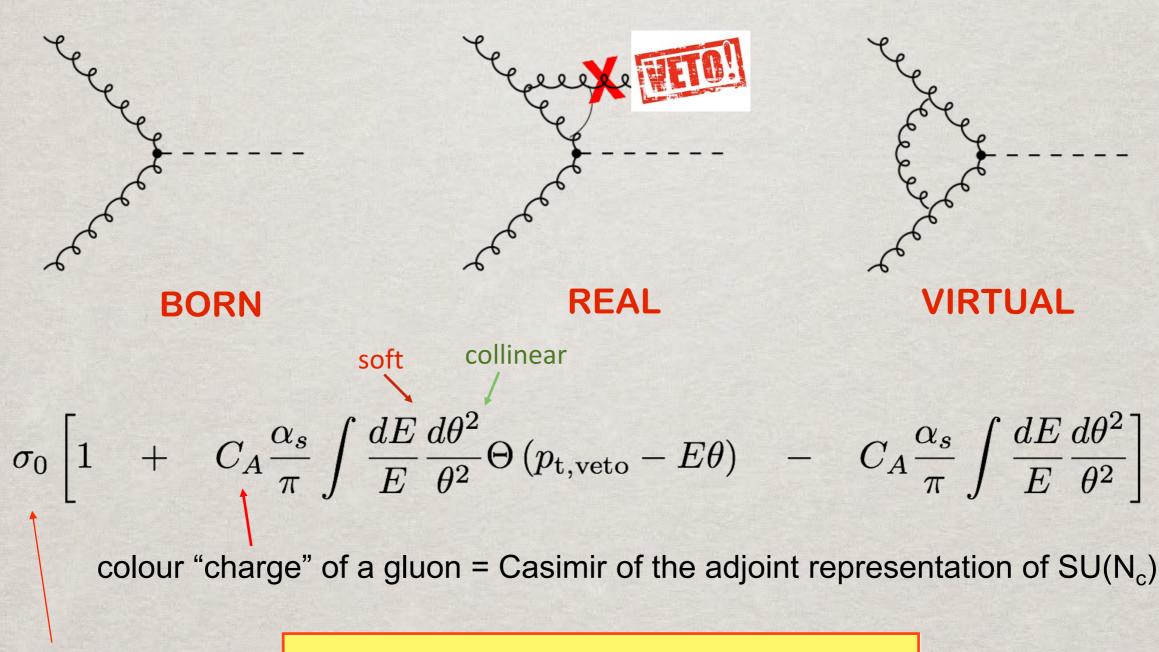
RESUMMATION

JET VETOES


In many situations (e.g. WW production), one puts a jet-veto to eliminate overwhelming top-antitop background

The main object of study is the zero-jet cross section $\sigma_{0\text{-jet}}(p_{t,\text{veto}})$, obtained by imposing that all jets have $p_t < p_{t,\text{veto}}$

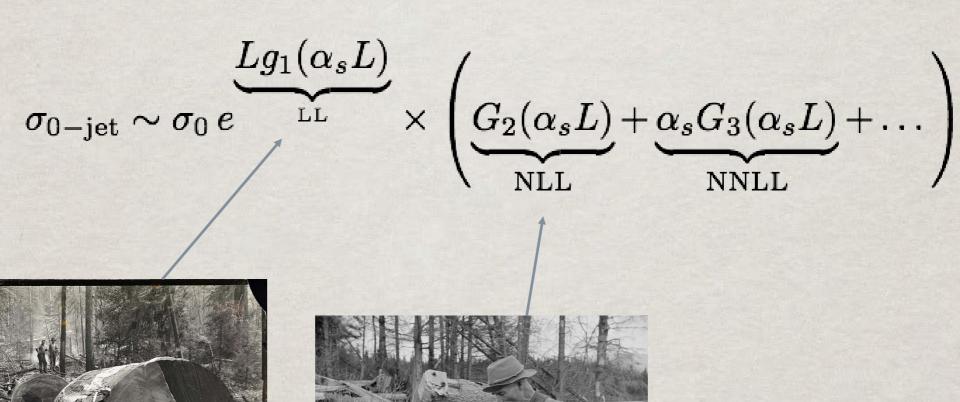
TWO-SCALE PROBLEMS


The zero-jet cross section is characterised by two scales, the mass of the produced object M and the jet resolution $p_{\rm t,veto}$

In QCD, large logarithms such as $\ln(M/p_{\rm t,veto})$ appear whenever the phase space for the emission of soft and/or collinear gluons is restricted

ONE GLUON EMISSION

Example: veto one soft ($E \ll M$) and collinear ($\theta \ll 1$) gluon

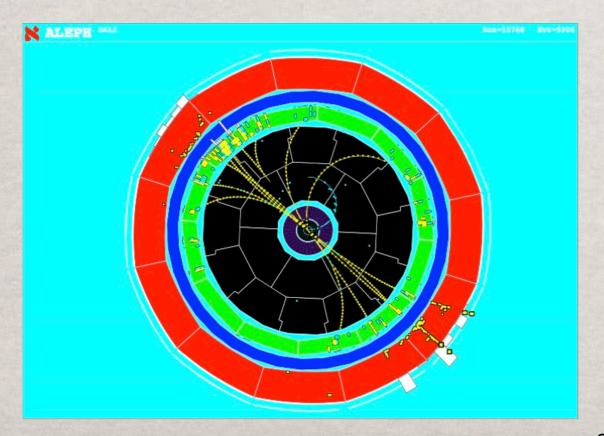


factorisation of soft radiation

$$\sigma_{0\text{-jet}} = \sigma_0 \left[1 - 2C_A \frac{\alpha_s}{\pi} \ln^2 \left(\frac{M}{p_{\text{t,veto}}} \right) \right]$$

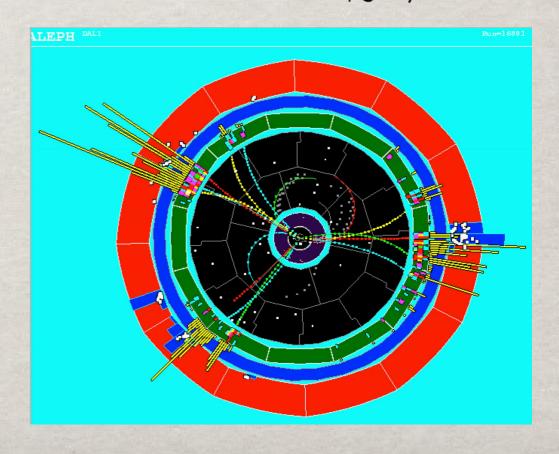
$$\sigma_{0-
m jet} \sim \sigma_0 \, e^{rac{Lg_1(lpha_s L)}{
m LL}} imes \left(\underbrace{G_2(lpha_s L)}_{
m NLL} + \underbrace{lpha_s G_3(lpha_s L)}_{
m NNLL} + \ldots
ight)$$

$$\sigma_{0-
m jet} \sim \sigma_0 \, e^{\sum_{
m LL}} imes \left(\underbrace{ egin{array}{c} 1 & + & lpha_s & + \dots \ G_2(lpha_sL) + lpha_s G_3(lpha_sL) + \dots \ \end{array} }_{
m NNLL}
ight)$$

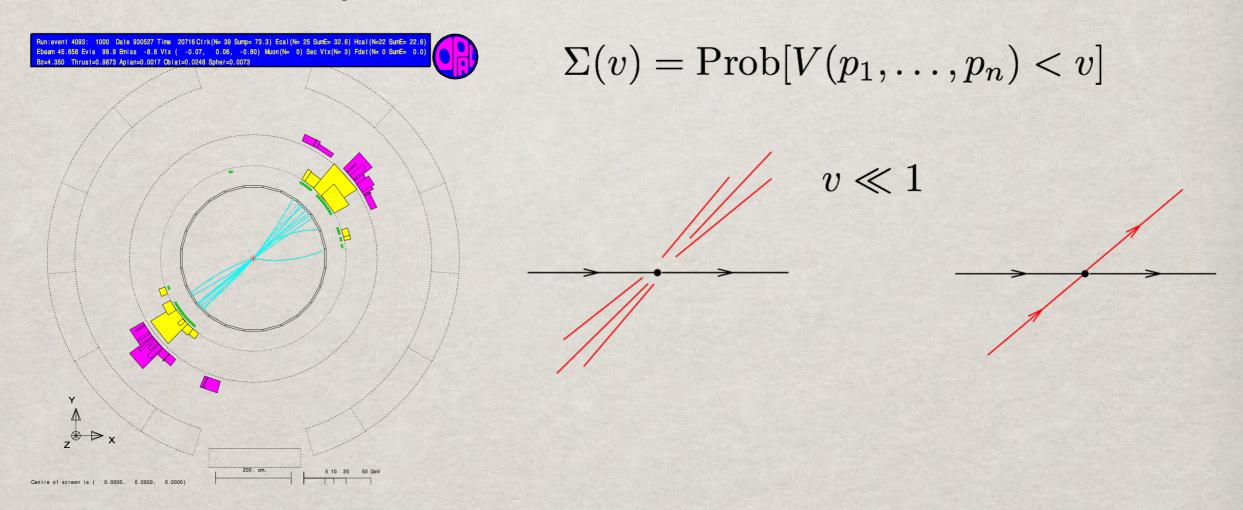


FINAL-STATE OBSERVABLES

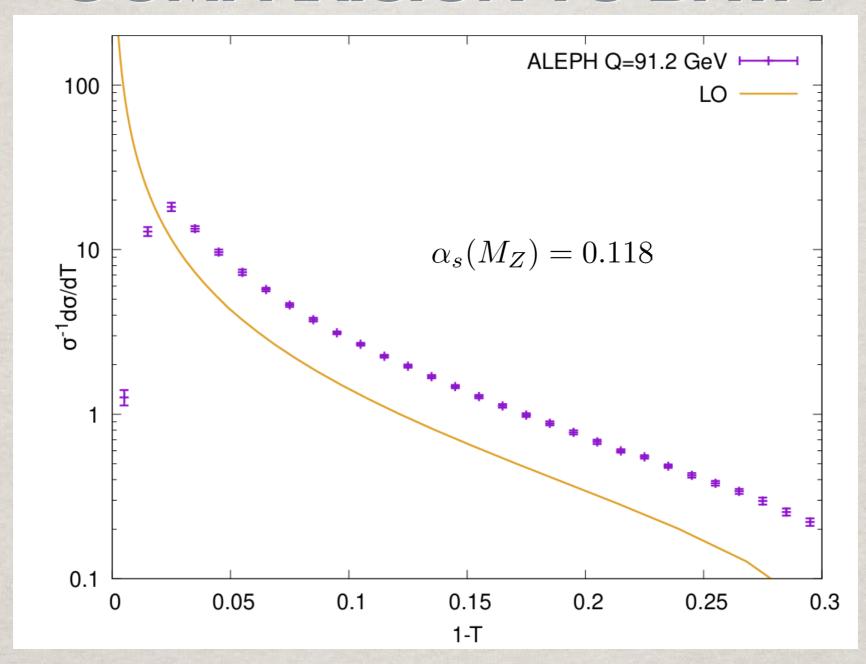
- We consider a generic IRC safe final-state observable, a function $V(p_1,\ldots,p_n)$ of all final-state momenta p_1,\ldots,p_n
- Example: leading jet transverse momentum in Higgs production or thrust in $e^+e^- \to \mathrm{hadrons}$


$$\frac{p_{t,\text{max}}}{m_H} = \max_{j \in \text{jets}} \frac{p_{t,j}}{m_H}$$

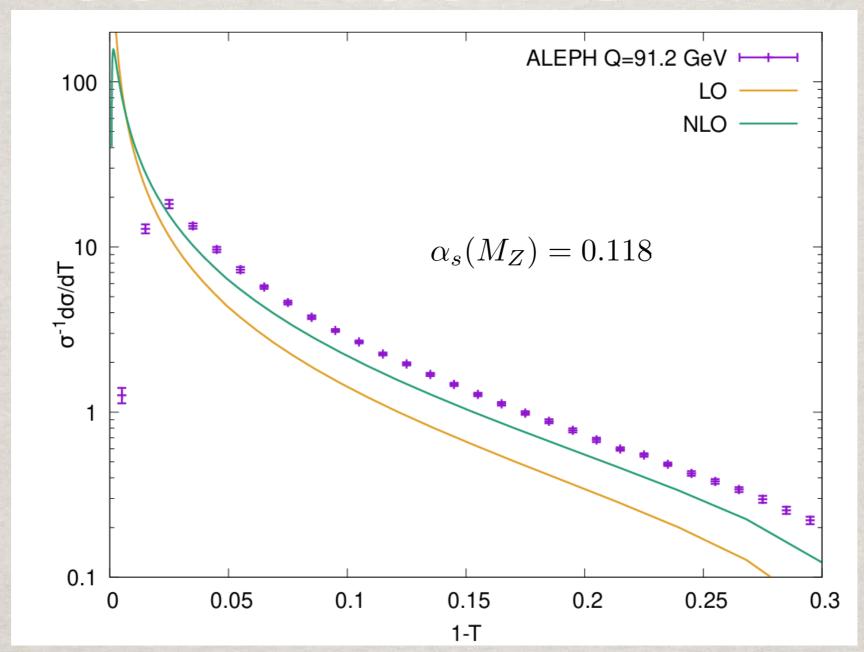
Pencil-like events $T\lesssim 1$

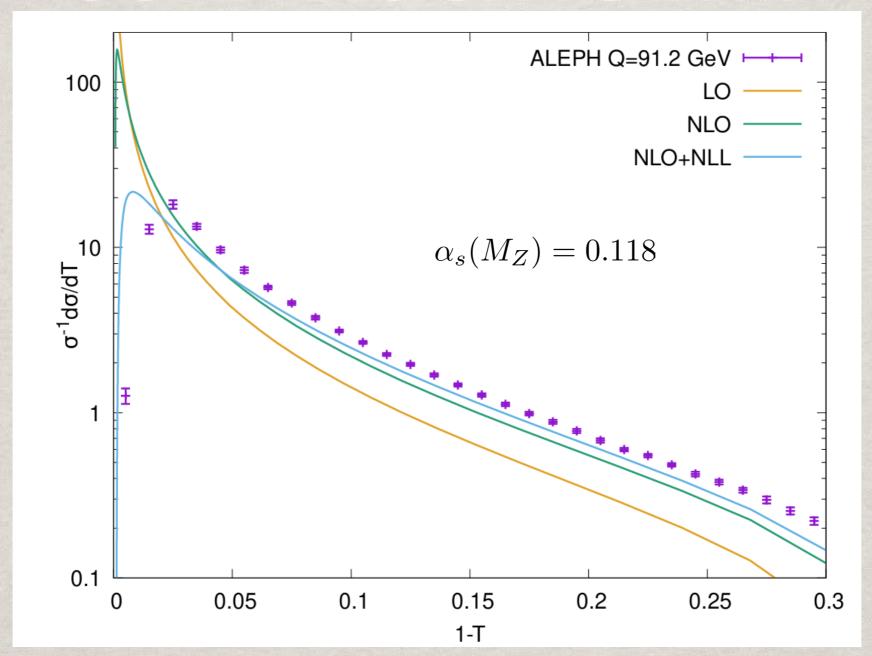

$$T \equiv \max_{\vec{n}} \frac{\sum_{i} |\vec{p}_{i} \cdot \vec{n}|}{\sum_{i} |\vec{p}_{i}|}$$

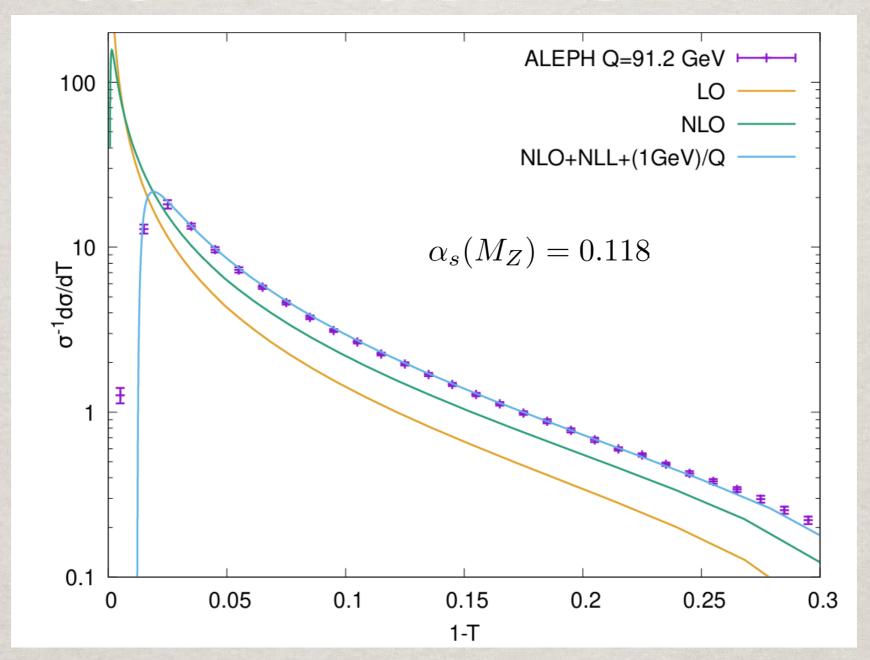
Planar events $T \gtrsim 2/3$



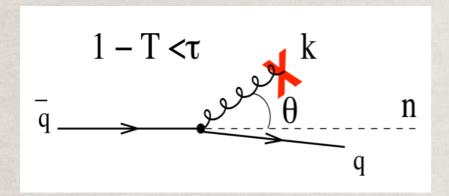
DEPARTURE FROM THE BORN LIMIT


- Final-state observables have the property that, for configurations close to the Born limit (e.g. a back-to-back $q\bar{q}$ pair), their value is close to zero
- Example: in two-jet events, one minus the thrust is the sum of the invariant masses of the two jets, which vanishes in the Born limit


• To quantify the departure from the Born limit, we consider $\Sigma(v)$, the fraction of events such that $V(p_1,\ldots,p_n)< v$


LO predictions generally undershoot data

- LO predictions generally undershoot data
- ullet NLO predictions have the right size, but diverge at low values of v


- LO predictions generally undershoot data
- ullet NLO predictions have the right size, but diverge at low values of v
- Resummation (matched to NLO) has the right shape

- LO predictions generally undershoot data
- ullet NLO predictions have the right size, but diverge at low values of v
- Resummation (matched to NLO) has the right shape
- Agreement with data requires including hadronisation corrections

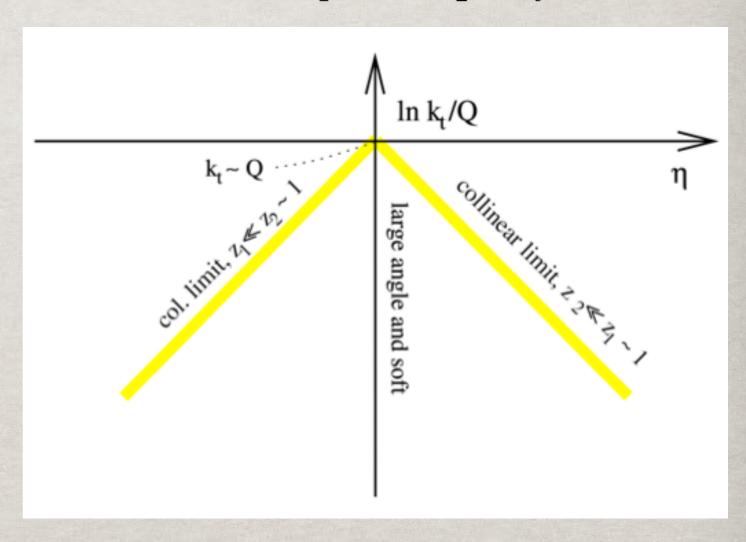
THE LUND PLANE

Soft-collinear emissions can be visualised as points in the Lund plane

$$P_1 = \frac{Q}{2}(1, \vec{n})$$
 $P_2 = \frac{Q}{2}(1, -\vec{n})$

Sudakov decomposition

 $k = z^{(1)}P_1 + z^{(2)}P_2 + k_t$

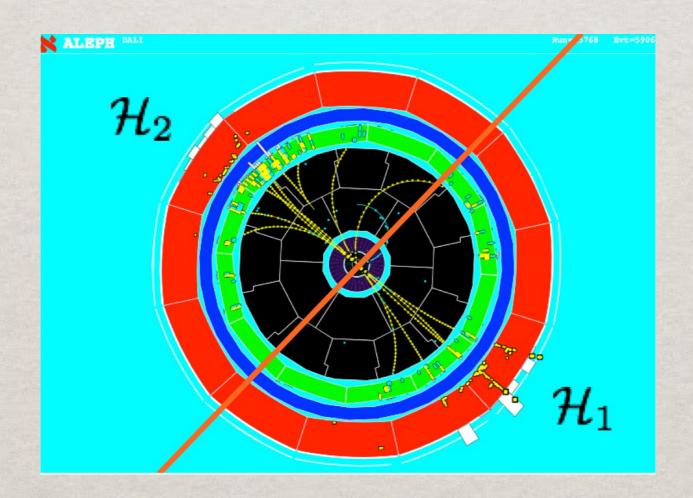

$$\eta = \frac{1}{2} \ln \left(\frac{z^{(1)}}{z^{(2)}} \right) \simeq \ln \frac{1}{\theta} \qquad z_1 \gg z_2$$

Collinear limit

$$|z_1, z_2 < 1 \Rightarrow |\eta| < \ln\left(\frac{Q}{k_t}\right)$$

Soft-collinear matrix element

$$[dk]M^{2}(k) \simeq 2C_{F}\frac{\alpha_{s}}{\pi}\frac{dk_{t}}{k_{t}}d\eta\frac{d\phi}{2\pi}$$



colour "charge" of a quark = Casimir of the fundamental representation of SU(N_c)

THE THRUST IN THE LUND PLANE

Behaviour of the thrust in the soft-collinear limit

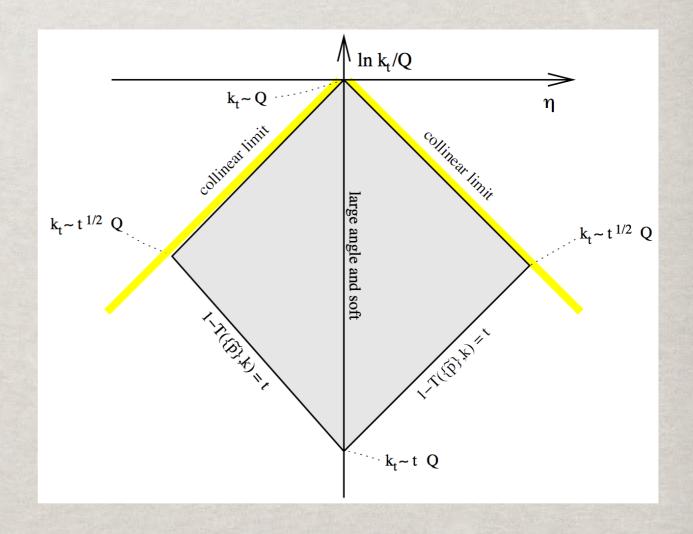
Final-state
$$qar{q}$$
 pair
$$1-T(\{\tilde{p}\},k_1,\ldots,k_n)\simeq\sum_i\frac{k_{ti}}{Q}e^{-|\eta_i|}+\sum_{\ell=1,2}\frac{1}{Q^2}\frac{\left|\sum_{i\in\mathcal{H}_\ell}\vec{k}_{ti}\right|^2}{1-\sum_{i\in\mathcal{H}_\ell}z_i^{(\ell_i)}}$$

THE THRUST IN THE LUND PLANE

Behaviour of the thrust in the soft-collinear limit

recoiling
$$q\bar{q}$$
 pair
$$1 - T(\{\tilde{p}\}, k_1, \dots, k_n) \simeq \sum_i \frac{k_{ti}}{Q} e^{-|\eta_i|} + \sum_{\ell=1,2} \frac{1}{Q^2} \frac{\left|\sum_{i \in \mathcal{H}_\ell} \vec{k}_{ti}\right|^2}{1 - \sum_{i \in \mathcal{H}_\ell} z_i^{(\ell_i)}}$$

Soft and collinear


$$1 - T(\{\tilde{p}\}, k) \simeq \frac{k_t}{Q} e^{-|\eta|}$$

Soft and large angle

$$1 - T(\{\tilde{p}\}, k) \sim k_t$$

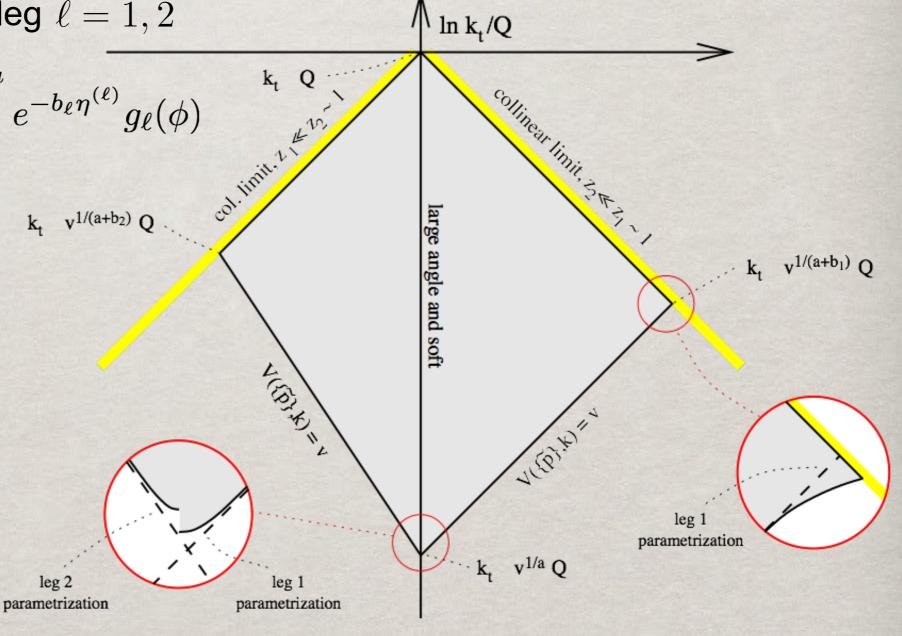
Hard and collinear

$$1 - T(\{\tilde{p}\}, k) \sim k_t^2$$

AN OBSERVABLE IN THE LUND PLANE

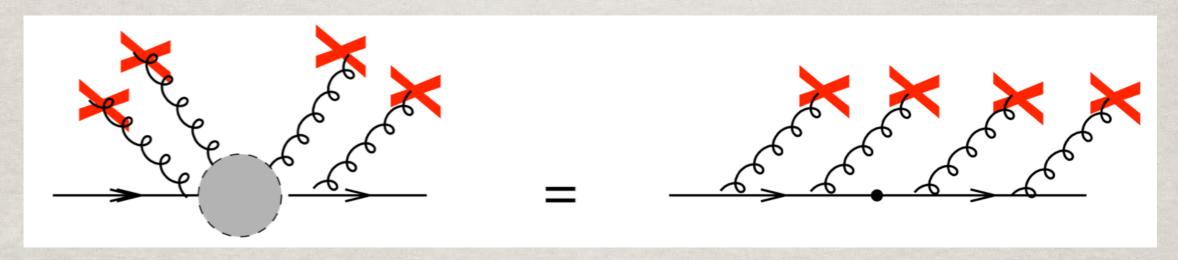
Behaviour of an IRC safe observable in the soft-collinear limits

• Soft and collinear to leg $\ell=1,2$


$$V(\{\tilde{p}\},k) \simeq d_{\ell} \left(\frac{k_t}{Q}\right)^a e^{-b_{\ell}\eta^{(\ell)}} g_{\ell}(\phi)$$

Soft and large angle

$$V(\{\tilde{p}\},k) \sim k_t^a$$


Hard and collinear

$$V(\{\tilde{p}\},k) \sim k_t^{a+b_\ell}$$

MULTIPLE SOFT-COLLINEAR EMISSIONS

- We first consider an ensemble of soft-collinear emissions widely separated in angle (rapidity)
- Due to QCD coherence, the multi-gluon matrix element factorises into the product of single-emission matrix elements

• Contribution of multiple soft-collinear emissions to $\Sigma(v)$

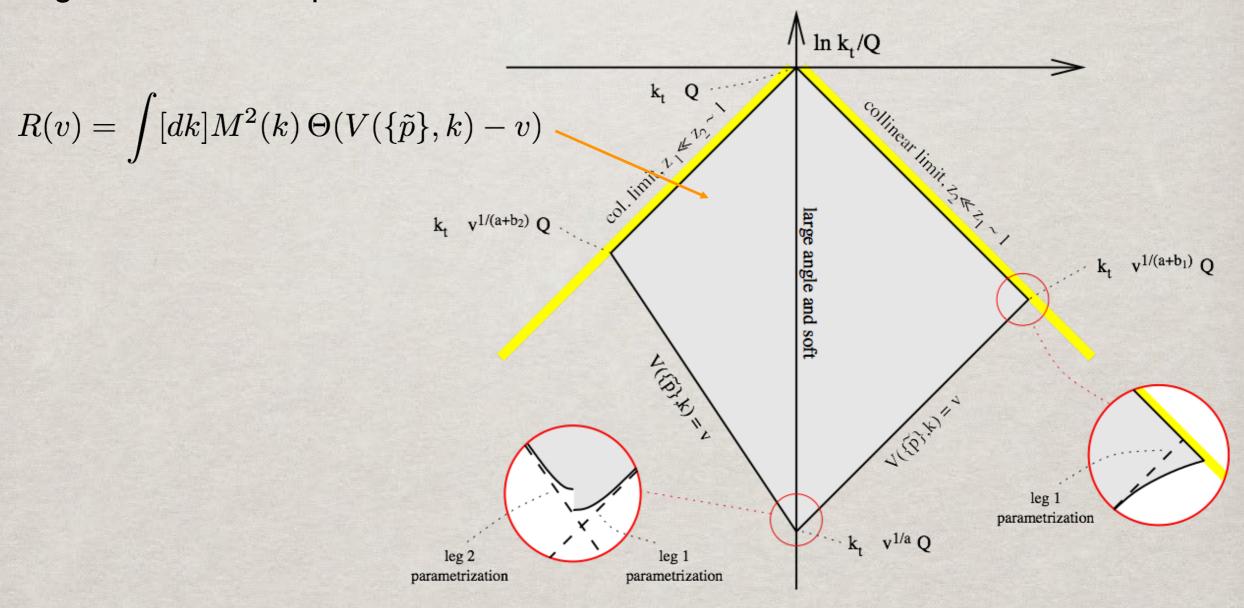
$$\Sigma(v) = e^{-\int [dk] M^2(k)} \sum_{n=0}^{\infty} \frac{1}{n!} \int \prod_{i} [dk_i] M^2(k_i) \Theta(v - V(\{\tilde{p}\}, k_1, \dots, k_n))$$

virtual corrections, ensure that the inclusive sum over all emissions gives one

SUDAKOV FORM FACTOR

Strategy: split the exponent in two parts

$$\int [dk] M^{2}(k) = \int_{v} [dk] M^{2}(k) + \int^{v} [dk] M^{2}(k) \qquad \int_{v} [dk] M^{2}(k) \equiv R(v)$$


$$\Sigma(v) = e^{-R(v)} \left\{ e^{-\int^{v} [dk] M^{2}(k)} \sum_{n=0}^{\infty} \frac{1}{n!} \int \prod_{i} [dk_{i}] M^{2}(k_{i}) \Theta(v - V(\{\tilde{p}\}, k_{1}, \dots, k_{n})) \right\}$$

Sudakov form factor

multiple-emission correction

DOUBLE LOGARITHMIC RADIATOR

The Sudakov exponent, a.k.a. as "radiator", is just the area of the shaded region in the Lund plane

Since it is an area in the Lund plane, its contribution is double logarithmic

PERFECT EXPONENTIATION

Consider an observable that takes contribution only from the emission for which $V(\{\tilde{p}\}, k)$ is the largest

$$V(\{\tilde{p}\}, k_1, \dots, k_n) = \max_i V(\{\tilde{p}\}, k_i)$$
 e.g.
$$\frac{p_{t, \max}}{m_H} = \max_{j \in \text{jets}} \frac{p_{t,j}}{m_H}$$

$$\Theta(v - V(\{\tilde{p}\}, k_1, \dots, k_n)) = \prod_{i=1}^n \Theta(v - V(\{\tilde{p}\}, k_i))$$

$$\Sigma(v) = e^{-R(v)} \left\{ e^{-\int^{v} [dk] M^{2}(k)} \sum_{n=0}^{\infty} \frac{1}{n!} \int \prod_{i=1}^{n} [dk_{i}] M^{2}(k_{i}) \Theta\left(v - V(\{\tilde{p}\}, k_{i})\right) \right\} = e^{-R(v)}$$

$$= e^{\int^{v} [dk] M^{2}(k)}$$

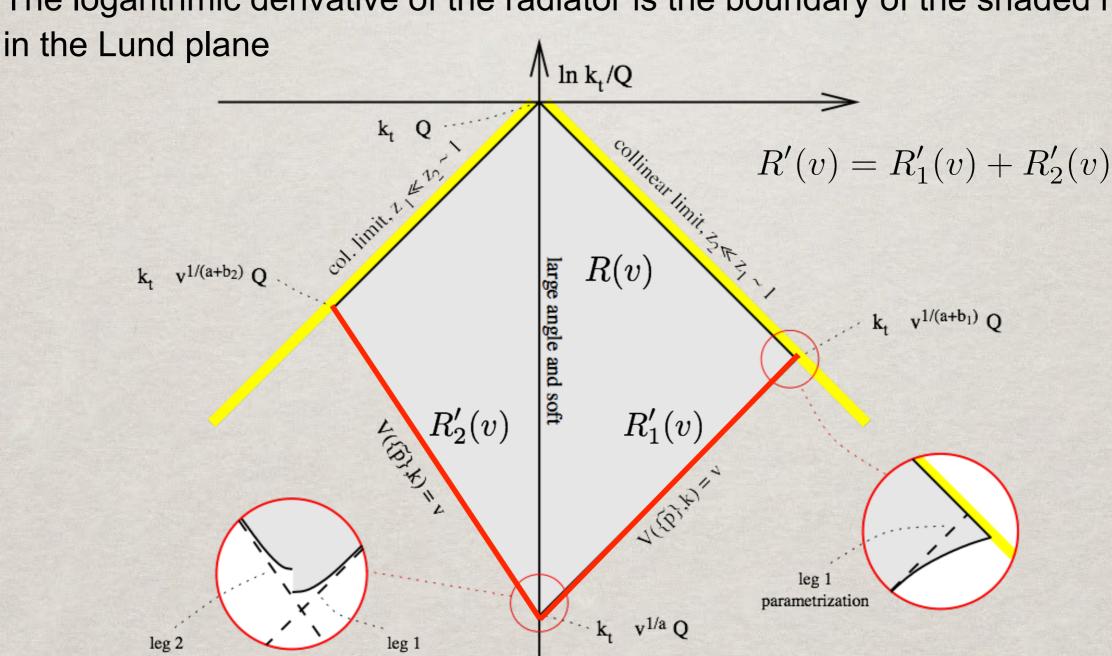
- The cumulative distribution for such observables is a Sudakov form factor
- Interpretation of the Sudakov form factor: probability that all emissions have $V(\{\tilde{p}\},k_i) < v$

ADDITIVE OBSERVABLES

 Consider an observable that, in the soft and collinear limit, is the sum of the contributions of individual emissions

$$V(\{ ilde{p}\}, k_1, \dots, k_n) = \sum_i V(\{ ilde{p}\}, k_i)$$
 , e.g. $1 - T(\{ ilde{p}\}, k_1, \dots, k_n) \simeq \sum_i \frac{k_{ti}}{Q} e^{-|\eta_i|}$

$$\Theta\left(v - V(\{\tilde{p}\}, k_1, \dots, k_n)\right) = \Theta\left(v - \sum_{i=1}^n \underbrace{V(\{\tilde{p}\}, k_i)}_{\equiv v\zeta_i}\right) = \Theta\left(1 - \sum_{i=1}^n \zeta_i\right)$$


Change of variable

$$R(v) \simeq \int_{v}^{\infty} [dk] M^{2}(k) = \int_{0}^{\infty} \frac{d\zeta}{\zeta} R'(\zeta v) \Theta(\zeta - 1) \quad \Rightarrow \quad [dk] M^{2}(k) \to \frac{d\zeta}{\zeta} R'(\zeta v)$$

• The function $R'(v) = -v \frac{dR}{dv} \sim \alpha_s L$ is single-logarithmic

SINGLE LOGARITHMIC FUNCTIONS

The logarithmic derivative of the radiator is the boundary of the shaded region

Since it is a line in the Lund plane, its contribution is single logarithmic

parametrization

parametrization

ADDITIVE OBSERVABLES

 Consider an observable that, in the soft and collinear limit, is the sum of the contributions of individual emissions

$$V(\{ ilde{p}\}, k_1, \dots, k_n) = \sum_i V(\{ ilde{p}\}, k_i)$$
 , e.g. $1 - T(\{ ilde{p}\}, k_1, \dots, k_n) \simeq \sum_i \frac{k_{ti}}{Q} e^{-|\eta_i|}$

Multiple-emission correction

$$\mathcal{F}_{\rm sc}(v) \equiv e^{-\int_{\epsilon}^{1} \frac{d\zeta}{\zeta} R'(\zeta v)} \sum_{n=0}^{\infty} \frac{1}{n!} \int \prod_{i=1}^{n} \int_{\epsilon}^{\infty} \frac{d\zeta_{i}}{\zeta_{i}} R'(\zeta_{i} v) \Theta\left(1 - \sum_{i=1}^{n} \zeta_{i}\right)$$
cutoff

Integral over ζ_i is finite $\Rightarrow \zeta_i \sim 1 \Rightarrow R'(\zeta v) \simeq R'(v) + \mathcal{O}(\alpha_s)$

$$\mathcal{F}_{\rm sc}(v) \simeq \epsilon^{R'} \sum_{n=0}^{\infty} \frac{(R')^n}{n!} \int \prod_{i=1}^n \int_{\epsilon}^{\infty} \frac{d\zeta_i}{\zeta_i} \Theta\left(1 - \sum_{i=1}^n \zeta_i\right) = \frac{e^{-\gamma_E R'}}{\Gamma(1 + R')}$$
NLL function

EXAMPLES OF NLL RESUMMATION

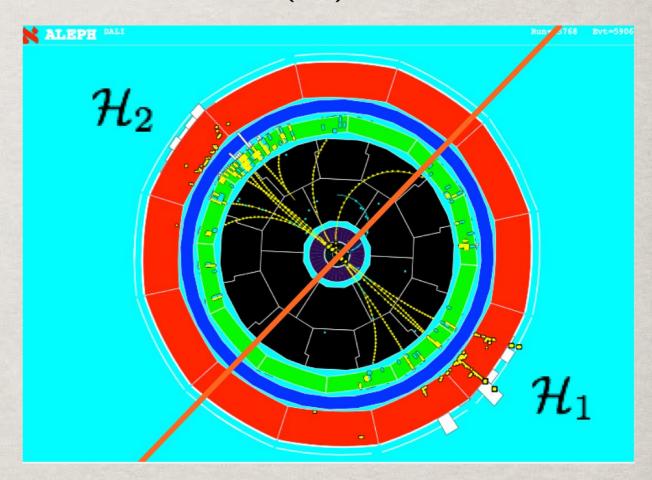
Heavy-jet mass

$$\rho_H = \max\left(\frac{M_1^2}{Q^2}, \frac{M_2^2}{Q^2}\right)$$

$$a = 1, \quad b_{\ell} = 1, \quad d_{\ell} = 1, \quad g_{\ell}(\phi) = 1$$

$$\mathcal{F}(R') = \frac{e^{-\gamma_E R'}}{\Gamma^2 \left(1 + \frac{R'}{2}\right)}$$

Total and wide-jet broadening


$$2B_{\ell}Q = \sum_{i \in \mathcal{H}_{\ell}} k_{ti} + \left| \sum_{i \in \mathcal{H}_{\ell}} \vec{k}_{ti} \right|$$

$$a = 1, \quad b_{\ell} = 0, \quad d_{\ell} = 1, \quad g_{\ell}(\phi) = 1$$

$$B_{T} = B_{1} + B_{2}$$

$$\mathcal{F}(R') = \frac{4^{R'}e^{-\gamma_E R'}}{\Gamma(1+R')} \left(\frac{2F_1\left(\frac{R'}{2}, 1 + \frac{R'}{2}, 2 + \frac{R'}{2}; -1\right)}{1 + \frac{R'}{2}} \right)^2 \qquad \mathcal{F}(R') = \frac{4^{R'}e^{-\gamma_E R'}}{\Gamma^2\left(1 + \frac{R'}{2}\right)} \left(\frac{2F_1\left(\frac{R'}{2}, 1 + \frac{R'}{2}, 2 + \frac{R'}{2}; -1\right)}{1 + \frac{R'}{2}} \right)^2$$

$$V(\{\tilde{p}\},k) \simeq d_{\ell} \left(\frac{k_t}{Q}\right)^a e^{-b_{\ell}\eta^{(\ell)}} g_{\ell}(\phi)$$

$$B_W = \max(B_1, B_2)$$

$$\mathcal{F}(R') = \frac{4^{R'} e^{-\gamma_E R'}}{\Gamma^2 \left(1 + \frac{R'}{2}\right)} \left(\frac{{}_2F_1\left(\frac{R'}{2}, 1 + \frac{R'}{2}, 2 + \frac{R'}{2}; -1\right)}{1 + \frac{R'}{2}}\right)^2$$

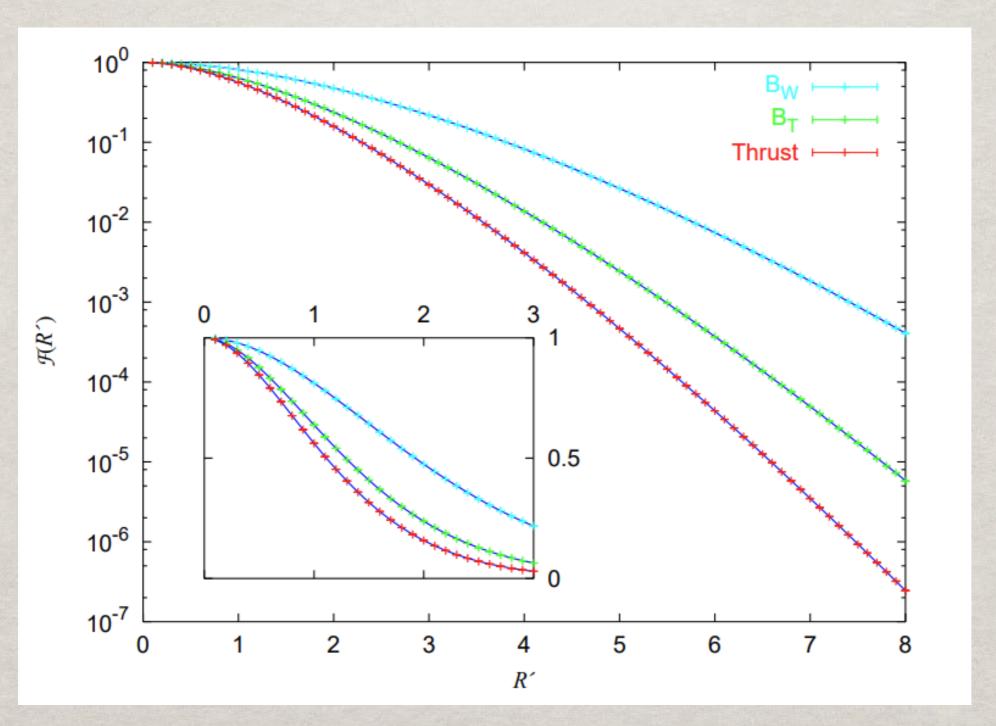
MONTE CARLO RESUMMATION

The normalisation of independent soft-collinear emission suggests a Markov-chain procedure to compute $\mathcal{F}_{\rm NLL}(R')$

$$1 = \epsilon^{R'} \sum_{n=0}^{\infty} \frac{(R')^n}{n!} \int_{\epsilon}^{1} \prod_{i=1}^{n} \frac{d\zeta_i}{\zeta_i}$$

$$= \epsilon^{R'} + \int_{\epsilon}^{1} R' \frac{d\zeta_1}{\zeta_1} \zeta_1^{R'} \left[\left(\frac{\epsilon}{\zeta_1} \right)^{R'} + \int_{\epsilon}^{\zeta_1} R' \frac{d\zeta_2}{\zeta_2} \left(\frac{\zeta_2}{\zeta_1} \right)^{R'} \left[\left(\frac{\epsilon}{\zeta_2} \right)^{R'} + \dots \right]$$

$$\frac{dP(\zeta_1)}{dP(\zeta_1)}$$


- Generate $\zeta_i < \zeta_{i-1}$ with probability $P(\zeta_i) = \left(\frac{\zeta_i}{\zeta_{i-1}}\right)^{R'}$
- If $\zeta_i < \epsilon$ stop
- Otherwise, generate ζ_{i+1}

Additive observable:
$$\mathcal{F}_{\mathrm{NLL}}(R') = \epsilon^{R'} \sum_{n=0}^{\infty} \frac{(R')^n}{n!} \prod_{i=1}^n \int_{\epsilon}^1 \frac{d\zeta_i}{\zeta_i} \Theta\left(1 - \sum_{i=1}^n \zeta_i\right)$$

NUMERICAL RESUMMATION

If NLL corrections are well-defined, jet observables can be resummed numerically

[Banfi Salam Zanderighi hep-ph/0112156, hep-ph/0407286]

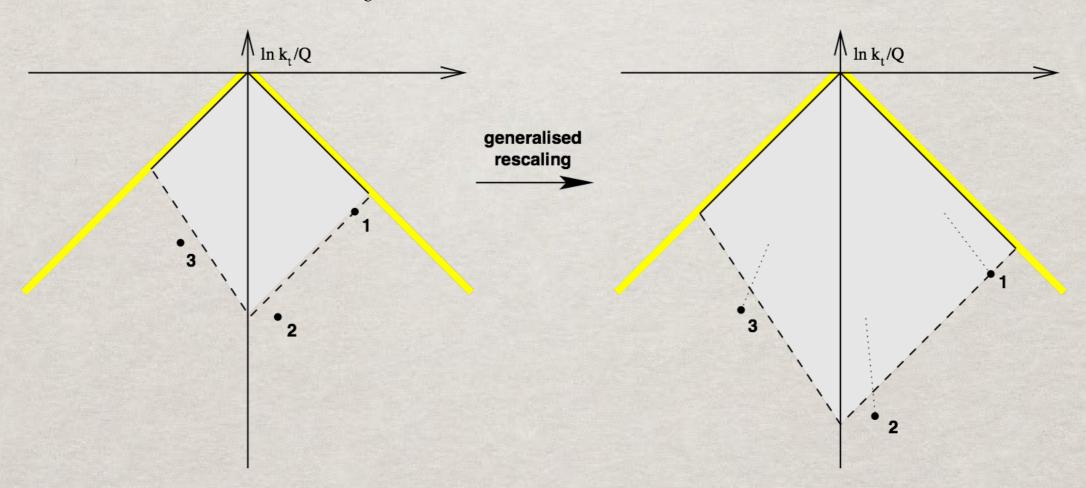
RECURSIVE IRC SAFETY CONDITION 1

• The first crucial property that ensures that $\mathcal{F}_{\mathrm{sc}}(v)$ does not give rise to double logarithms is that $V(\{\tilde{p}\},k_1,\ldots,k_n)\sim v$ whenever $V(\{\tilde{p}\},k_i)\sim v$

$$\lim_{v \to 0} \frac{V(\{\tilde{p}\}, k_1, \dots, k_n)}{v} = \sum_{i=1}^{n} \zeta_i \quad \text{(finite and non-zero)}$$

• In general, for each soft emission collinear to $\log \ell$, we can perform the change of variables (recall $V(\{\tilde{p}\},k) \sim k_t^a e^{-b_\ell \eta^{(\ell)}}$)

$$V(\{ ilde{p}\},k) = \zeta v \qquad \eta^{(\ell)} = \xi^{(\ell)} \, \eta_{ ext{max}}^{(\ell)} \qquad \eta_{ ext{max}}^{(\ell)} = rac{1}{a+b_\ell} \ln rac{1}{v}$$


• For a general observable, for fixed $\zeta_i, \ell_i, \xi^{(\ell_i)}, \phi^{(\ell_i)}$, we must have

$$\lim_{v \to 0} \frac{V(\{\tilde{p}\}, k_1, \dots, k_n)}{v} = f_V(\{\zeta_1, \ell_1, \xi^{(\ell_1)}, \phi^{(\ell_1)}\}, \dots, \{\zeta_n, \ell_n, \xi^{(\ell_n)}, \phi^{(\ell_n)}\})$$

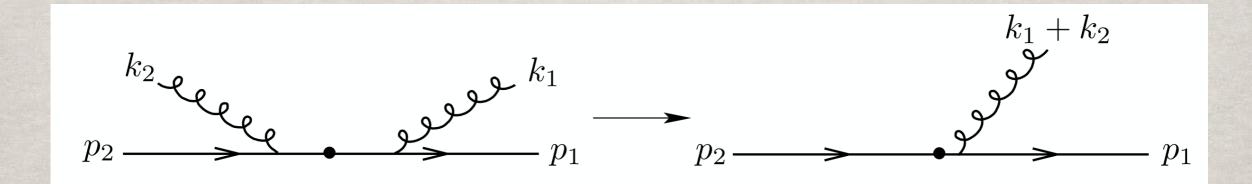
RECURSIVE IRC SAFETY CONDITION 1

The requirement that the observable scales in the same way irrespectively of the number of emission is formalised as follows

$$\lim_{v \to 0} \frac{V(\{\tilde{p}\}, k_1, \dots, k_n)}{v} = \text{finite and non-zero}$$

- This is the first of the requirements known as "recursive" IRC safety
- rIRC safe observables are the only ones that can be resummed so far

NON-EXPONENTIATING OBSERVABLES


In the case of the two-jet rate in the JADE algorithm, double logarithms do not exponentiate

[Brown Stirling PLB 252 (1990) 657]

$$\Sigma(y_{\text{cut}}) = 1 - \frac{C_F \alpha_s}{\pi} \ln^2 \left(\frac{1}{y_{\text{cut}}}\right) + \frac{1}{2!} \times \frac{5}{6} \times \left(\frac{C_F \alpha_s}{\pi} \ln^2 \left(\frac{1}{y_{\text{cut}}}\right)\right)^2 + \dots$$

This is due to the peculiar way JADE performs sequential recombinations

$$y_{ij} = \frac{(p_i + p_j)^2}{Q^2}$$

The JADE algorithm is able to recombine together two soft emissions collinear to two different legs ⇒ violation of rIRC safety

FAILURE OF RIRC SAFETY CONDITION 1

The way in which the JADE algorithm performs sequential recombinations changes the scaling properties of the three-jet resolution

$$y_{k_1 p_1} = y_3(\{\tilde{p}\}, k_1) = \frac{(k_1 + p_1)^2}{Q^2} \simeq \frac{k_{t1}}{Q} e^{-\eta_1} = y_{\text{cut}}$$
$$y_{k_2 p_2} = y_3(\{\tilde{p}\}, k_2) = \frac{(k_2 + p_2)^2}{Q^2} \simeq \frac{k_{t2}}{Q} e^{+\eta_2} = y_{\text{cut}}$$

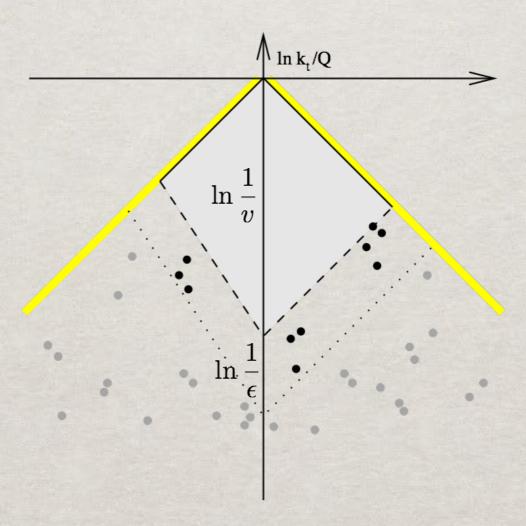
$$p_2 \xrightarrow{k_2} p_1 \xrightarrow{p_2} p_1 \xrightarrow{k_1 + k_2} p_1$$

$$y_{k_1 k_2} = \frac{(k_1 + k_2)^2}{Q^2} \simeq y_{\text{cut}}^{2 - \xi_1 - \xi_2} < y_{\text{cut}} \quad \Leftrightarrow \quad \xi_1 + \xi_2 < 1$$

$$\frac{y_3(\{\tilde{p}\}, k_1, k_2)}{y_{\text{cut}}} = y_{\text{cut}}^{1-\xi_1-\xi_2} \implies \text{depends on } y_{\text{cut}} \implies \mathcal{F}_{\text{sc}}(y_{\text{cut}}) \text{ gives double logs}$$

RECURSIVE IRC SAFETY CONDITION 2A

- The second crucial property that ensures that $\mathcal{F}_{sc}(v)$ does not give double logarithms is that the integral over ζ_i is finite
- This means that we can neglect all emissions with $V(\{\tilde{p}\},k_i)<\epsilon v$, with the cutoff $\epsilon\gg v$, independent of v

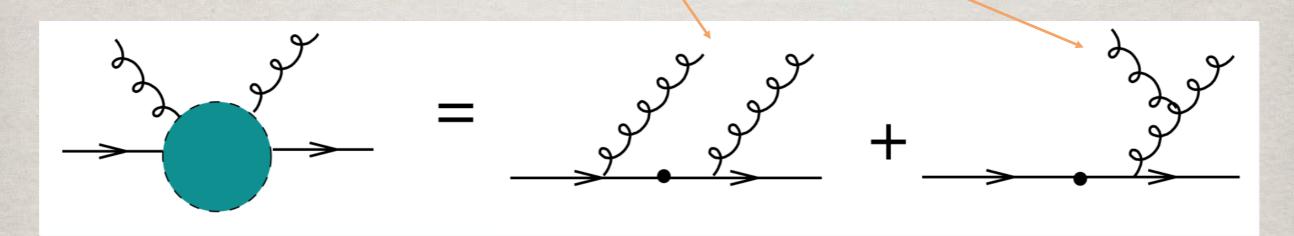

$$[dk]M^{2}(k) \simeq \sum_{\ell} \underbrace{R'_{\ell}(v)}_{\sim \alpha_{c}L} \frac{d\zeta}{\zeta} d\xi^{(\ell)} \frac{d\phi}{2\pi} \qquad \qquad R' = \sum_{\ell} R'_{\ell} = -v \frac{dR}{dv}$$

$$\mathcal{F}_{\text{sc}}(v) \simeq \epsilon^{R'} \sum_{n=0}^{\infty} \frac{1}{n!} \int \prod_{i=1}^{n} \left(\int_{\epsilon}^{\infty} \frac{d\zeta_{i}}{\zeta_{i}} \sum_{\ell_{i}} R'_{\ell_{i}} \int_{0}^{1} d\xi^{(\ell_{i})} \int_{0}^{2\pi} \frac{d\phi_{i}^{(\ell_{i})}}{2\pi} \right) \times \Theta\left(1 - \lim_{v \to 0} \frac{V(\{\tilde{p}\}, k_{1}, \dots, k_{n})}{v} \right) = \mathcal{F}_{\text{NLL}}(R')$$

RECURSIVE IRC SAFETY CONDITION 2A

The fact that we can neglect emissions with $\zeta_i < \epsilon$ is expressed formally by rIRC safety condition 2a

$$\lim_{\zeta_{n+1}\to 0} \lim_{v\to 0} \frac{V(\{\tilde{p}\}, k_1, \dots, k_n, k_{n+1})}{v} = \lim_{v\to 0} \frac{V(\{\tilde{p}\}, k_1, \dots, k_n)}{v}$$

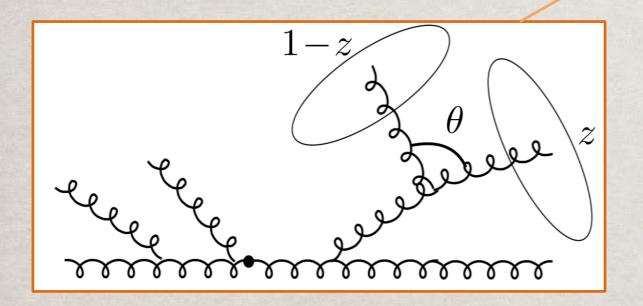


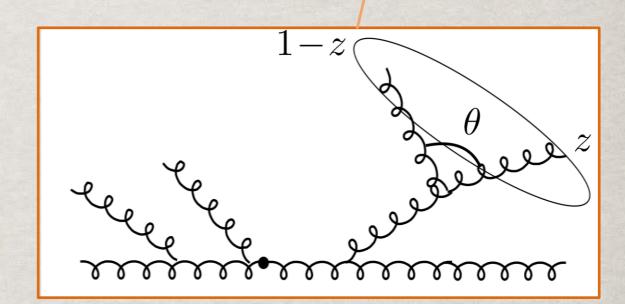
Note the order of the limits: the reversed limit trivially holds because the observable is IRC safe!

TWO-GLUON CORRELATED EMISSION

The matrix element for two soft-collinear gluons can always be written as the sum of an independent and correlated emission part

$$M^{2}(k_{1}, k_{2}) = M^{2}(k_{1})M^{2}(k_{2}) + \tilde{M}^{2}(k_{1}, k_{2})$$

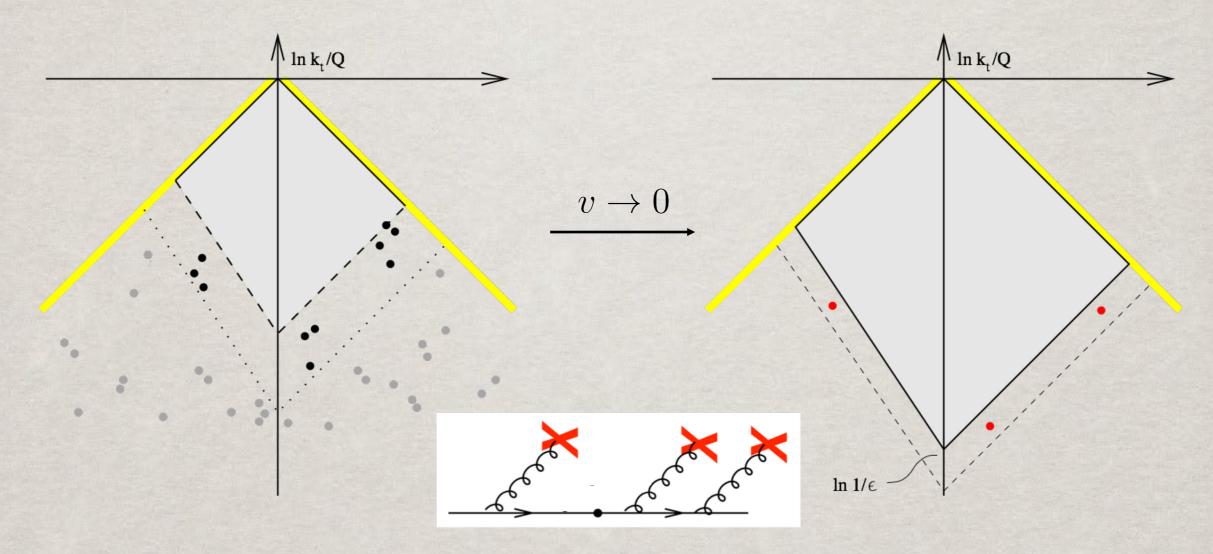



The correlated emission part, if integrated inclusively, is combined with the one-loop one-gluon matrix element to give the running coupling in a physical renormalisation scheme

TWO-GLUON CORRELATED EMISSION

The remainder after the extraction of the coupling

$$\int_{\epsilon v} [dk_1] \int_{\epsilon v} [dk_2] \tilde{M}^2(k_1, k_2) \left[\Theta\left(v - V(\{\tilde{p}\}, k_1, k_2)\right) - \Theta\left(v - V(\{\tilde{p}\}, k_1 + k_2)\right)\right]$$

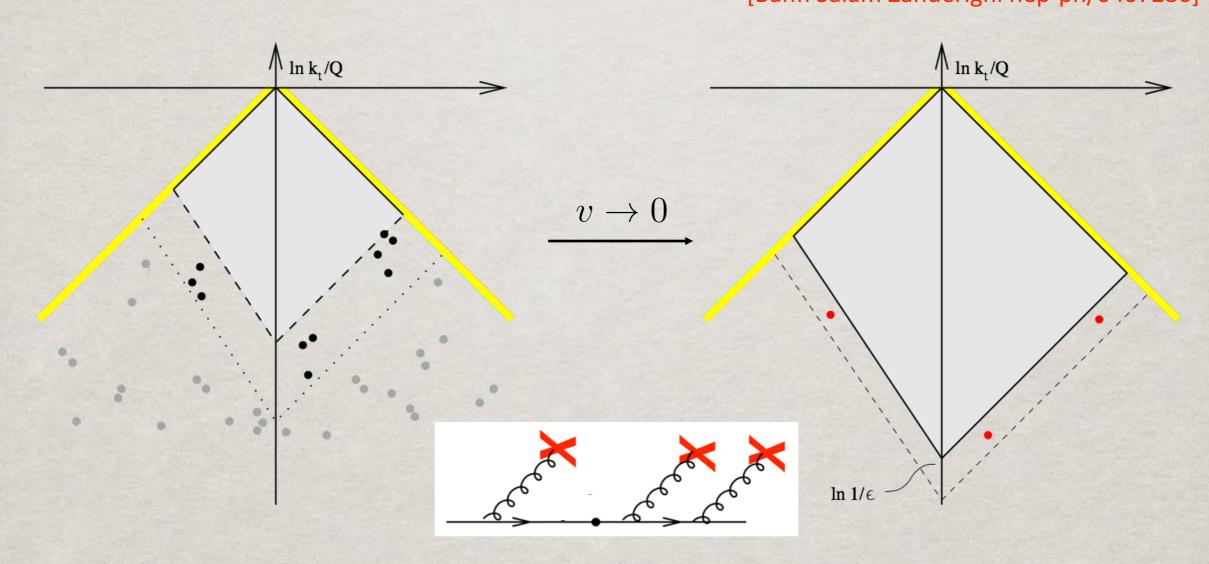

Example: in a jet-rate, the two gluons can be clustered into different jets

$$\int_{\epsilon v} [dk] M^2(k) \times \left[C_A \int \frac{d\theta^2}{\theta^2} \int \frac{dz}{z(1-z)} \frac{\alpha_s[z(1-z)\theta k_t]}{2\pi} \right]$$

Potential source of double logarithms, which are however absent for a rIRC safe observable

RECURSIVE IRC SAFETY CONDITION 2B

This condition ensures that the contribution of correlated gluon emissions, hard collinear and soft large-angle emissions is beyond NLL

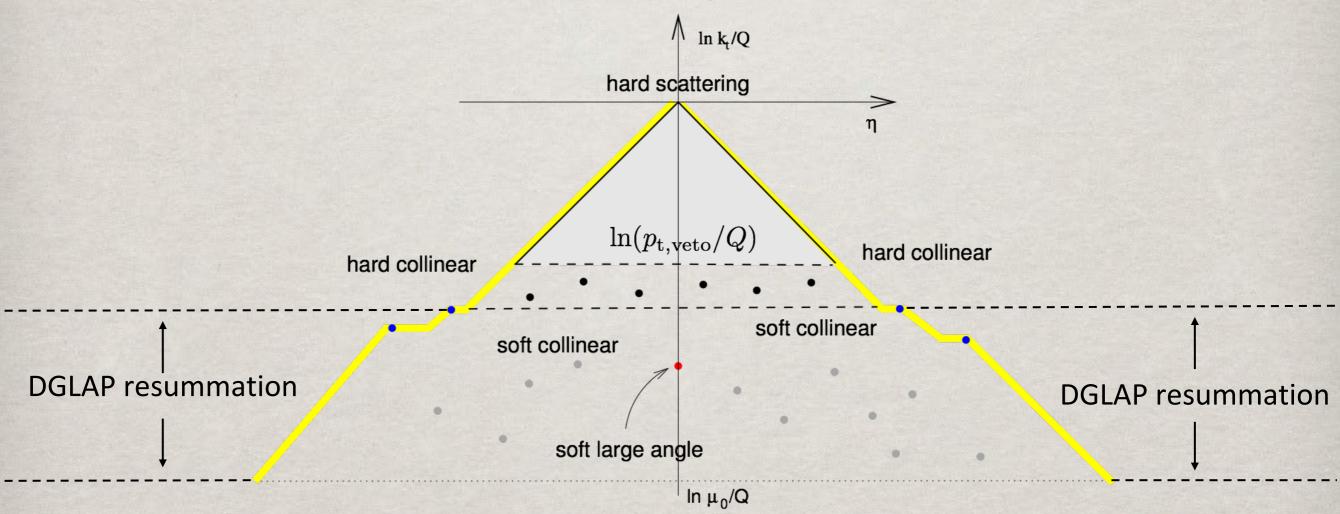


- At NLL accuracy, relevant emissions are soft and collinear, widely separated in angle, and in a strip of size $\ln v \times \ln \epsilon$
- The strip is a line in the Lund plane, hence a single logarithmic contribution

GENERAL NLL RESUMMATION

NLL resummation of rIRC safe observables can be performed with a universal master formula

[Banfi Salam Zanderighi hep-ph/0407286]

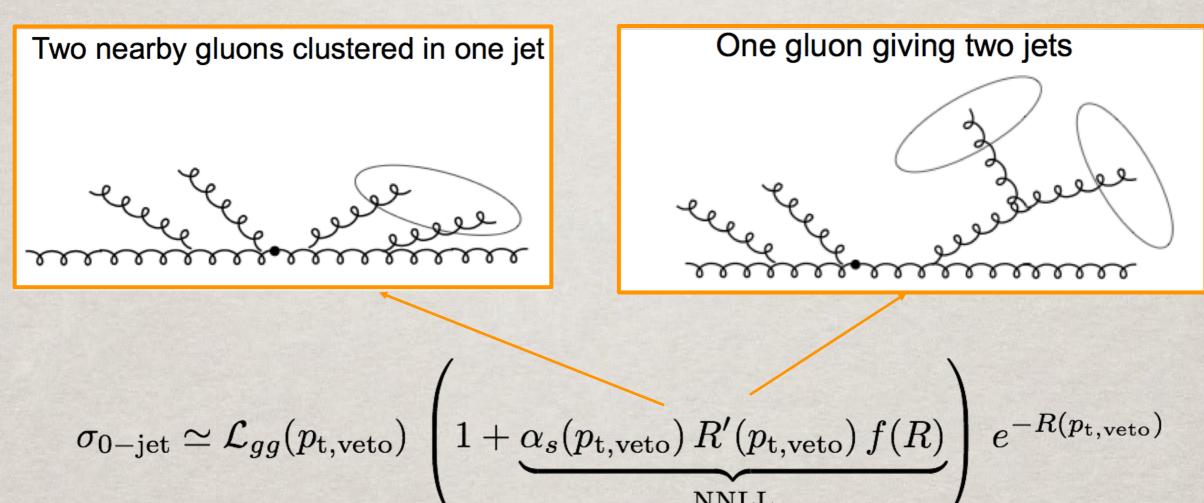


$$\Sigma(v) = e^{-R(v)} \left\{ \epsilon^{R'} \sum_{n=0}^{\infty} \frac{1}{n!} \int \prod_{i=1}^{n} \left(\sum_{\ell_i} R'_{\ell_i} \int_{\epsilon}^{\infty} \frac{d\zeta_i}{\zeta_i} \int_{0}^{1} d\xi_i^{(\ell_i)} \int_{0}^{2\pi} \frac{d\phi}{2\pi} \right) \Theta\left(1 - \lim_{v \to 0} \frac{V(\{\tilde{p}\}, k_1, \dots, k_n)}{v}\right) \right\}$$

single-logarithmic correction $\mathcal{F}_{\mathrm{NLL}}(R')$

HIGGS PLUS ZERO JETS AT NLL

In the presence of initial state radiation, the zero-jet cross section inclusive with respect to hard-collinear emission up to the scale $p_{\rm t,veto}$


No k_t-type algorithm can recombine gluons that are widely separated in angle: perfectly exponentiating observable

$$\sigma_{0-\text{jet}} \simeq \mathcal{L}_{gg}(p_{\text{t,veto}}) e^{-R(p_{\text{t,veto}})}$$

HIGGS PLUS ZERO JETS AT NNLL

Jet recombination effects start to matter at NNLL accuracy

[Banfi Monni Salam Zanderighi 1206.4998]

The function $f(R) \sim \ln R$ since the jet radius provides an effective cutoff to the collinear singularity in gluon splitting. Leading logarithm of the jet radius can be also resummed at all orders

[Dasgupta Dreyer Salam Soyez 1411.5182]