Top Quark and Flavor Physics at Future Colliders

Christian Schwanenberger DESY, University of Hamburg

FH DESY Future Collider Day November 2024

Special thanks: P. Azzi, G. Hiller, J. List, M. Mangano, M. Vos, X. Zuo, K. Skovpen

👖 Universität Hamburg

Top Quark Physics at Future Colliders

- Christian Schwanenberger -

CLUSTER OF EXCELLENCE QUANTUM UNIVERSE

HELMHOLTZ

SE HERAUSFORDERUNGEN

FH DESY Future Collider Day

DESY.

FCC-ee, FCC-eh and FCC-hh

Energy Recovering Linac

e[±] beam: 50–60 GeV

operated synchronously

- with HL-LHC
- or later with FCC-hh:

2 ab⁻¹

 $\sqrt{s}=3.5 \text{ TeV}$

LHeC

0.25-1 ab⁻¹

FCC-ep

 $\sqrt{s} = 1.2 - 1.3 \text{ TeV}$

bridge project

- fast track to optimal SRF performance of a Higgs factory & cost/risk reduction for SRF@FCC-ee

- re-use of modules
- use as injector

 $\sqrt{s} = 90 - 240 \text{ GeV}$ 35.6-16 ab⁻¹ each

Universität Hamburg

Top Quark Physics at Future Colliders

DESY.

Linear Colliders

Top Quark Physics at Future Colliders

The Top Quark

Top Quark Physics at Future Colliders

💾 Universität Hamburg

- needed as isospin partner of bottom quark
- discovered in 1995 by CDF and DØ: m_{top} ~ gold nucleus

- Iarge coupling to Higgs boson ~ 1: important role in electroweak symmetry breaking?
- short lifetime: $\tau \sim 5 \cdot 10^{-25} s \ll \Lambda^{-1}_{OCD}$:
 - decays before fragmenting observe "naked" guark

Is the top quark the particle as predicted by the SM?

Top Quark Production at FCC-ee, FCC-eh and FCC-hh

precision measurements of top quark properties complementary information

Top Quark Physics at Future Colliders

Universität Hamburg

Top Quark Measurements at Threshold

Universität Hamburg

Top Quark Physics at Future Colliders

Top Quark Measurements at Threshold

toponium and quantum effects (such as quantum entanglement)

arXiv:2404.08049

Universität Hamburg

Top Quark Physics at Future Colliders

- Christian Schwanenberger -

→ threshold scan

FH DESY Future Collider Day

Top Quark Measurements at Threshold

Universität Hamburg

Top Quark Physics at Future Colliders

- Christian Schwanenberger -

FH DESY Future Collider Day

Top Quark Yukawa Coupling

- Indirect probe of at FCC-ee at threshold with C $\approx 10\%$ uncertainty – but involves additional assumptions and uncertainties • High energy reach of **linear lepton colliders** (> 500 GeV) provides direct access • Possible to reach $\approx 3-4\%$ precision at ILC/ **CLIC** (improvement by factor 2.5 at 550 GeV)

	-

	÷
	:
	i
	•

	:
	· · · · · · · · · · · · · · · · · · ·
	: 1
	4
	1
	: 1
	: 1
	÷
	:
	: 1
	: 1
	: 1

	÷
	·····
	- 1
t I	
<u> </u>	
	-
	4
	: 1
	:
	1
	i
	: 1
	1
	i
	: 1
	i
	i .
	İ.
6	
6	<u> </u>
6	00
6	00

Top Quark Yukawa Coupling

- from ttH/ttZ ratios

Universität Hamburg

 \rightarrow expected uncertainty of 1%

(one order of magnitude better than LHC, but resolutions are crucial to understand here)

Top Quark Physics at Future Colliders

continuum background subtraction

- Christian Schwanenberger -

FH DESY Future Collider Day

Top Quark Yukawa Coupling and CP Nature

Top Quark Physics at Future Colliders

- Christian Schwanenberger -

FH DESY Future Collider Day

New tt Threshold Fit Strategy

- Performed a study of WW and WbWb production around the ttbar threshold for different values of center-of-mass energy points
- Targeted events in semi-hadronic and hadronic categories
- High lepton acceptance at all center-of-mass energy points (after a minimal cut on momentum) and 100% for jets (no event selection)
- BDT classifier used for signal and background discrimination
- Performed a simultaneous binned maximum likelihood fit to b-tagged jet distributions in the signal and background control regions to extract cross section
- WW background well under control (per-mille level impact on WbWb cross section)
- Simultaneous fit of N3LO theory prediction to measured cross section
- 8 MeV (stat.) uncertainty in top mass
- 11 MeV (stat.) uncertainty in top width
- Measurement of mass and width limited by QCD scale variations
- Effect of theory uncertainties on top Yukawa to be studied

Top Quark Physics at Future Colliders

- Christian Schwanenberger -

DESY.

Electroweak Constraints for top vs. W mass

Top Quark Physics at Future Colliders

[Gfitter, 1803.01853]

Electroweak Constraints for top vs. W mass

Top Quark Physics at Future Colliders

- Christian Schwanenberger -

Gfitter group, Oct 24

Electroweak Constraints for top vs. W mass

Top Quark Physics at Future Colliders

- Christian Schwanenberger -

Gfitter group, Oct 24

Electroweak Constraints for top mass vs. W mass

Top Quark Physics at Future Colliders

Electroweak Constraints for top mass vs. W mass

Top Quark Physics at Future Colliders

- Christian Schwanenberger -

FH DESY Future Collider Day

Top Quark Physics at Future Colliders

- use lepton energy and angular distributions in top decay to distinguish tty and ttZ
- use optimal observable analysis (confirmed by full simulation analysis)
- \rightarrow no beam polarisation needed, use top polarisation instead

💾 Universität Hamburg

Top Quark Physics at Future Colliders

Universität Hamburg

Top Quark Physics at Future Colliders

 \rightarrow expected precision of order 10⁻² to 10⁻³

Universität Hamburg

Top Quark Physics at Future Colliders

 \rightarrow expected precision of order 10⁻² to 10⁻³

Top Quark Physics at Future Colliders

к, к

000

 $\mathcal{L}_{t \overline{t} \gamma}$

g

Top Quark Physics at Future Colliders

Top Quark Physics at Future Colliders

- Christian Schwanenberger -

investigate angular correlations of Z leptons

Top Quark Physics at Future Colliders

Top Quark Physics at Future Colliders

Top Quark Physics at Future Colliders

- Christian Schwanenberger -

Top Quark Physics at Future Colliders

- Christian Schwanenberger -

Top Quark Physics at Future Colliders

Global Search for EFT Couplings in Top Production and Decay

- Significant improvement for two-fermion electroweak operators at FCC-ee

Top Quark Physics at Future Colliders

Vast improvements for various two-fermion operators at higher energies at ILC/CLIC **crucial input for ee \rightarrow ZH at NLO** (needs accuracy of highest energy operation+polarisation!)

31

DESY.

Flavor Physics: Big Questions and Great Reach

- 1. origin of matter (matter-antimatter asymmetry, CP violation, needs New Physics)
- 2. origin of flavor (patterns, hierarchies, needs New Physics)
- 3. origin of mass (is the Higgs responsible for quark and lepton masses, Yukawa propto mass? New Physics search. \rightarrow Higgs talk
- The specificities of the SM flavor sector with its suppressions and systematics (GIM, CKM, approx symmetries e.g. LFC) implies sensitivity and invites dedicated tests.
- 4. Where does the SM fail and is New **Physics flavorful?** SMEFT, and model, rare decays, searches, null tests
- 5. nature of dark matter (probing for invisibles/dark sector w. rare

Universität Hamburg

- Christian Schwanenberger -

FH DESY Future Collider Day

32

DESY.

Flavor Physics: Topics at Future Colliders

- improve flavor-physics precision tests, e.g. $B_{s,d} \rightarrow \tau^+ \tau^-$ and $B \rightarrow K(*)\tau^+ \tau^-$ decays
- and $\sim 10^{12} \text{ Z} \rightarrow \text{bb}$ and $\text{Z} \rightarrow \text{cc}$ decays (B(Z \rightarrow bb) = 0.15, B(Z \rightarrow \text{cc}) = 0.12)
- charm: e.g. charm–Yukawa coupling
- measurements as EW precision studies, at Z-pole best conditions
- Flavor violating Z couplings
- Flavor violating Higgs decays: one or two orders of magnitude improvements e.g. for $h \rightarrow \tau \mu$
- top couplings and FCNC decays

10-6

 10^{-10}

 10^{-1}

[MeV]

A

0.01

1.0

• Z-flavor factory: Giga-Z@LC: 10^9 Z's with polarized beams, Tera-Z $\ge 10^{12}$ Z's needed to lepton universality can be performed at a Z-factory: $1.7 \times 10^{11} \tau + \tau -$ pairs (precision level)

- Christian Schwanenberger -

FH DESY Future Collider Day

Flavor changing charged current Wtb couplings

+ other variables sensitive on W helicity

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

Top Quark Physics at Future Colliders

Dutta, Goyal, Kumar, Mellado,

- Christian Schwanenberger -

FH DESY Future Collider Day

Expected measurements of Wtb couplings

Top Quark Physics at Future Colliders

Dutta, Goyal, Kumar, Mellado,

Expected measurements of Wtb couplings

H Universität Hamburg DER FORSCHUNG | DER LEHRE | DER BILD

Top Quark Physics at Future Colliders

Dutta, Goyal, Kumar, Mellado, arXiv:1307.1688 Kumar, Ruan, to be publ.

LHeC

Expected measurements of Wtg couplings

H Universität Hamburg DER FORSCHUNG | DER LEHRE | DER BII

Top Quark Physics at Future Colliders

 $|\mathbf{f}_{LV}\mathbf{V}_{tb}|$

- Christian Schwanenberger -

Expected measurements of Wts couplings

s-baryons Λ, Σ, Ξ have $c\tau \approx 1 - 10$ cm

 more work to be done on pheno impacs

Probing SM prediction directly for the first time

- Christian Schwanenberger -

🖞 Universität Hamburg

Universität Hamburg

H Universität Hamburg

Universität Hamburg

Top Quark Physics at Future Colliders

- Christian Schwanenberger -

💾 Universität Hamburg

Top Quark Physics at Future Colliders

$Br(t \rightarrow qZ) < 10^{-7}$

(rescaling of the LHC expectations) 10 ab^{-1}

Universität Hamburg

Top Quark Physics at Future Colliders

- Christian Schwanenberger -

Br(t \rightarrow q γ)<10⁻⁷

(rescaling of the LHC expectations) 10 ab^{-1}

Universität Hamburg

Top Quark Physics at Future Colliders

- Christian Schwanenberger -

FCNC Branching Ratios at Colliders

Universität Hamburg

- Christian Schwanenberger -

Flavor Physics: Searches

heavy dark sector searches at Z pole heavy neutral leptons e.g. coupling mostly to taus

FCC-hh configuration: best studied with a dedicated experiment à la LHCb

Universität Hamburg

Top Quark Physics at Future Colliders

arXiv:2411.02485 what can be gained in **SMEFT** and concrete BSM particles from running above the Z pole 1133HL-LHC FCC-ee: Z, W-pole LHC

Summary

- future ee, ep, pp colliders have a rich and complementary analysis programme for top quark and flavor physics
- analyse top quark properties with high precision: mass, width, polarisation, charge, asymmetry, PDFs of tops, ...
- top quark couplings: (Wtb, tty, ttZ, ttg, ttH, ...)
- many stringent searches for new physics: anomalous couplings, EFT, FCNC, composite Higgs, ...
- heavy-flavour physics is expected to remain an integral part future colliders • experiments at a future high-luminosity e-e-collider would perform unique heavy-flavour studies in specific channels • Colliders operating at the Z pole can strongly contribute to develop searches for the charm Yukawa coupling and flavour-violating Higgs and Z couplings, lepton flavour violation and precision tau physics, and dark sector searches

→ more exciting studies exist

→ more exciting studies to come

Top Quark Physics at Future Colliders

Backup

Top Quark Measurements at Threshold

\rightarrow mass only: 8.8 MeV (stat), 5.4 MeV (α_s [2 x 10⁻⁴]), 44 MeV (theo)

Top Quark Width

- mass ($\sim m_t^3$)
- GeV

- * $m_t^{PS} = 171.5 \text{ GeV} \triangleq m_t^{pole} = 173.3 \text{ GeV}$ (WA)

Top Quark Physics at Future Colliders

Top width **strongly depends** on the top quark

Most precise indirect measurement of 1.36 ± 0.14

N.B.: parton shower models treat top quarks in a narrow width approximation

Towards a **simultaneous measurement** of top quark mass and width

Expect the measurement of the width at \approx **50 MeV** precision at FCC-ee

EPJC 79 (2019) 474

Top Quark Yukawa Coupling

Universität Hamburg

Chromoelectric and Chromomagnetic Dipole Moments

 $\mathcal{L} = \mathcal{L}_{\text{QCD}} + \frac{g_s}{m_t} \, \bar{t} \sigma^{\mu\nu} (d_V + \mathrm{i} \, d_A \gamma_5) \frac{\lambda_a}{2} \, t \, G^a_{\mu\nu}$

\rightarrow expected precision of order 10⁻²

🖞 Universität Hamburg

Top Quark Physics at Future Colliders

Chromoelectric and Chromomagnetic Dipole Moments

 $\mathcal{L} = \mathcal{L}_{\text{QCD}} + \frac{g_s}{m_t} \, \bar{t} \sigma^{\mu\nu} (d_V + \mathrm{i} \, d_A \gamma_5) \frac{\lambda_a}{2} \, t \, G^a_{\mu\nu}$

→ expected precision of order 10⁻²

🖞 Universität Hamburg

Top Quark Physics at Future Colliders

Electroweak Couplings

<u>arXiv:1702.05333</u>

Top Quark Physics at Future Colliders

<u>JHEP 08 (2015) 127</u>

Global Search for EFT Couplings in Top Production and Decay

- Improve constraints x2–4 on many operators at HL-LHC
- Significant improvement for two-fermion electroweak operators at FCC-ee
- with respect to HL–LHC!

💾 Universität Hamburg

Further improvements for various two-fermion operators at higher energies at ILC/CLIC Entering a high energy regime at FCC-hh with an order of magnitude improvement for $q\bar{q}t\bar{t}$

arXiv:2205.02140 [hep-ph]

56

DESY.

Global fit with NLO eett for Triple Higgs coupling

[warning: this is very preliminary, many things to be done, e.g. include NLO eett in other observables as well.]

Universität Hamburg

Top Quark Physics at Future Colliders

(iv) first look at the global fit with NLO eett for $\Delta \lambda_{HHH}$

by: Yong Du, Jiayin Gu, JT]

- based on a fitting program for last ESU: 23 (Higgs + WW + EWPO) + 5 (eett) operators
- take directly covariance matrix as eett bounds (from Victor Miralles)
- reproduced (almost) the NLO calculation about eett in ZH

extra uncertainty induced by eett on σ_{ZH}

δσ_{ZH} ~ 0.3% (1.5%) for 240 (365) GeV

a test fit for 5000 fb⁻¹ (240) + 1500 fb⁻¹ (365)

 $\delta \lambda_{\text{HHH}}$ mildly degraded from 57% to 77%

Junping Tian (U.Tokyo)

Top Quark Physics at Future Colliders

- Christian Schwanenberger -

Luminosity Future Colliders

arXiv:2312.14363

FH DESY Future Collider Day 58

υн Universität Hamburg

Top Quark Physics at Future Colliders

More Backup

Major current & future colliders @ CERN

Universität Hamburg

Top Quark Physics at Future Colliders

- Christian Schwanenberger -

FH DESY Future Collider Day

60

5

DESY.

Linac-Ring Collider, LHeC and FCC-eh

LHeC (>50 GeV electron beams) $E_{cms} = 0.2 - 1.3$ TeV, (Q^2 ,x) range far beyond HERA run ep/pp together with the HL-LHC (\geq Run5)

Top Quark Physics at Future Colliders

J. Osborne, W. Bromiley, A. Navascues

FCC CDR:	
Eur. Phys. J	. C 79, no. 6
474 (2019) -	• Physics
Eur. Phys. J	ST 228, no.
4, 755 (2019) - FCC-hh/eh

- Christian Schwanenberger -

Recirculating Energy-Recovery Linac, colliding with LHC hadrons

Final upgrade to LHC

Continuity of collisions in **2040s**

Bridging towards next major collider at CERN

- Potentially 'affordable'
- Technically realisable
- Exploring sustainable acceleration with ERL and SRF-cavities
- Developing new detector technologies
- Enabling HL-LHC precision
- Complementing HL-LHC H programme
- Extending energy frontier sensitivity

Top Quark Physics at Future Colliders

Environmental cost of construction: Annual environmental cost of operation: Awaiting lab directors' report. Small tunnel length & ERL / SRF technologies \rightarrow relatively modest impact

Baseline costed estimated in 2018 at CHF1.4B for 50 GeV electrons (1/5 of LHC circumference) Financial cost: [O. Bruning, CERN-ACC-2018-0061]

Dedicated submission planned to ESPPU: Yes

Centre-of-Mass Energy: 1.2 TeV for baseline 50 GeV electron option Integrated Luminosity: A few x 100 fb⁻¹ in concurrent operation with HL-LHC Of order 1 ab⁻¹ for a few years standalone operation Number of Interaction Points: 1 (by design) Time running: A few years Wall power: 100 MW (by design) ~ LHC now. Accelerator length: 5.4km for baseline 50 GeV electron option Estimated year of 1st collisions: Late 2030s or beyond Future upgrade paths: Very similar design for FCC-eh

The FCC-eh Complex

- centre-of-mass energy: 3.5 TeV (assuming 60 GeV electron beam, 50 TeV proton beam) ٠
- integrated luminosity: 1 or 2 /ab ٠
- number of interaction points: 1 •
- time running at stage: 10-20 years (as many as FCC-hh) ٠
- wall power: 100 MW for ERL? ٠
- accelerator length: same as FCC-hh for proton beam, ERL: 2 km arc, 1 km straight-length, 3 turns ٠
- estimated year for first collisions: 2050+ ٠
- future upgrade paths: none at the moment

Universität Hamburg

Top Quark Physics at Future Colliders

- Christian Schwanenberger -

FH DESY Future Collider Day

FCC-eh Detector and Operation

R=6.2 m L=19.3 m, about CMS size

Asymmetric, reflecting the beam energy asymmetry

- Could be built based on established technologies from ATLAS and CMS but highly benefit from advance in detector tech (e.g. FCC-ee)
- •Must be highly hermetic
- Must have fine segmentation and good resolution for EM calo •Must have good tracking capabilities (e.g. for b-tagging) also in forward region
- Environmental cost of construction (in units of tonnes of CO2 equivalent)
 - Beam:
 - Construction:
- Environmental cost of operation per year (in units of tonnes of CO2 equivalent) -
 - Uses FCC-hh proton beam (no additional cost)
 - ERL
 - Detector
- Estimate of financial costs (provide separate numbers for R+D phase, construction phase and operations phase)

??

FCC-eh Detector

Does your project plan dedicated submission(s) for the ESPPU (if so, give details)

> Yes, a FCC-eh submission will be made (white paper in preparation)

FH DESY Future Collider Day

Signal and Backgrounds

Top Quark Physics at Future Colliders

Universität Hamburg

- Christian Schwanenberger -

Search for Anomalous Wtb Couplings

FCNC Branching Ratios at Colliders

1000 fb⁻¹

Universität Hamburg

Top Quark Physics at Future Colliders

November 2017

Search for Anomalous ttG Couplings

J-A Aguilar-Saavedra, Fuks, etal, arXiv:1412.6654

$$\mathcal{L}_{
m tg} \!=\! -g_s ar{t} \gamma^\mu rac{\lambda_a}{2} t \, G^a_\mu \!+\! rac{g_s}{m_t} ar{t} \sigma^{\mu
u} (d_V \!+\! i d_A \gamma_5) rac{\lambda_a}{2} t \, G^a_{\mu
u}$$

$$O_{uG\phi}^{33} = (\bar{q}_{L3}\lambda_a \sigma^{\mu\nu} t_R) \tilde{\phi} \, G_{\mu\nu}^a \qquad \Longrightarrow \qquad d_V = \frac{\sqrt{2}vm_t}{g_s \Lambda^2} \operatorname{Re} C_{uG\phi}^{33} \,, \quad d_A = \frac{\sqrt{2}vm_t}{g_s \Lambda^2} \operatorname{Im} C_{uG\phi}^{33} \,,$$

At 100 TeV, constraints from event rate at $M_{tt} > 10 \text{ TeV}$:

 $-0.0022 \le d_V \le 0.0031$

 $|d_A| \le 0.0026$

$$\Rightarrow \Lambda \gtrsim 17 \,\text{TeV}$$

Direct Measurement of Vtb

 $V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$

Direct Measurement of Vtb

V_{скм}

signal

s/b=11

Top Quark Physics at Future Colliders

- Christian Schwanenberger -

FH DESY Future Collider Day

Search for Anomalous Wtb Couplings

= 1 in SM. $(f_T^L P_L + f_T^R P_R) t W_{\mu}^- + h.c.$ q_{v}

Top Quark Physics at Future Colliders

- Christian Schwanenberger -

FH DESY Future Collider Day

Search for Anomalous Wtb Couplings

= 1 in SM. tW_{μ}^{-} $-\frac{g}{\sqrt{2}}\overline{b}\frac{i\sigma^{\mu\nu}q_{\nu}}{M_{\mu\nu}}(f_T^LP_L+f_T^RP_R)tW_{\mu}^-+h.c.$

Top Quark Physics at Future Colliders

- Christian Schwanenberger -

72

□ 0.5

0.4

0.3

0.2 <0.14

DESY.
Search for Anomalous Wtb Couplings

= 1 in SM. tW_{μ}^{-} $-\frac{g}{\sqrt{2}}\overline{b}\frac{i\sigma^{\mu\nu}q_{\nu}}{M_{\mu\nu}}(f_T^LP_L+f_T^RP_R)tW_{\mu}^-+h.c.$

Top Quark Physics at Future Colliders

- Christian Schwanenberger -

73

□ 0.5

0.4

0.3

0.2 <0.14

DESY.

Search for Anomalous tty Couplings

Bouzas, Larios, Physical Review D 88, 094007 (2013)

Top Quark Physics at Future Colliders

- Christian Schwanenberger -

FH DESY Future Collider Day

Search for Anomalous tty Couplings

Bouzas, Larios, Physical Review D 88, 094007 (2013)

Universität Hamburg

Top Quark Physics at Future Colliders

<u>CC DIS top production</u>

Universität Hamburg

Top Quark Physics at Future Colliders

NC top photoproduction

Measurement of V_{cs}

 $V = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$

- Christian Schwanenberger -

HERA+ATLAS $\rightarrow V_{cs}$

Expect LHeC+HL LHC to be 10 x better from +2-3% to surely 0.5% or below (work in progress)

→ heavy flavour factory

Measurement of |Vtd|

Universität Hamburg

Top Quark Physics at Future Colliders

- Christian Schwanenberger -

Measurement of Vtd

Top Quark Physics at Future Colliders

- Christian Schwanenberger -

using simply e-beam axis: polarisation: $P_t = 96\%$

TESLA+HERAp:

 $\sqrt{s} = 1.6 \text{ TeV}$ $L_{int} = 20 \, fb^{-1}$

19.7 fb⁻¹:
$$A_{\uparrow\downarrow} = 0.26 \pm 0.2$$

JHEP 04 (2016) 073

Top Quark Physics at Future Colliders

Atag, Sahin, PRD 73, 074001 (2006)

$\cos\theta$: angle between charged lepton and spin quantisation axis in top rest frame

Top Quark Parton Density Function

parton momentum fraction

need to understand what a "top PDF" is in the framework of parton model

LHeC offers new field of research for top quark PDF

🛱 Universität Hamburg

Top Quark Physics at Future Colliders

LHeC CDR, J.Phys. G39, 075001 (2012)

• in 6 flavour number scheme, top receives at $Q^2 \sim m_t^2$ certain fraction of the proton's momentum

- Christian Schwanenberger -

Top Quark Structure Function

Boroun, Phys. Lett. B744, 142 (2015)

Lint=10 fb⁻¹ $E_e = 60 \text{ GeV}$

g

variable flavour number scheme for top quark

t

t

🖁 Universität Hamburg

Top Quark Physics at Future Colliders

- Christian Schwanenberger -

\rightarrow LHeC/FCC-ep opens up a new field of top quark PDFs and to unveil the complete flavour structure of the proton

Analysis of the tty Vertex

Top Quark Physics at Future Colliders

- Christian Schwanenberger -

FH DESY Future Collider Day

Search for Anomalous ttZ Couplings

Universität Hamburg

Top Quark Physics at Future Colliders

Bouzas, Larios,

Search for Anomalous FCNC tuy Coupling

Universität Hamburg

Top Quark Physics at Future Colliders

$$L = -g_e \sum_{q=u,c} Q_q \frac{\lambda_q}{\Lambda} \bar{t} \sigma^{\mu\nu} (f_q + h_q \gamma_5) q A_{\mu\nu} + h.c.$$

50<M_{jj}<100 GeV

Search for Anomalous FCNC tuy Coupling

Universität Hamburg

Top Quark Physics at Future Colliders

 $L = -g_e \sum Q_q \frac{\lambda q}{\Lambda} \bar{t} \sigma^{\mu\nu} (f_q + h_q \gamma_5) q A_{\mu\nu} + h.c.$ q=u,c

130<Mwb<190 GeV

50<M_{ii}<100 GeV

Search for Anomalous FCNC tuy Coupling

Universität Hamburg

Top Quark Physics at Future Colliders

- Christian Schwanenberger -

FH DESY Future Collider Day

LHeC and FCC-eh Detector Layout

circular-elliptical beam pipe **4 layers Si-pixel 5 layers Si-strixel**

(see Table of Detector Dimensions/ Parameters in backup)

Top Quark Physics at Future Colliders

- Christian Schwanenberger -

LHeC

Length of Inner Solenoid ~12m

FH DESY Future Collider Day

