
Negative Event Weights

Andreas Maier

28 November 2025



Outline

• Where do negative weights come from?
• Why are negative weights a problem?
• How to handle negative weights?

[References at the end]
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Where do negative weights come
from?
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Where do negative weights come from?
Monte Carlo events

Predict (integrated) differential cross section for PP → X:Z
D
dffPP→X =

1

F

Z
D
dffi |MPP→X(p)|2

phase space selection
e.g. histogram bin flux factor scattering amplitude
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Where do negative weights come from?
Monte Carlo events

Predict (integrated) differential cross section for PP → X:Z
D
dffPP→X =

Z
D
dffi |MPP→X(p)|2 Monte Carlo−−−−−−−→

NX
i=1

D
FN
|MPP→X(pi )|2| {z }

weight wi

Exact weights wi
• are non-negative: proportional to modulus square
• indicate relative probability of event
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Where do negative weights come from?
Standard theory picture
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Where do negative weights come from?
Standard theory picture
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Where do negative weights come from?
PDFs

Z
D
dffPP→X ≈

Z
dxa dxb

Z
D
dffab→X fa(xa)fb(xb)

• Factorisation not unique, PDFs are scheme dependent beyond leading order
→ physical interpretation not obvious
• PDFs can be negative, but [References]

I Universality: same PDFs have to reproduce many positive cross sections
I Naturalness: leading-order PDFs are non-negative, higher-order corrections

should be small
• Can impose PDF positivity, e.g. NNPDF4.0MC

Partonic cross section generally main source of negative weights
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Where do negative weights come from?
Partonic cross section

Consider simple scenario:
• exclusive dijet production
• no parton shower← similar discussion, but more involvedZ
D
dffab→2j = dffab→2j (2 partons)

+dffab→2j (3 partons)

+ : : :

Separation unphysical, not InfraRed & Collinear safe
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Where do negative weights come from?
NLO partonic cross section

Truncate at NLO: Z
D
dffab→2j

˛̨̨
NLO

=

Z
dffi2 (B+V )+

Z
dffi3 R

Born
×

Virtual
×

Real
×

• Terms on right-hand side diverge individually
• Introduce subtraction (Catani-Seymour, FKS, . . . )
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Where do negative weights come from?
NLO partonic cross section

Z
D
dffab→2j

˛̨̨
NLO

=

Z
dffi2 (B+V +Cint)+

Z
dffi3 (R−C)

Monte Carlo−−−−−−−−−−−→
up to normalisation

N2X
i=1

[B(pi )+V (pi )+Cint(pi )]+
N3X
i=1

[R(pi )−C(pi )]

Sources of negative weights:
1 R(pi )−C(pi ) negative
2 B(pi )+V (pi )+Cint(pi ) negative
3 Split up

N2X
i=1

[B(pi )+V (pi )+Cint(pi )]→
NBX
i=1

B(pi )+

NVX
i=1

[V (pi )+Cint(pi )]

and V (pi )+Cint(pi ) negative
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Where do negative weights come from?
Negative Born + Virtual

B(pi )| {z }
≥0

+V (pi )+Cint(pi )| {z }
O(¸s×B)

< 0

• Suggests oversubtraction or local breakdown of perturbation theory
I Expect physical result when including (all) higher orders
I Possible pragmatic solution:

1 Carefully identify phase-space region where prediction breaks down
2 Discarding complete “bad” phase-space region is formally >NLO change

Just discarding all negative weights is wrong

11 / 55



Where do negative weights come from?
Negative Born + Virtual

B(pi )| {z }
≥0

+V (pi )+Cint(pi )| {z }
O(¸s×B)

< 0

• Suggests oversubtraction or local breakdown of perturbation theory
I Expect physical result when including (all) higher orders
I Possible pragmatic solution:

1 Carefully identify phase-space region where prediction breaks down
2 Discarding complete “bad” phase-space region is formally >NLO change

Just discarding all negative weights is wrong

11 / 55



Where do negative weights come from?
Negative Born + Virtual

Example: W boson production at vanishing transverse momentum

0 20 40 60 80 100 120

pW
⊥ [GeV]

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

d
σ

/
d

pW ⊥
[p

b/
G

eV
]

×108

W boson p⊥ in peak region

B+V +C int

R−C

• Cause of breakdown: Sudakov logarithms ln2 mW
pW⊥

• Discard B+V +C int?
I Wrong prediction for small pW⊥ > 0
I Loose NLO accuracy in total cross section

• Discard region [0;pmin
⊥ ] with

R pmin
⊥

0 dp⊥
dff
dp⊥

= 0
I Preserves total NLO cross section
I Differential cross section suddenly drops to 0
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Why are negative weights a
problem?
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Why are negative weights a problem?

Negative weights are
• “unphysical”, but needed to cancel “unphysical” positive weights!

I Wrong cross section prediction
R
D dffPP→X for small enough D

I At odds with |MPP→X(pi )|2 ≥ 0
I No clear interpretation as probabilities

• problematic for machine learning
• bad for statistical convergence: state-of-the-art predictions become

computationally extremely expensive or even infeasible

14 / 55



Why are negative weights a problem?
Statistical convergence

Assume unweighted sample of N≫ 1 events:
• N− events with weights wi =−W < 0

• N+ = N−N− events with weights wi =W > 0

ff =
NX
i=1

wi =−N−W +(N−N−)W =

„
1−2

N−
N|{z}

negative weight fraction r−

«
NW

For uncorrelated events: ∆ff =
qPN

i=1w
2
i =
√
NW

∆ff

ff
=

1

(1−2r−)
√
N
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Why are negative weights a problem?
Statistical convergence

Number of required events to reach given statistical accuracy:

N(r−) =
N(0)

(1−2r−)2

0 0:1 0:2 0:3 0:4 0:5
Fraction of negative weights

100

101

102

103

104

N
um

b
er

of
re
qu

ir
ed

ev
en
ts
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Summary I

Negative weights come from
• Splitting the cross section into unphysical parts & introducing subtraction terms

I Example: R(pi )−C(pi )
I Details depend on formalism

• Local breakdown of perturbation theory
• Potentially negative PDFs
• . . .

They are a problem because they
• hinder statistical convergence
• are bad for machine learning
• do not have a physical interpretation

17 / 55



How to handle negative weights?
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How to handle negative weights?

Many approaches for cancelling negative weights:
• Independent of event generation method

I Cell resampling
I Neural reweighting/refining
I Folding

• Origin in additive parton shower matching
I Born spreading
I MC@NLO-∆
I ARCANE reweighting

• Origin in multiplicative parton shower matching
I ESME
I KrkNLO matching

• . . .
+ combinations of complementary methods

19 / 55



How to handle negative weights?
Cell resampling
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Cell resampling

Events in 2D projection of phase space:
w = +∞

w = 0

w = −∞

21 / 55



Cell resampling

Integrated differential cross sections:
R
D dff =

P
i∈Dwi

D1

w = +∞

w = 0

w = −∞D2

• RD dff =
P

i∈Dwi ≥ 0, provided
I Theory can be trusted
I Enough statistics

• Analysis has finite resolution⇒ minimum size for D

Idea: redistribute weights over small distances

22 / 55



Cell resampling

w = +∞

w = 0

w = −∞

C

Cell resampling:

1 Choose seed event with negative weight for cell C
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Cell resampling

w = +∞

w = 0

w = −∞

C

Cell resampling:

1 Choose seed event with negative weight for cell C
2 Iteratively add nearest event to cell until

P
i∈Cwi ≥ 0 or radius exceeds rmax
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Cell resampling

w = +∞

w = 0

w = −∞

C

Cell resampling:

1 Choose seed event with negative weight for cell C
2 Iteratively add nearest event to cell until

P
i∈Cwi ≥ 0 or radius exceeds rmax

3 Redistribute weights, e. g. average over cell: wi → w =
P
j∈Cwj

# events in C
4 Repeat

23 / 55



Cell resampling
Subsampling

Generate more events inside cells with incomplete cancellation:

−→

24 / 55



Cell resampling
Distance in phase space

Need distance that measures similarity between events
Example:

e

: jet : photon

pj1

pj2

px

py

e ′

qj1

qj2

q‚

qx

qy

25 / 55



Cell resampling
Distance in phase space

Ensure same multiplicities

e

: jet : photon

pj1

pj2

p‚=0

px

py

e ′

qj1

qj2

q‚

qx

qy

26 / 55



Cell resampling
Distance in phase space

Compare physics objects of same type

e

: jet : photon

pj1

pj2

p‚ = 0

px

py

e ′

qj1

qj2

q‚

qx

qy

d(e;e ′) = d(sj ; s
′
j )+d(s‚ ; s

′
‚)

27 / 55



Cell resampling
Distance in phase space

Compare photons

e

: jet : photon

pj1

pj2

p‚ = 0

px

py

e ′

qj1

qj2

q‚

qx

qy

d(e;e ′) = d(sj ; s
′
j )+d(s‚ ; s

′
‚)

= d(sj ; s
′
j )+d(p‚ ;q‚)
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Cell resampling
Distance in phase space

Compare jets: find pairs of most similar jets

e

: jet : photon

pj1

pj2

p‚ = 0

px

py

e ′

qj1

qj2

q‚

qx

qy

d(e;e ′) = d(sj ; s
′
j )+d(s‚ ; s

′
‚)

= min
ˆ
d(pj1;qj1)+d(pj2;qj2);d(pj1;qj2)+d(pj2;qj1)

˜
+d(p‚ ;q‚)
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Cell resampling
Distance in phase space

e

: jet : photon

pj1

pj2

p‚ = 0

px

py

e ′

qj1

qj2

q‚

qx

qy

d(e;e ′) = d(sj ; s
′
j )+d(s‚ ; s

′
‚)

= d(pj1;qj1)+d(pj2;qj2)+d(p‚ ;q‚)
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Cell resampling
Distance in phase space

Compare momenta

e

: jet : photon

pj1

pj2

p‚ = 0

px

py

e ′

qj1

qj2

q‚

qx

qy

d(e;e ′) = d(sj ; s
′
j )+d(s‚ ; s

′
‚)

= |~pj1− ~qj1|+ |~pj2− ~qj2|+ |~p‚− ~q‚ |
31 / 55



How to handle negative weights?
Neural reweighting/refining
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Neural reweighting/refining

Idea: train neural network to replace weight wi at phase space point ffii
• Neural reweighting: replace by average weight w ′(ffii )
• Neural refining: replace by rescaled weight r(ffii )|wi |

I Preserves weights in purely positive samples
I Better behaviour in negative phase space regions

w+ + w
w+

w+ + |w |
w

|w |
refine

0.0 0.2 0.4 0.6 0.8 1.0
x

0.5

0.0

0.5

1.0

1.5

pr
ob

ab
ili

ty
 d

en
si

ty

ffi 33 / 55



How to handle negative weights?
Folding
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Folding

Assume
R
dffi I(p)≥ 0 X

i

I(pi )−→
X
i

1

K

X
k

I(pi +k∆p)| {z }
wi

+ wi is better estimate of integral⇒ wi ≥ 0 more likely
+ general technique, straightforward to use as ingredient in others
− each wi requires multiple evaluations of I −→ more computing time
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Additive parton shower matching
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Additive parton shower matching
NLO

Z
D
dffab→X

˛̨̨
NLO

=

Z
dffiB

»
B+V +

Z
dffir C

–
+

Z
dffiBdffir [R−C]

Evaluate analytically

37 / 55



Additive parton shower matching
MC@NLO

Modify to subtract shower approximation of real emission

Z
D
dffab→X

˛̨̨
MC@NLO

=

Z
dffiB

»
B+V +

Z
dffir CPS

–
F(B)

PS +

Z
dffiBdffir [R−CPS]F(R)

PS

Evaluate numerically
→ negative weights Shower evolution

37 / 55



How to handle negative weights?
Born spreading
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Born spreading

Standard evolution events:Z
dffiB dffir

»
B(ffiB)R
dffir

+
V (ffiB)R
dffir

+CPS(ffiB;ffir )

–
F(B)

PS

Idea: “spread out” large + positive Born contribution to cancel negative weights:

B(ffiB)R
dffir

→ B(ffiB)F (ffir )R
dffir F (ffir )

1 Sample integrand with original Born function B(ffiB)
2 Define spreading function F (ffir ) via grid in ffir to make integrand non-negative
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How to handle negative weights?
MC@NLO-∆
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MC@NLO-∆

Z
D
dffab→X

˛̨̨
MC@NLO

=

Z
dffiB

»
B+V +

Z
dffir CPS

–
F(B)

PS| {z }
Standard

+

Z
dffiBdffir [R−CPS]F(R)

PS| {z }
Hard

Idea:
• Born term B in S good for cancelling negative weights
• Move contributions from H to S
• Preserve shower accuracy:

can only move Born-like (soft, collinear) contributions
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MC@NLO-∆

Z
D
dffab→X

˛̨̨
MC@NLO-∆

=

Z
dffiB

»
B+V +

Z
dffir [CPS−(1−∆)(R−CPS)]

–
F(B)

PS

+

Z
dffiBdffir ∆[R−CPS]F(R)

PS

• 0≤∆≤ 1

• Must not move hard wide-angle emissions: ∆→ 1

• Move all soft and collinear contributions: ∆→ 0

⇒ construct ∆ from Sudakov form factors
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How to handle negative weights?
ARCANE reweighting
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ARCANE reweighting

• Negative weights come from separating cross section into unphysical parts
• Adding up all parts would result in non-negative weight

• In parton shower Monte Carlo: sum over all possibilities to generate event
(impractical)

visible event
wi ≥ 0

H

S

wi > 0

wi < 0

Idea: redistribute weights between history strands
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How to handle negative weights?
Multiplicative shower matching
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Multiplicative shower matching
POWHEG

Starting point: leading order + parton showerZ
D
dffab→X

˛̨̨
LOPS

=

Z
dffiB BFPS

Needed for NLO + PS:
1 NLO normalisation
2 Hardest emission distribution must be NLO-accurate
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Multiplicative shower matching
POWHEG

Starting point: leading order + parton showerZ
D
dffab→X

˛̨̨
LOPS

=

Z
dffiB BFPS

Needed for NLO + PS:
1 NLO normalisation

B→ B+V +Cint +

Z
dffir (R−C)

I Parton-shower evolution FPS unitary⇒ correct NLO normalisation
I Only Born kinematics passed on, so far all real emissions from parton shower

2 Hardest emission distribution must be NLO-accurate
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Multiplicative shower matching
POWHEG

Starting point: leading order + parton showerZ
D
dffab→X

˛̨̨
LOPS

=

Z
dffiB BFPS

Needed for NLO + PS:
1 NLO normalisation
2 Hardest emission distribution must be NLO-accurateZ

D
dffab→X

˛̨̨
NLOPS

=

Z
dffiB

»
B+V +Cint +

Z
dffir (R−C)

–
GPS

With modified shower GPS:
I unitary⇒ preserves NLO normalisation
I generates hardest emission according to R (or no emission)
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Multiplicative shower matching
POWHEG

Starting point: leading order + parton showerZ
D
dffab→X

˛̨̨
LOPS

=

Z
dffiB BFPS

Needed for NLO + PS:
1 NLO normalisation
2 Hardest emission distribution must be NLO-accurateZ

D
dffab→X

˛̨̨
NLOPS

=

Z
dffiB

»
B+V +Cint +

Z
dffir (R−C)

–
GPS

Monte Carlo estimate of
R
dffir (R−C) only source of negative weights

assuming perturbation theory holds
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How to handle negative weights?
ESME
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Exponentiated Subtraction for Matching Events

Goal: better way to evaluate
R
dffir (R−C)

Sudakov algorithm to compute nB with ⟨nB⟩= 1+
R
dffir

R−C
B :

• Start with nB = 1;p⊥ = pmax
⊥

• While p⊥ > pmin
⊥

1 Sample next p⊥ from e−
M
B lnp⊥ ;M =max(R;C)

2 Generate random number 0< r < 1
3 If r > |R−C|

M keep current nB
4 otherwise, if R > C set nB = nB +1
5 otherwise, if R < C set nB = nB−1

Each step away from nB = 1 suppressed by O(¸s)
⇒ negative nB beyond NLO, can be discarded
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How to handle negative weights?
KrkNLO

49 / 55



KrkNLO

• PDFs have to absorb collinear divergences in partonic cross section
• Shift additional finite collinear remnant into PDFs: Krk PDF scheme
• PDFs in Krk scheme remain positive in most regions

KrkNLO algorithm

For each parton-showered Born-level event
1 If there is a first emission, reweight by positive factor for NLO accuracy
2 Reweight by factor 1+ V

B + Cint
B +∆FS

∆FS: from change of PDF scheme, positive and large
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Summary II

Various approaches for cancelling negative weights:
• Redistribute weights between similar/indistinguishable events:

local cancellations between negative and excess positive weights
• Modified formulations to facilitate internal cancellations
• Alternative formalisms to avoid unphysical separations and Monte Carlo outliers

Many better methods than just discarding negative weights
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