

Negative Event Weights

Andreas Maier

28 November 2025

- Where do negative weights come from?
- Why are negative weights a problem?
- How to handle negative weights?

[References at the end]

Where do negative weights come from?

Where do negative weights come from?

Monte Carlo events

Predict (integrated) differential cross section for $PP \rightarrow X$:

$$\int_{\mathcal{D}} d\sigma_{PP \rightarrow X} = \frac{1}{F} \int_{\mathcal{D}} d\phi |\mathcal{M}_{PP \rightarrow X}(p)|^2$$

phase space selection
e.g. histogram bin

flux factor

scattering amplitude

Where do negative weights come from?

Monte Carlo events

Predict (integrated) differential cross section for $PP \rightarrow X$:

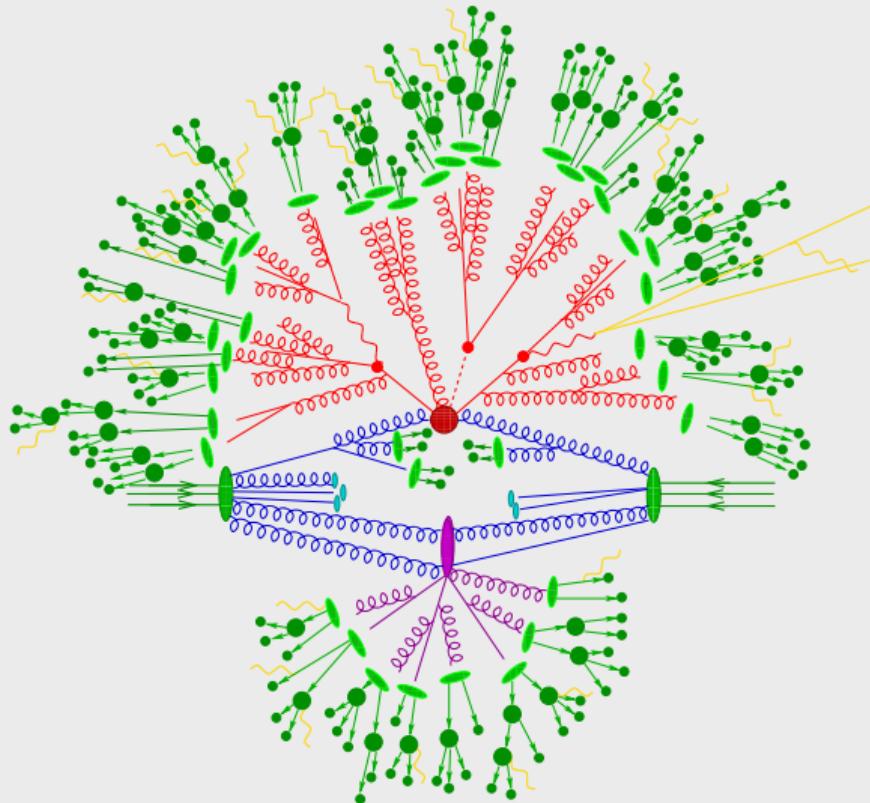
$$\int_{\mathcal{D}} d\sigma_{PP \rightarrow X} = \int_{\mathcal{D}} d\phi |\mathcal{M}_{PP \rightarrow X}(p)|^2 \xrightarrow{\text{Monte Carlo}} \underbrace{\sum_{i=1}^N \frac{\mathcal{D}}{FN} |\mathcal{M}_{PP \rightarrow X}(p_i)|^2}_{\text{weight } w_i}$$

Exact weights w_i

- are non-negative: proportional to modulus square
- indicate relative probability of event

Where do negative weights come from?

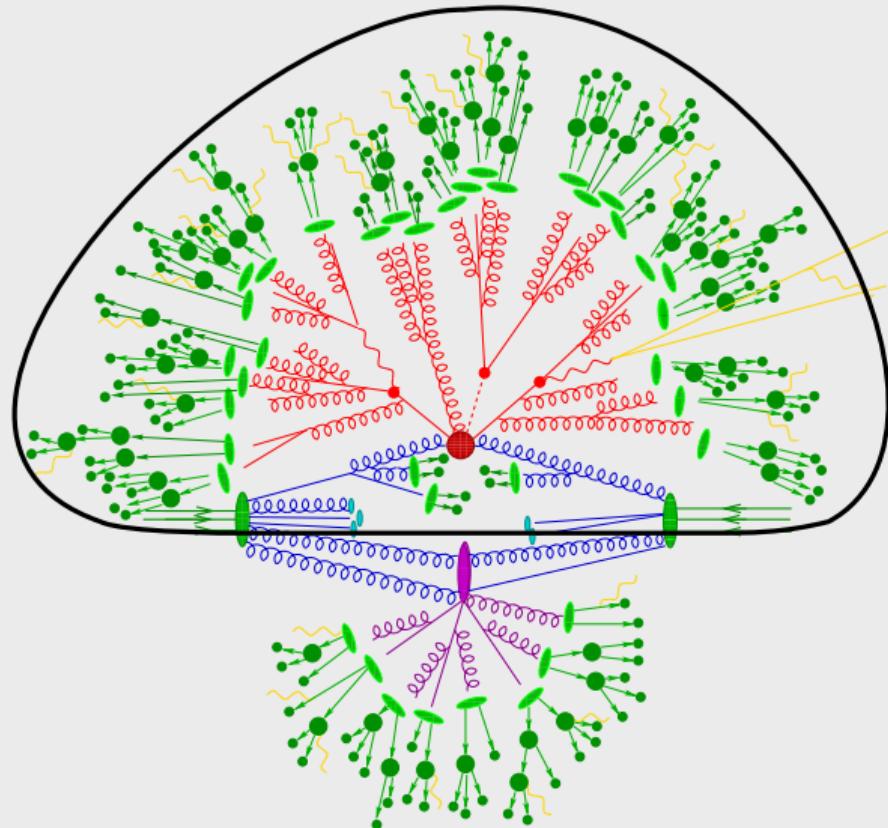
Standard theory picture



[Sherpa collaboration]

Where do negative weights come from?

Standard theory picture



[Sherpa collaboration]

Where do negative weights come from?

PDFs

$$\int_{\mathcal{D}} d\sigma_{PP \rightarrow X} \approx \int dx_a dx_b \int_{\mathcal{D}} d\sigma_{ab \rightarrow X} f_a(x_a) f_b(x_b)$$

- Factorisation not unique, PDFs are scheme dependent beyond leading order
→ physical interpretation not obvious
- PDFs can be negative, but [References]
 - ▶ Universality: same PDFs have to reproduce many positive cross sections
 - ▶ Naturalness: leading-order PDFs are non-negative, higher-order corrections should be small
- Can impose PDF positivity, e.g. NNPDF4.0MC

Partonic cross section generally main source of negative weights

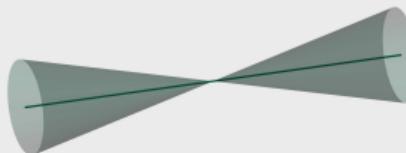
Where do negative weights come from?

Partonic cross section

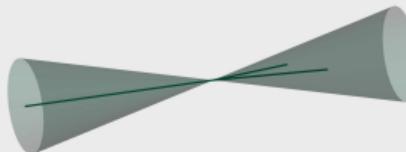
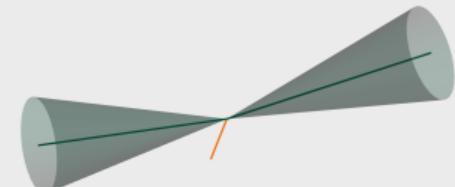
Consider simple scenario:

- exclusive dijet production
- no parton shower ← similar discussion, but more involved

$$\int_{\mathcal{D}} d\sigma_{ab \rightarrow 2j} = d\sigma_{ab \rightarrow 2j} \text{ (2 partons)}$$



$$+ d\sigma_{ab \rightarrow 2j} \text{ (3 partons)}$$



+ ...

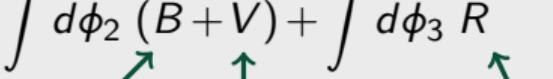
Separation **unphysical**, not **InfraRed** & **Collinear** safe

Where do negative weights come from?

NLO partonic cross section

Truncate at NLO:

$$\int_{\mathcal{D}} d\sigma_{ab \rightarrow 2j} \Big|_{\text{NLO}} = \int d\phi_2 (B + V) + \int d\phi_3 R$$



 Born Virtual Real

- Terms on right-hand side diverge individually
- Introduce subtraction (Catani-Seymour, FKS, ...)

Where do negative weights come from?

NLO partonic cross section

$$\int_{\mathcal{D}} d\sigma_{ab \rightarrow 2j} \Big|_{\text{NLO}} = \int d\phi_2 (B + V + C_{\text{int}}) + \int d\phi_3 (R - C)$$

$\xrightarrow[\text{up to normalisation}]{\text{Monte Carlo}}$ $\sum_{i=1}^{N_2} [B(p_i) + V(p_i) + C_{\text{int}}(p_i)] + \sum_{i=1}^{N_3} [R(p_i) - C(p_i)]$

Where do negative weights come from?

NLO partonic cross section

$$\int_{\mathcal{D}} d\sigma_{ab \rightarrow 2j} \Big|_{\text{NLO}} = \int d\phi_2 (B + V + C_{\text{int}}) + \int d\phi_3 (R - C)$$

$\xrightarrow[\substack{\text{up to normalisation}}]{\text{Monte Carlo}}$ $\sum_{i=1}^{N_2} [B(p_i) + V(p_i) + C_{\text{int}}(p_i)] + \sum_{i=1}^{N_3} [R(p_i) - C(p_i)]$

Sources of negative weights:

- 1 $R(p_i) - C(p_i)$ negative
- 2 $B(p_i) + V(p_i) + C_{\text{int}}(p_i)$ negative
- 3 Split up

$$\sum_{i=1}^{N_2} [B(p_i) + V(p_i) + C_{\text{int}}(p_i)] \rightarrow \sum_{i=1}^{N_B} B(p_i) + \sum_{i=1}^{N_V} [V(p_i) + C_{\text{int}}(p_i)]$$

and $V(p_i) + C_{\text{int}}(p_i)$ negative

Where do negative weights come from?

Negative Born + Virtual

$$\underbrace{B(p_i) + V(p_i) + C_{\text{int}}(p_i)}_{\geq 0} < 0$$

$\mathcal{O}(\alpha_s \times B)$

Where do negative weights come from?

Negative Born + Virtual

$$\underbrace{B(p_i)}_{\geq 0} + \underbrace{V(p_i) + C_{\text{int}}(p_i)}_{\mathcal{O}(\alpha_s \times B)} < 0$$

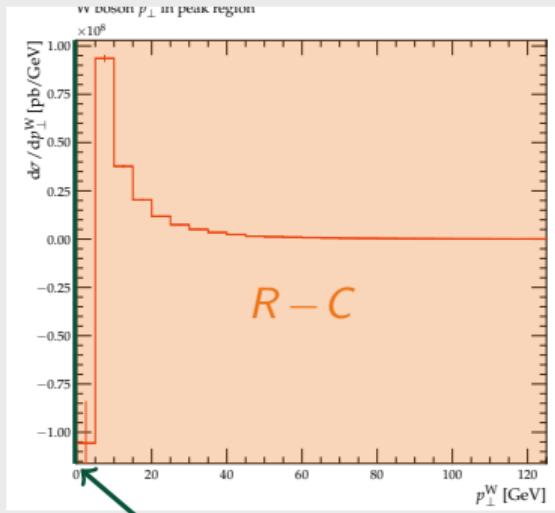
- Suggests oversubtraction or **local breakdown of perturbation theory**
 - ▶ Expect physical result when including (all) higher orders
 - ▶ Possible pragmatic solution:
 - 1 Carefully identify phase-space region where prediction breaks down
 - 2 Discarding complete “bad” phase-space region is formally >NLO change

Just discarding all negative weights is **wrong**

Where do negative weights come from?

Negative Born + Virtual

Example: W boson production at vanishing transverse momentum



$B + V + C^{\text{int}}$

- Cause of breakdown: Sudakov logarithms $\ln^2 \frac{m_W}{p_T^W}$
- Discard $B + V + C^{\text{int}}$?
 - ▶ Wrong prediction for small $p_T^W > 0$
 - ▶ Loose NLO accuracy in total cross section
- Discard region $[0, p_T^{\min}]$ with $\int_0^{p_T^{\min}} dp_T \frac{d\sigma}{dp_T} = 0$
 - ▶ Preserves total NLO cross section
 - ▶ Differential cross section suddenly drops to 0

Why are negative weights a problem?

Why are negative weights a problem?

Negative weights are

- “unphysical”, but needed to cancel “unphysical” positive weights!
 - ▶ Wrong cross section prediction $\int_{\mathcal{D}} d\sigma_{PP \rightarrow X}$ for small enough \mathcal{D}
 - ▶ At odds with $|\mathcal{M}_{PP \rightarrow X}(p_i)|^2 \geq 0$
 - ▶ No clear interpretation as probabilities
- problematic for machine learning
- bad for statistical convergence: state-of-the-art predictions become computationally extremely expensive or even infeasible

Why are negative weights a problem?

Statistical convergence

Assume **unweighted** sample of $N \gg 1$ events:

- N_- events with weights $w_i = -W < 0$
- $N_+ = N - N_-$ events with weights $w_i = W > 0$

Why are negative weights a problem?

Statistical convergence

Assume **unweighted** sample of $N \gg 1$ events:

- N_- events with weights $w_i = -W < 0$
- $N_+ = N - N_-$ events with weights $w_i = W > 0$

$$\sigma = \sum_{i=1}^N w_i = -N_- W + (N - N_-)W = \left(1 - 2 \underbrace{\frac{N_-}{N}}_{\text{negative weight fraction } r_-}\right) NW$$

Why are negative weights a problem?

Statistical convergence

Assume **unweighted** sample of $N \gg 1$ events:

- N_- events with weights $w_i = -W < 0$
- $N_+ = N - N_-$ events with weights $w_i = W > 0$

$$\sigma = \sum_{i=1}^N w_i = -N_- W + (N - N_-)W = \left(1 - 2 \underbrace{\frac{N_-}{N}}_{\text{negative weight fraction } r_-}\right) NW$$

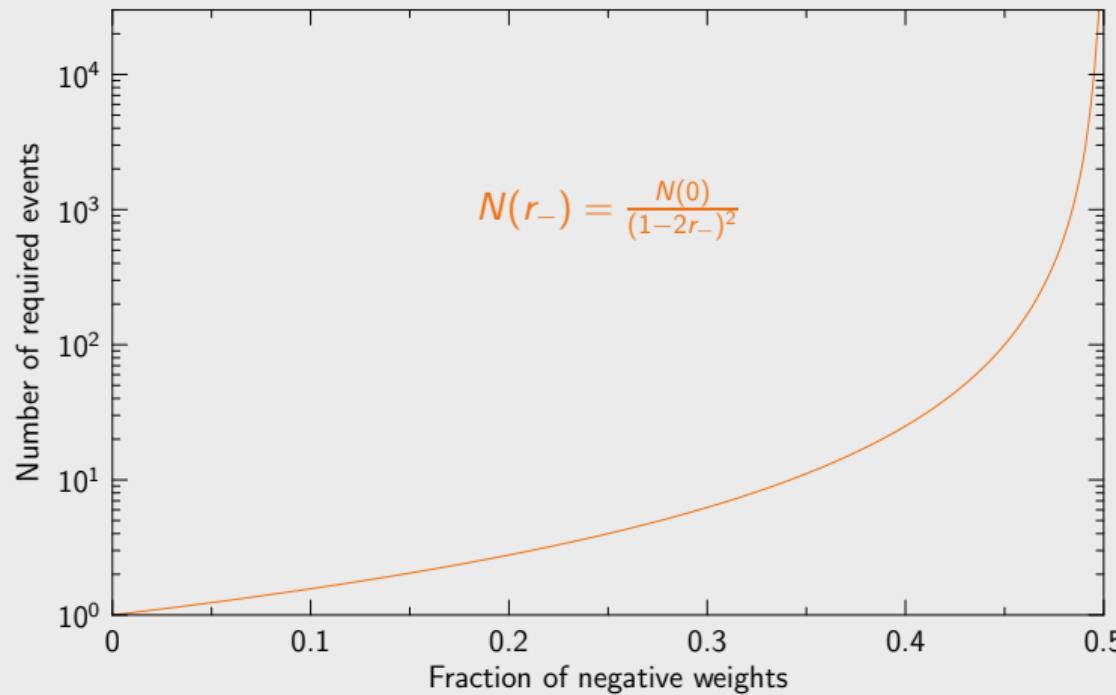
For **uncorrelated** events: $\Delta\sigma = \sqrt{\sum_{i=1}^N w_i^2} = \sqrt{NW}$

$$\frac{\Delta\sigma}{\sigma} = \frac{1}{(1 - 2r_-)\sqrt{N}}$$

Why are negative weights a problem?

Statistical convergence

Number of required events to reach given statistical accuracy:



Summary I

Negative weights come from

- Splitting the cross section into unphysical parts & introducing subtraction terms
 - ▶ Example: $R(p_i) - C(p_i)$
 - ▶ Details depend on formalism
- Local breakdown of perturbation theory
- Potentially negative PDFs
- ...

They are a problem because they

- hinder statistical convergence
- are bad for machine learning
- do not have a physical interpretation

How to handle negative weights?

How to handle negative weights?

Many approaches for cancelling negative weights:

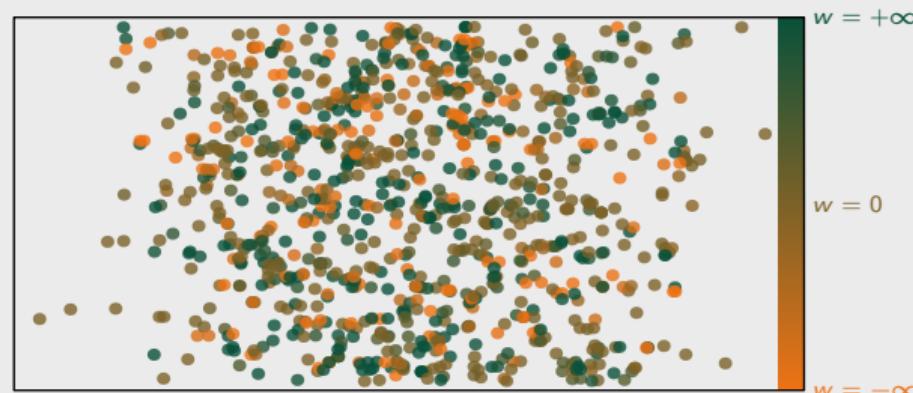
- Independent of event generation method
 - ▶ Cell resampling
 - ▶ Neural reweighting/refining
 - ▶ Folding
- Origin in additive parton shower matching
 - ▶ Born spreading
 - ▶ MC@NLO- Δ
 - ▶ ARCANE reweighting
- Origin in multiplicative parton shower matching
 - ▶ ESME
 - ▶ KrkNLO matching
- ...
- + combinations of complementary methods

How to handle negative weights?

Cell resampling

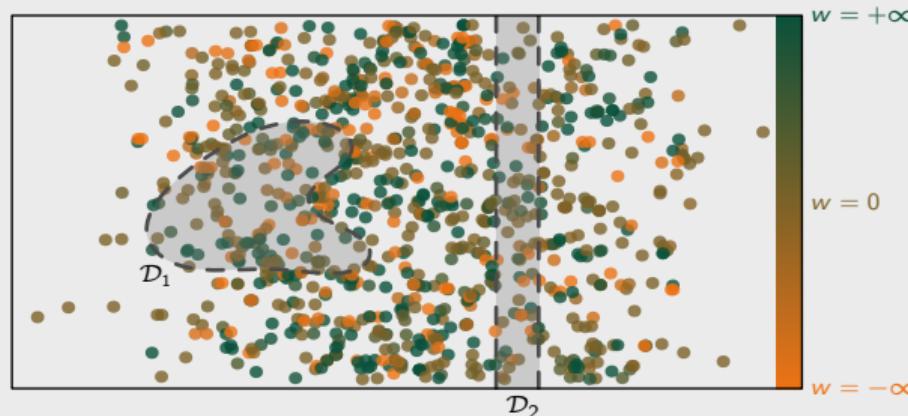
Cell resampling

Events in 2D projection of phase space:



Cell resampling

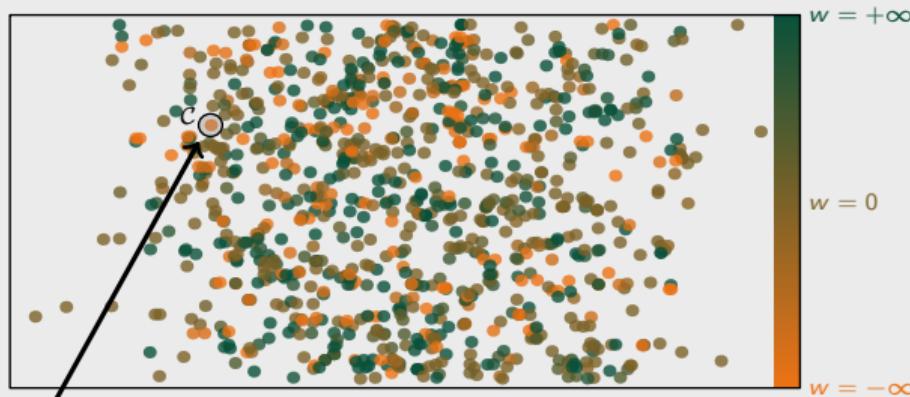
Integrated differential cross sections: $\int_{\mathcal{D}} d\sigma = \sum_{i \in \mathcal{D}} w_i$



- $\int_{\mathcal{D}} d\sigma = \sum_{i \in \mathcal{D}} w_i \geq 0$, provided
 - ▶ Theory can be trusted
 - ▶ Enough statistics
- Analysis has finite resolution \Rightarrow minimum size for \mathcal{D}

Idea: redistribute weights over small distances

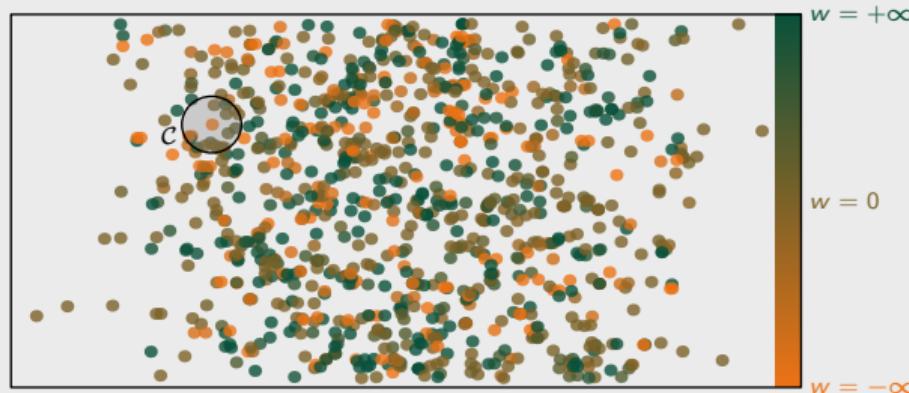
Cell resampling



Cell resampling:

- 1 Choose seed event with negative weight for cell \mathcal{C}

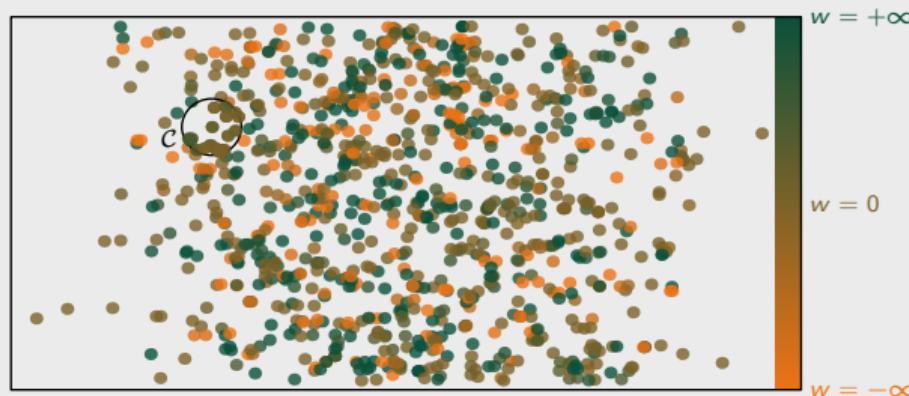
Cell resampling



Cell resampling:

- 1 Choose seed event with negative weight for cell \mathcal{C}
- 2 Iteratively add nearest event to cell until $\sum_{i \in \mathcal{C}} w_i \geq 0$ or radius exceeds r_{\max}

Cell resampling



Cell resampling:

- 1 Choose seed event with negative weight for cell \mathcal{C}
- 2 Iteratively add nearest event to cell until $\sum_{i \in \mathcal{C}} w_i \geq 0$ or radius exceeds r_{\max}
- 3 Redistribute weights, e. g. average over cell: $w_i \rightarrow w = \frac{\sum_{j \in \mathcal{C}} w_j}{\# \text{ events in } \mathcal{C}}$
- 4 Repeat

Cell resampling

Subsampling

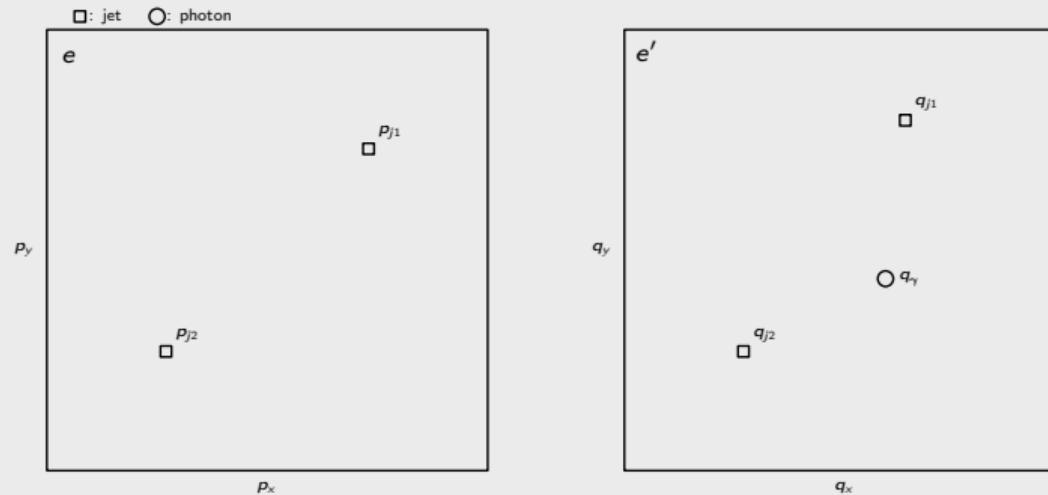
Generate more events inside cells with incomplete cancellation:

Cell resampling

Distance in phase space

Need distance that measures **similarity between events**

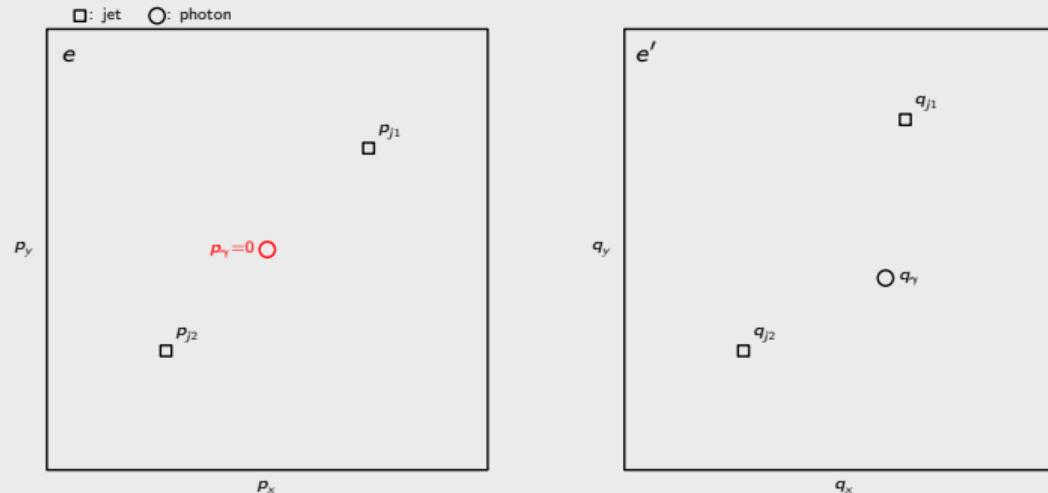
Example:



Cell resampling

Distance in phase space

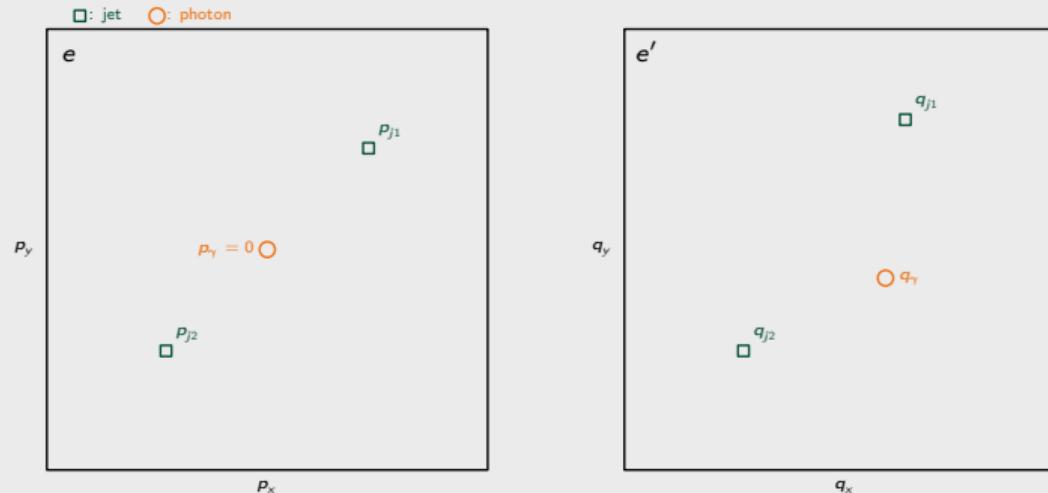
Ensure same multiplicities



Cell resampling

Distance in phase space

Compare physics objects of same type

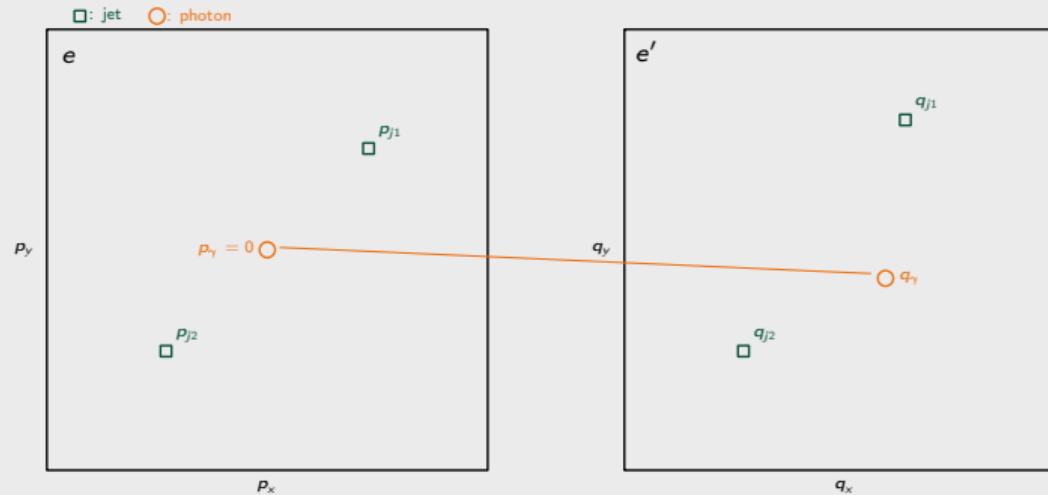


$$d(e, e') = d(s_j, s'_j) + d(s_\gamma, s'_\gamma)$$

Cell resampling

Distance in phase space

Compare photons

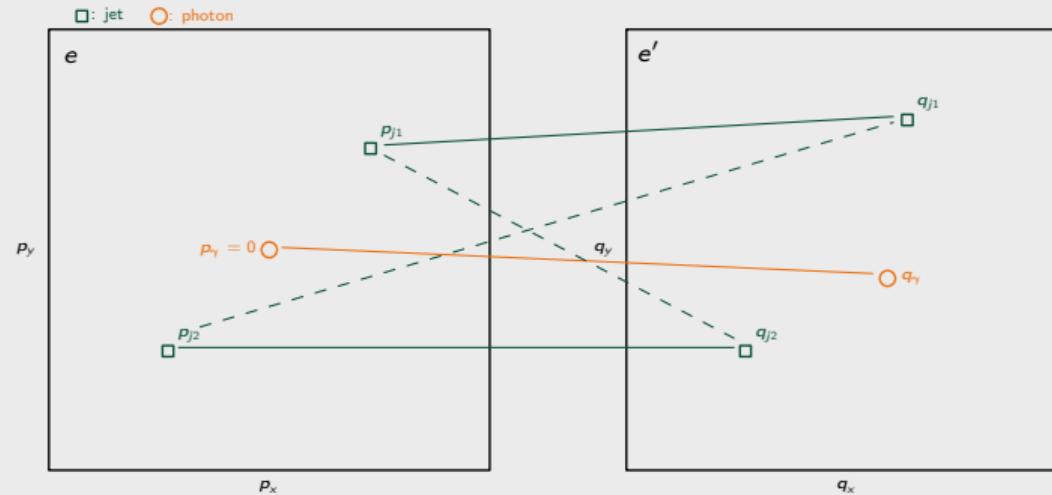


$$\begin{aligned} d(e, e') &= d(s_j, s'_j) + d(s_\gamma, s'_\gamma) \\ &= d(s_j, s'_j) + d(p_\gamma, q_\gamma) \end{aligned}$$

Cell resampling

Distance in phase space

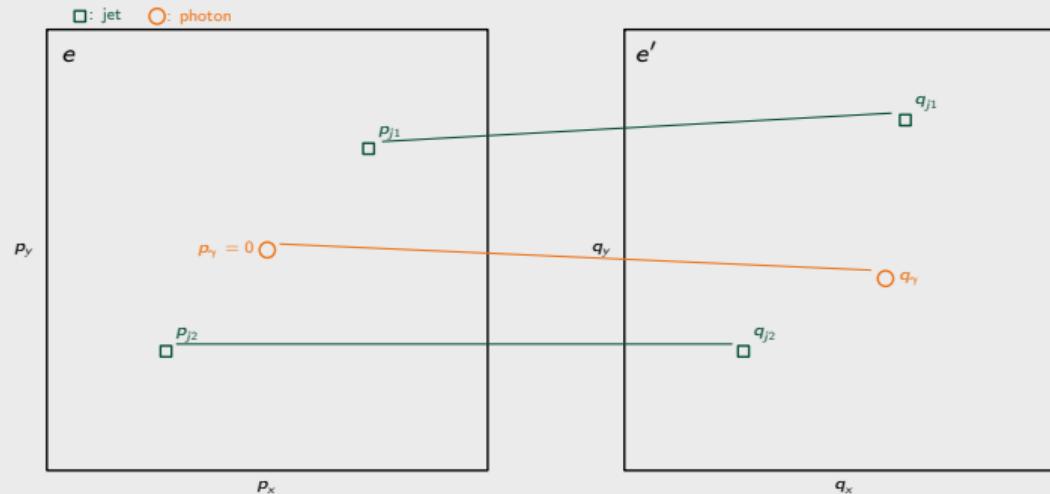
Compare jets: find pairs of most similar jets



$$\begin{aligned} d(e, e') &= d(s_j, s'_j) + d(s_\gamma, s'_\gamma) \\ &= \min[d(p_{j1}, q_{j1}) + d(p_{j2}, q_{j2}), d(p_{j1}, q_{j2}) + d(p_{j2}, q_{j1})] + d(p_\gamma, q_\gamma) \end{aligned}$$

Cell resampling

Distance in phase space

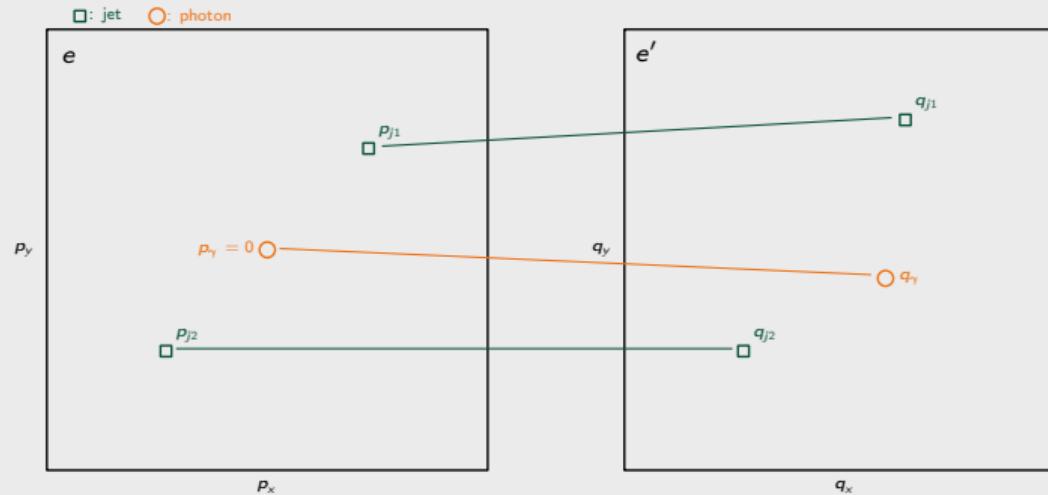


$$\begin{aligned} d(e, e') &= d(s_j, s'_j) + d(s_\gamma, s'_\gamma) \\ &= d(p_{j1}, q_{j1}) + d(p_{j2}, q_{j2}) + d(p_\gamma, q_\gamma) \end{aligned}$$

Cell resampling

Distance in phase space

Compare momenta



$$\begin{aligned} d(e, e') &= d(s_j, s'_j) + d(s_\gamma, s'_\gamma) \\ &= |\vec{p}_{j1} - \vec{q}_{j1}| + |\vec{p}_{j2} - \vec{q}_{j2}| + |\vec{p}_\gamma - \vec{q}_\gamma| \end{aligned}$$

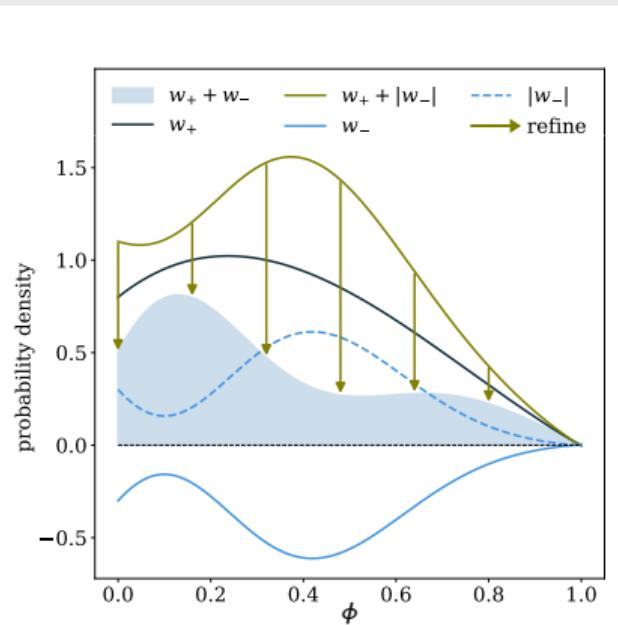
How to handle negative weights?

Neural reweighting/refining

Neural reweighting/refining

Idea: train neural network to replace weight w_i at phase space point ϕ_i

- **Neural reweighting:** replace by average weight $w'(\phi_i)$
- **Neural refining:** replace by rescaled weight $r(\phi_i)|w_i|$
 - ▶ Preserves weights in purely positive samples
 - ▶ Better behaviour in negative phase space regions



How to handle negative weights?

Folding

Folding

Assume $\int d\phi I(p) \geq 0$

$$\sum_i I(p_i) \longrightarrow \sum_i \underbrace{\frac{1}{K} \sum_k I(p_i + k\Delta p)}_{w_i}$$

- + w_i is better estimate of integral $\Rightarrow w_i \geq 0$ more likely
- + general technique, straightforward to use as ingredient in others
- each w_i requires multiple evaluations of $I \longrightarrow$ more computing time

Additive parton shower matching

Additive parton shower matching

NLO

$$\int_{\mathcal{D}} d\sigma_{ab \rightarrow X} \Big|_{\text{NLO}} = \int d\phi_B \left[B + V + \int d\phi_r C \right] + \int d\phi_B d\phi_r [R - C]$$

↑
Evaluate analytically

Additive parton shower matching

MC@NLO

Modify to subtract shower approximation of real emission

$$\int_{\mathcal{D}} d\sigma_{ab \rightarrow X} \Big|_{\text{MC@NLO}} = \int d\phi_B \left[B + V + \int d\phi_r C_{\text{PS}} \right] \mathcal{F}_{\text{PS}}^{(B)} + \int d\phi_B d\phi_r [R - C_{\text{PS}}] \mathcal{F}_{\text{PS}}^{(R)}$$

Evaluate numerically
→ negative weights

Shower evolution

How to handle negative weights?

Born spreading

Born spreading

Standard evolution events:

$$\int d\phi_B d\phi_r \left[\frac{B(\phi_B)}{\int d\phi_r} + \frac{V(\phi_B)}{\int d\phi_r} + C_{\text{PS}}(\phi_B, \phi_r) \right] \mathcal{F}_{\text{PS}}^{(B)}$$

Born spreading

Standard evolution events:

$$\int d\phi_B d\phi_r \left[\frac{B(\phi_B)}{\int d\phi_r} + \frac{V(\phi_B)}{\int d\phi_r} + C_{\text{PS}}(\phi_B, \phi_r) \right] \mathcal{F}_{\text{PS}}^{(B)}$$

Idea: “spread out” large + positive Born contribution to cancel negative weights:

$$\frac{B(\phi_B)}{\int d\phi_r} \rightarrow \frac{B(\phi_B)F(\phi_r)}{\int d\phi_r F(\phi_r)}$$

- ➊ Sample integrand with original Born function $B(\phi_B)$
- ➋ Define spreading function $F(\phi_r)$ via grid in ϕ_r to make integrand non-negative

How to handle negative weights?

MC@NLO- Δ

$$\int_{\mathcal{D}} d\sigma_{ab \rightarrow X} \Big|_{\text{MC@NLO}} = \int d\phi_B \underbrace{\left[B + V + \int d\phi_r C_{\text{PS}} \right] \mathcal{F}_{\text{PS}}^{(B)}}_{\text{Standard}} + \int d\phi_B d\phi_r \underbrace{[R - C_{\text{PS}}] \mathcal{F}_{\text{PS}}^{(R)}}_{\text{Hard}}$$

$$\int_{\mathcal{D}} d\sigma_{ab \rightarrow X} \Big|_{\text{MC@NLO}} = \int d\phi_B \underbrace{\left[B + V + \int d\phi_r C_{\text{PS}} \right] \mathcal{F}_{\text{PS}}^{(B)}}_{\text{Standard}} + \int d\phi_B d\phi_r \underbrace{[R - C_{\text{PS}}] \mathcal{F}_{\text{PS}}^{(R)}}_{\text{Hard}}$$

Idea:

- Born term B in \mathbb{S} good for cancelling negative weights
- Move contributions from \mathbb{H} to \mathbb{S}
- Preserve shower accuracy:
can only move Born-like (soft, collinear) contributions

$$\int_{\mathcal{D}} d\sigma_{ab \rightarrow X} \Big|_{\text{MC@NLO-}\Delta} = \int d\phi_B \left[B + V + \int d\phi_r [C_{\text{PS}} - (1 - \Delta)(R - C_{\text{PS}})] \right] \mathcal{F}_{\text{PS}}^{(B)} \\ + \int d\phi_B d\phi_r \Delta [R - C_{\text{PS}}] \mathcal{F}_{\text{PS}}^{(R)}$$

- $0 \leq \Delta \leq 1$
- Must not move hard wide-angle emissions: $\Delta \rightarrow 1$
- Move all soft and collinear contributions: $\Delta \rightarrow 0$

⇒ construct Δ from Sudakov form factors

How to handle negative weights?

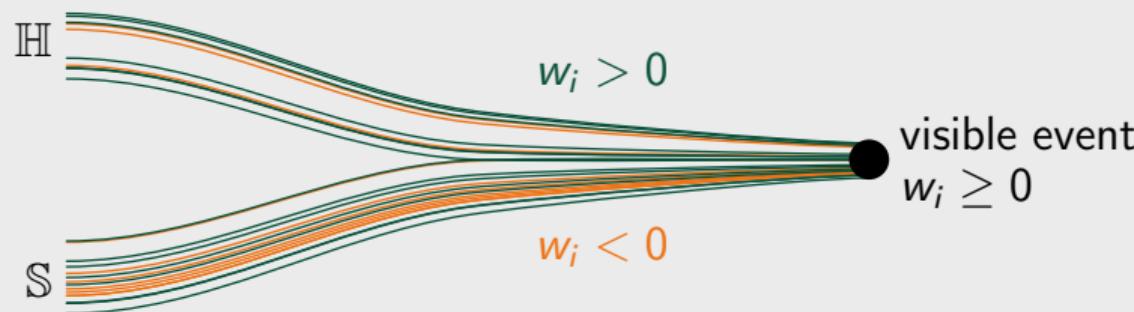
ARCANE reweighting

ARCANE reweighting

- Negative weights come from separating cross section into unphysical parts
- Adding up all parts would result in non-negative weight

ARCANE reweighting

- Negative weights come from separating cross section into unphysical parts
- Adding up all parts would result in non-negative weight
- In parton shower Monte Carlo: sum over all possibilities to generate event (impractical)



Idea: redistribute weights between history strands

How to handle negative weights?

Multiplicative shower matching

Multiplicative shower matching

POWHEG

Starting point: leading order + parton shower

$$\int_{\mathcal{D}} d\sigma_{ab \rightarrow X} \Big|_{\text{LOPS}} = \int d\phi_B B \mathcal{F}_{\text{PS}}$$

Multiplicative shower matching

POWHEG

Starting point: leading order + parton shower

$$\int_{\mathcal{D}} d\sigma_{ab \rightarrow X} \Big|_{\text{LOPS}} = \int d\phi_B B \mathcal{F}_{\text{PS}}$$

Needed for NLO + PS:

- ① NLO normalisation
- ② Hardest emission distribution must be NLO-accurate

Multiplicative shower matching

POWHEG

Starting point: leading order + parton shower

$$\int_{\mathcal{D}} d\sigma_{ab \rightarrow X} \Big|_{\text{LOPS}} = \int d\phi_B B \mathcal{F}_{\text{PS}}$$

Needed for NLO + PS:

① NLO normalisation

$$B \rightarrow B + V + C_{\text{int}} + \int d\phi_r (R - C)$$

- ▶ Parton-shower evolution \mathcal{F}_{PS} unitary \Rightarrow correct NLO normalisation
- ▶ Only Born kinematics passed on, so far all real emissions from parton shower

② Hardest emission distribution must be NLO-accurate

Multiplicative shower matching

POWHEG

Starting point: leading order + parton shower

$$\int_{\mathcal{D}} d\sigma_{ab \rightarrow X} \Big|_{\text{LOPS}} = \int d\phi_B B \mathcal{F}_{\text{PS}}$$

Needed for NLO + PS:

- ① NLO normalisation
- ② Hardest emission distribution must be NLO-accurate

$$\int_{\mathcal{D}} d\sigma_{ab \rightarrow X} \Big|_{\text{NLOPS}} = \int d\phi_B \left[B + V + C_{\text{int}} + \int d\phi_r (R - C) \right] \mathcal{G}_{\text{PS}}$$

With modified shower \mathcal{G}_{PS} :

- ▶ **unitary** \Rightarrow preserves NLO normalisation
- ▶ generates **hardest emission according to R** (or no emission)

Multiplicative shower matching

POWHEG

Starting point: leading order + parton shower

$$\int_{\mathcal{D}} d\sigma_{ab \rightarrow X} \Big|_{\text{LOPS}} = \int d\phi_B B \mathcal{F}_{\text{PS}}$$

Needed for NLO + PS:

- ① NLO normalisation
- ② Hardest emission distribution must be NLO-accurate

$$\int_{\mathcal{D}} d\sigma_{ab \rightarrow X} \Big|_{\text{NLOPS}} = \int d\phi_B \left[B + V + C_{\text{int}} + \int d\phi_r (R - C) \right] \mathcal{G}_{\text{PS}}$$

Monte Carlo estimate of $\int d\phi_r (R - C)$ only source of negative weights

assuming perturbation theory holds

How to handle negative weights?

ESME

Exponentiated Subtraction for Matching Events

Goal: better way to evaluate $\int d\phi_r (R - C)$

Sudakov algorithm to compute n_B with $\langle n_B \rangle = 1 + \int d\phi_r \frac{R-C}{B}$:

- Start with $n_B = 1, p_\perp = p_\perp^{\max}$
- While $p_\perp > p_\perp^{\min}$
 - 1 Sample next p_\perp from $e^{-\frac{M}{B} \ln p_\perp}$, $M = \max(R, C)$
 - 2 Generate random number $0 < r < 1$
 - 3 If $r > \frac{|R-C|}{M}$ keep current n_B
 - 4 otherwise, if $R > C$ set $n_B = n_B + 1$
 - 5 otherwise, if $R < C$ set $n_B = n_B - 1$

Each step away from $n_B = 1$ suppressed by $\mathcal{O}(\alpha_s)$
⇒ negative n_B beyond NLO, can be discarded

How to handle negative weights?

KrkNLO

- PDFs have to absorb collinear divergences in partonic cross section
- Shift additional **finite** collinear remnant into PDFs: **Krk PDF scheme**
- PDFs in Krk scheme remain **positive** in most regions

- PDFs have to absorb collinear divergences in partonic cross section
- Shift additional **finite** collinear remnant into PDFs: **Krk PDF scheme**
- PDFs in Krk scheme remain **positive** in most regions

KrkNLO algorithm

For each parton-showered Born-level event

- ① If there is a first emission, reweight by **positive factor** for NLO accuracy
- ② Reweight by factor $1 + \frac{V}{B} + \frac{C_{\text{int}}}{B} + \Delta^{\text{FS}}$
 Δ^{FS} : from change of PDF scheme, **positive** and **large**

Summary II

Various approaches for cancelling negative weights:

- Redistribute weights between similar/indistinguishable events:
local cancellations between negative and excess positive weights
- Modified formulations to facilitate *internal* cancellations
- Alternative formalisms to avoid unphysical separations and Monte Carlo outliers

Many better methods than just discarding negative weights

References

References

Positive resampling and cell resampling:

- Andersen, Gütschow, Maier, Prestel; Eur.Phys.J.C 80 (2020) 11, 1007
- Andersen, Maier; Eur.Phys.J.C 82 (2022) 5, 433
- Andersen, Maier, Maître; Eur.Phys.J.C 83 (2023) 9, 835
- Andersen, Cueto, Jones, Maier; arXiv:2411.11651
- Subsampling: Ulrich; 2025

Neural reweighting/refining:

- Thaler, Nachman; Phys.Rev.D 102 (2020) 7, 076004
- Nachmann, Noll; Phys.Rev.D 112 (2025) 9, 096009
- Palmer, Kronheim; arXiv:2510.16217

Folding:

- Nason; arXiv:0709.2085

MC@NLO:

- Frixione, Webber; JHEP 06 (2002) 029
- Frixione, Nason, Webber; JHEP 08 (2003) 007

References

Born spreading:

- Frederix, Torrielli; Eur.Phys.J.C 83 (2023) 11, 1051

MC@NLO- Δ :

- Frederix, Frixione, Prestel, Torrielli; JHEP 07 (2020) 238

ARCANE reweighting:

- Shyamsundar; arXiv:2502.08052
- Shyamsundar; arXiv:2502.08053

Multiplicative parton-shower matching (POWHEG)

- Nason; JHEP 11 (2004) 040
- Frixione, Nason, Oleari; JHEP 11 (2007) 070

ESME:

- van Beekveld, Ferrario Ravasio, Helliwell, Karlberg, Salam, Scyboz, Soto-Ontoso, Soyez, Zanoli; JHEP 10 (2025) 038

References

KrkNLO

- Jadach, Kusina, Płaczek, Sapeta, Skrzypek, Sławińska; Phys.Rev.D 87 (2013) 3, 034029
- Jadach, Płaczek, Sapeta, Sióderek, Skrzypek; JHEP 10 (2015) 052
- Jadach, Nail, Płaczek, Sapeta, Sióderek, Skrzypek; Eur.Phys.J.C 77 (2017) 3, 164

Other approaches:

- Danziger, Höche, Siegert; arXiv:2110.15211

PDF positivity:

- Candido, Forte, Hekhorn; JHEP 11 (2020) 129
- Collins, Rogers, Sato; Phys.Rev.D 105 (2022) 7, 076010
- Candido, Forte, Giani, Hekhorn; Eur.Phys.J.C 84 (2024) 3, 335
- Delorme, Kusina, Sióderek, Whitehead; Eur.Phys.J.C 85 (2025) 5, 505