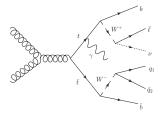
Investigation of the top quark coupling to photons at the ATLAS detector

Measurement of the $t ar{t} \gamma$ cross section and further prospects

Marcus Rammes

Universität Siegen

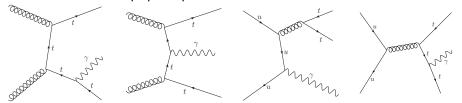
WHIZARD Workshop, DESY, 2011

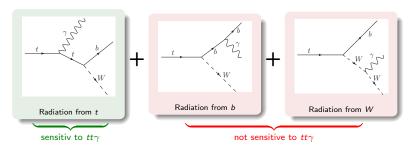


Top quark physics at the LHC

- Top quark discovery at Tevatron (Fermilab) in 1995
- Very high mass: $m_t = (172.9 \pm 0.6 \pm 0.9) \, \text{GeV}$ ⇒ plays a special role in EWSB (Large Higgs mass corrections, sensitive to New Physics)
- Many properties of the top quark not addressed since then
 - ▶ FCNC $(t \rightarrow Zc, t \rightarrow \gamma c)$
 - EW couplings $(ttZ, tt\gamma)$
 - Strong coupling $(t\overline{t} + g)$
 - Spin correlations
 - **.**..
- LHC is a "top quark factory": $\approx 850,000$ top quark pairs produced so far ($\sigma_{t\bar{t}} \approx 170\,\mathrm{pb},\,5\,\mathrm{fb}^{-1}$ of data collected until end of 2011)

Radiative top quark processes (1)


Pair production of top quarks (semi-leptonic decay) with additional photon radiation


- Final goal: determination of the photon coupling to the top quark
 - Test of the SM predictions: Is the strength/structure of photon coupling as predicted?
 - ▶ Is the top quark a point-like Dirac particle? Inner structure (dipole moments)?
- First step: total $t\bar{t}\gamma$ cross section

Radiative top quark processes (2)

■ Radiative top quark production

■ Radiative top quark decay

$t\bar{t}\gamma$ cross section measurement at ATLAS

- Conference note recently published [1]
 - Univ. of Siegen and Göttingen involved
 - ► First LHC result!
- Data from March until June 2011 (1.04 fb⁻¹) @7 TeV
- Signal Monte Carlo generated with WHIZARD 1.93
- Background modeled with a large variety of different MC generators
 - ▶ MC@NLO: $t\bar{t}$ (largest background), single top
 - ► ALPGEN: *Z*+jets, *W*+jets, diboson
 - AcerMC: Several systematic studies (e. g. ISR/FSR)
- All MC samples are interfaced to HERWIG (except AcerMC:
 - \rightarrow PYTHIA)

WHIZARD $t\bar{t}\gamma$ signal MC (1)

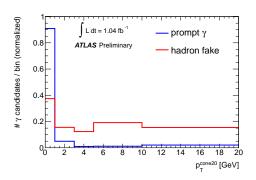
- WHIZARD 1.93 (validated within ATLAS in 2010 against MadGraph/MadEvent)
- 7-particle final state produced (semi- and dileptonic) $\Rightarrow pp(\rightarrow t\bar{t}(\gamma)) \rightarrow \ell\nu j_1 j_2 b\bar{b}\gamma \text{ and } pp(\rightarrow t\bar{t}(\gamma)) \rightarrow \ell\nu\ell\nu b\bar{b}\gamma)$
 - Inclusive cross section (no explicit top quarks as intermediate states)
 - ▶ Full matrix element calculation down to a low energy scale
 - ► Takes into account all interference terms
- MC cross section: $\sigma_{t\bar{t}\gamma} = 840 \, \text{fb}$
- 500k events produced with full detector simulation (corresponds to $\int L dt = 600 \, \text{fb}^{-1}$)
- Parton showering/hadronisation: HERWIG
- Additional photon radiation modelled with PHOTOS

WHIZARD $t\bar{t}\gamma$ signal MC (1)

- WHIZARD phase space cuts (to avoid soft and collinear divergencies)
 - ▶ Photon $p_T > 8 \text{ GeV}$
 - ightharpoonup Transverse momenta of all other particles $p_{
 m T} > 10\,{
 m GeV}$
 - ▶ Invariant mass cuts: $m_{inv} > 5 \text{ GeV}$ for all pairs of massless particles (photons, leptons, light quarks, incoming gluons)
- Running PDF factorisation scale (WHIZARD: $\mu_F = \sqrt{\hat{s}}$)
- Fixed renormalisation scale: $\mu_R = 2m_t$
 - ▶ WHIZARD 1.93: Only setting of strong coupling constant possible $\Rightarrow g_s = 1.1607$
 - ▶ Corresponds to 5-flavour leading-log and $\Lambda_{QCD} = 170 \, \text{MeV}$
 - ▶ Setting renorm. scale directly via μ_R possible in WHIZARD 2

Event selection

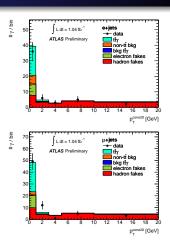
- Two different channels (e and μ) considered \Rightarrow optimised for semi-leptonic $t\bar{t}$ event selection
- $lue{f E}$ Event selection based on standard ATLAS tar t selection + additional photon requirement
 - Exactly one isolated electron(muon) with $p_T > 25(20)$ GeV
 - ightharpoonup channel: $E_{
 m T}^{
 m miss} + m_{
 m T}(W) > 60\,{
 m GeV}$ and $E_{
 m T}^{
 m miss} > 20\,{
 m GeV}$
 - e channel: $E_{\rm T}^{\rm miss} > 35\,{\rm GeV}$ and $m_{\rm T}(W) > 25\,{\rm GeV}$
 - ▶ at least 4 jets with $p_T > 25 \text{ GeV}$
 - ▶ at least 1 of the jets identified as a *b*-jet
- At least 1 isolated well-identified photon with $p_T > 15 \, \text{GeV}$
- Further requirements
 - Jets overlapping with a selected photons removed
 - ► Events removed where still a jet overlapping with a selected photon
 - e channel: events removed where 86 GeV $\leq m_{\text{inv}}(e, \gamma) \leq$ 96 GeV $(e \rightarrow \gamma \text{ fakes})$


Signal overlap with MC@NLO

- \blacksquare Also "approximated" $t\bar{t}\gamma$ events generated in MC@NLO $t\bar{t}$ by PHOTOS/HERWIG
- signal overlap has to be removed (double-counting)
- Remove all MC@NLO events with a photon radiated from the top quarks or their direct decay products (ℓ, q, b, W) (applying WHIZARD phase space cuts)
- Still a small fraction of MC@NLO $t\bar{t}\gamma$ events survives event selection:
 - Radiation from leptons
 - Radiation from light quarks before showering/hadronisation (bremsstrahlung)

Analysis strategy (1)

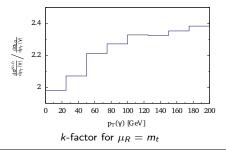
- Based on template fit method
- Uses photon isolation as discrimant
 - ▶ $p_{\rm T}^{\rm cone20}$: Scalar sum of $p_{\rm T}$ of tracks within a cone of $R \leq 0.2$ around the photon
- Two kinds of photons:
 - ▶ **Prompt photons**: "Real" photons radiated from hard processes $(t\bar{t}\gamma, Z \to \ell\ell\gamma, ...)$
 - ightarrow usually well isolated
 - ▶ Hadron fakes: Photons radiated during jet fragmentation/hadronisation (e.g. π^0 decays) → usually less isolated (emission collinear to particles of hadron jet)
- Third source of photon background: electrons misidentified as photons ($\mathbf{e} \rightarrow \gamma$ fakes)
 - ▶ Estimated from $Z \rightarrow ee$ events

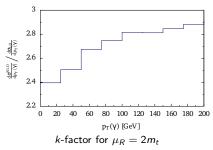

Analysis strategy (2)

- Two templates: prompt photons (including signal) more isolated than hadron fakes
- Signal template: Taken from $Z \rightarrow ee$ electrons (isolation spectrum very similar to that of prompt photons)
- Background template: Inverting photon selection cuts in hadron enriched data stream (jet triggers)

Result

- 51(70) event candidates in the $e(\mu)$ channel
- MC signal expectation: 22(28) $t\bar{t}\gamma$ events
- Combined template fit for both lepton channels
- Main systematic uncertainties
 - ► ISR/FSR (16%)
 - Photon ident. efficiency (17%)
 - ▶ jet energy scale (14%)


ATLAS result for $t\bar{t}\gamma \times BR$ cross section


$$\sigma_{tar{t}\gamma} = 2.0 \pm 0.5 (ext{stat.}) \pm 0.7 (ext{syst.}) \pm 0.1 (ext{lumi.}) \, ext{pb}$$

CDF result (Tevatron, $\sqrt{s}=1.96~{\rm TeV}$): $\sigma_{t\bar{t}\gamma}=170\pm30~{\rm fb}$

$t\bar{t}\gamma$ NLO calculations (k-factor)

- $t\bar{t}\gamma$ cross section at NLO calculated by A. Scharf et al. [3]
- Paper: Calculations for 14 TeV
 - \rightarrow 7 TeV: private communications
- Generally: $t\bar{t}\gamma$ has a large k-factor
- k-factor strongly depending on energy scale!
 - ▶ Difficulty: Running μ_F in WHIZARD signal samples
 - Ad-hoc sublution: Take average of two μ_R scenarios $(k(\mu_R=m_t)=2.85 \text{ and } k(\mu_R=2m_t)=2.11)$ $\Rightarrow \langle k \rangle = 2.55 \pm 0.50 \Rightarrow \sigma_{\text{theor.}} = \textbf{2.1} \pm \textbf{0.4} \text{ pb}$

Measurement of top-photon couplings (1)

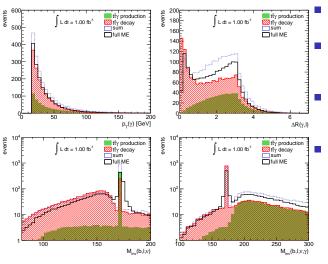
Extension of the SM photon vertex structure $(-ie\gamma^{\mu})$:

$$-i\Gamma_{\mu}^{tt\gamma} = e\gamma_{\mu} \left(F_{1V}^{\gamma}(k^{2}) + F_{1A}^{\gamma}(k^{2})\gamma_{5} \right) + \frac{e}{2m_{t}} \sigma_{\mu\nu} \left(q + \bar{q} \right)^{\nu} \left[iF_{2V}^{\gamma}(k^{2}) + F_{2A}^{\gamma}(k^{2})\gamma_{5} \right]$$

Factor	Interpretation	SM value
F_{1V}^{γ}	electric charge	-2e/3
F_{1A}^{γ}	axial-vectorial coupling	0
extstyle ext	anomalous magnetic form factor	0
F_{2A}^{γ}	electric dipole form factor	0
		·

- Electric charge: exotic top quark model with $F_{1V}^{\gamma}=4e/3$ at more than 5σ [2]
- F_{1A}^{γ} : Only contribution to off-shell photons \Rightarrow no contribution in LO calculations
- Tensor couplings constrained by experimental results:

$$-0.2 \le F_{2V}^{\gamma}(0) \le 0.5 \qquad |F_{2A}^{\gamma}| < 4.5$$


Measurement of top-photon couplings (2)

- $lacktriangleq tar t\gamma$ cross section: very first step on testing the SM
- Next step: Direct measurement of the $t\gamma$ vertex structure
 - WHIZARD 2.0.5 contains a model for varying vectorial/axial-vectorial tensor couplings (SM_anom_top.mdl)
- In experiment: cannot distinguish uniquely between $t\gamma$ and other couplings (interference)
 - ▶ WHIZARD 2: Factorisation of processes possible ($t\bar{t}$: "narrow width approximation")
 - Create two samples

$$egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} eta & eta & eta \ell
u & eta \ell$$

- $\sigma_{\rm fac.} = 800 \, {\rm fb} \, ({\rm vs.} \, \, \sigma_{\rm full \, ME} = 640 \, {\rm fb})$
- Find phase space regions enhanced by $t\gamma$ couplings from factorisation

Measurement of top-photon couplings (3)

- In general: agreement full ME↔factorisation
- photon $p_{\rm T}$ spectrum: Slightly harder for $t \bar t \gamma$ production
- $\Delta R(\ell, \gamma)$: Enhanced $tt\gamma$ coupling for $\Delta R \gtrsim 1.0$
- Inv. top mass also good discriminant on 4-vector level
 - Reconstructed top mass distributrions will strongly be smeared out!

Summary

- LHC is a top quark factory: Many yet unknown properties can be measured there
- ATLAS: first LHC result for $t\bar{t}\gamma$ cross section:

$$\sigma_{t \overline{t} \gamma} = 2.0 \pm 0.5 (ext{stat.}) \pm 0.7 (ext{syst.}) \pm 0.1 (ext{lumi.}) \, ext{pb}$$

- ullet $tar{t}\gamma$ inclusive signal MC sample: 7-particle final state with WHIZARD 1.93
- Preliminary NLO k factor: 2.55 ± 0.50 (A. Scharf et al.)
- Prospects for the future: Determination of/setting limits on (anomalous) $tt\gamma$ couplings
 - ▶ Derive phase space cuts to enhance $tt\gamma$ coupling (WHIZARD 2: factorisation)
 - SM_anom_top.mdl: Variation of vectorial/axial-vectorial ttγ tensor couplings

References

- [1] The ATLAS Collaboration. Measurement of the inclusive $t\bar{t}\gamma$ cross section at $\sqrt{s}=7$ TeV with the ATLAS detector. ATLAS-CONF-2011-153.
- [2] The ATLAS Collaboration. Measurement of the top quark charge in pp collisions at $\sqrt{s} = 7$ TeV in the ATLAS experiment. ATLAS-CONF-2011-141.
- [3] K. Melnikov, M. Schulze and A. Scharf. *QCD corrections to top quark pair production in association with a photon at hadron colliders.* Phys. Rev. D **83** (2011) 074013. [arXiv:1102.1967 [hep-ph]].