Studying Weak Boson Scattering at the LHC with WHIZARD

Philipp Anger, <u>Ulrike Schnoor</u> Michael Kobel, Anja Vest IKTP TU DRESDEN

WHIZARD-Workshop DESY Hamburg

November 22, 2011

Vector Boson Scattering at the LHC

Introduction

Unitarity violation in VBS

Case 1: Light Higgs is found at the LHC

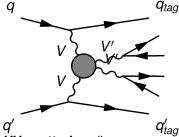
Case 2: Heavy Higgs

Measurement of VBS at ATLAS

Contributing Feynman Diagrams Experimental Signature

Monte Carlo Generation

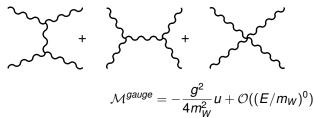
WHIZARD 2.0 for Vector Boson Scattering Comparison between Whizard and Sherpa Investigation of Exclusive Samples Same sign W+W+ Opposite Sign W+W-/ZZ Opposite Sign W+W-

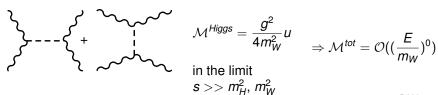

Outlook

Studying Vector Boson Scattering at the LHC

- Important process to study electroweak symmetry breaking in case of
 - light (non-SM?) Higgs
 - heavy Higgs
 - other EWSB mechanism
- Promising channel: unitarity violation above $\sqrt{s_{VV}} \sim$ 1.2 TeV
- Scattering of weak bosons in SM not measured yet

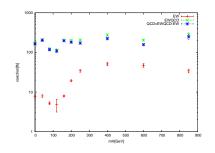
What is Vector Boson Scattering?


■ Signal $qq' \rightarrow q_{tag}q'_{tag}VV$ (V = W or Z)


- "blobb" contains all VV scattering diagrams
- processes with the same final state:
 - non-VBS electroweak processes (irreducible due to gauge dependence)
 - QCD background at different order of couplings
 - \Box other reducible backgrounds like $t\bar{t}$, W/Z + jets, etc.

Unitarity violation in the VBS channel

Scattering of longitudinally polarized weak gauge bosons $W_L^+W_L^-$

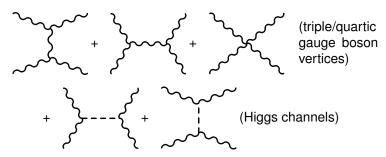


Add s- and t-channel Higgs exchange amplitude:

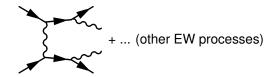
5/26

Case 1: Light Higgs is found at the LHC

VBS cross section is Higgs mass dependent essentially $\sigma(m_H < 2m_W)$ and $\sigma(m_H > 2m_W)$

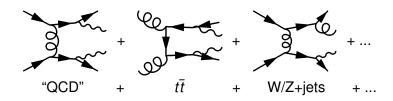

- channel is also sensitive to the coupling strengths of Higgs to vector bosons
- probe SM or non-SM Higgs
- observe or exclude strong WZ scattering

Case 2: No Higgs/ heavy Higgs


- no Higgs (m_H $\rightarrow \infty$) or heavy Higgs (m_H \gtrsim 870 *GeV*): unitarity violated in VBS above $\sqrt{s_{VV}} \sim 1.2$ TeV \rightarrow strong gauge sector
- ⇒ **Higgs** or **new physics** will be visible at higher energies in this channel (possibly through VV resonances)
- VBS allows to probe new physics for EWSB e.g.
 - QCD-like technicolor models with chiral symmetry breaking
 - Higgsless extra-dimension models
 - models with additional vector bosons, etc.
- use model-independent approach, e.g. WHIZARD's SM_km-Model

Contributions to VV+2j Final State: **EW**

SIGNAL: $\mathcal{O}(\alpha_w^4)$ WW, WZ, ZZ scattering graphs:


SIGNAL without VBS topology: additional diagrams $\mathcal{O}(\alpha_w^4)$

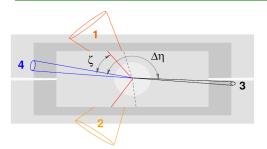
8 / 26

Contributions to VV+2j Final State: non-EW

REDUCIBLE BACKGROUND: Diagrams $\mathcal{O}(\alpha_w^n)$, $n \neq 4$

- Diagrams $\mathcal{O}(\alpha_w^4)$ can be separated gauge invariantly from diagrams with different order of α_w
- Backgrounds ~ αⁿ_w, n ≠ 4 to be reduced by kinematical/ topological cuts

Measurement of VV scattering


Compare all VBS contributions to data

$$\stackrel{?}{=}$$
 DATA - reducible background ($\sim \alpha_w^n, n \neq 4$)

Event generation

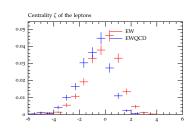
EW
$$\alpha_s = 0$$
 $\mathcal{O}(\alpha_w^4)\mathcal{O}(\alpha_s^0)$
EWQCD $\alpha_s = \alpha_s(m_Z)$ any $\mathcal{O}(\alpha_w^m)\mathcal{O}(\alpha_s^m)$ incl. $\mathcal{O}(\alpha_w^4)\mathcal{O}(\alpha_s^0)$ (=EW)

Experimental Signature

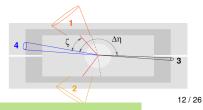
- 1,2 central leptons
- 3, 4 forward/backward tagging jets

Tagging jets

initial quarks radiating off the vector bosons \Rightarrow highly energetic jets with large $|\Delta\eta|$

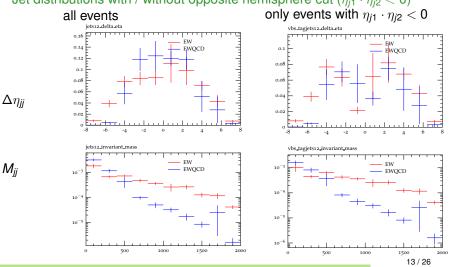

Soft jet veto in central region

lack of color exchange between initial-state quarks ⇒ suppressed hadron production in central region


Lepton centrality (VBS feature)

Lepton centrality ζ

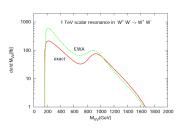
$$\zeta := \min\{\min\{\eta_{l1}, \eta_{l2}\} - \min\{\eta_{j1}, \eta_{j2}\}, \max\{\eta_{j1}, \eta_{j2}\} - \max\{\eta_{l1}, \eta_{l2}\}\}$$



- both leptons in η between tagging jets: ζ > 0 (VBS topology)
- one or both leptons at larger $|\eta|$ than closest jet: $\zeta < 0$
- EW tends to have more positive ζ than EWQCD

Tagging jets

Jet distributions with / without opposite hemisphere cut ($\eta_{i1} \cdot \eta_{i2} < 0$)


WHIZARD 2.0 for VBS

WHIZARD's specialty: SM_km

- model-independent implementation of BSM contributions to VBS
- low-energy effective theory (electroweak chiral Lagrangian)
- k-matrix unitarization
- additional resonances of different spin and isospin described by coupling, mass, and width

Advantages of WHIZARD's SM_km w.r.t. other methods

- no violation of unitarity
- full 6-fermion final state
- avoids Effective W Approximation (EWA) (inappropriate in some parts of phase space)
- angular correlations preserved

Validation: WHIZARD and SHERPA

Production of $jj o j_{\rm tag} j_{\rm tag} l \nu l \nu$ at parton level

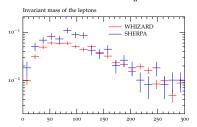
Flavors

- partons j: u, \bar{u} , d, \bar{d} , s, \bar{s} , c, \bar{c} and gluons
- charged leptons: e, μ , τ
- neutrinos: ν_e , ν_μ , ν_τ

Parameters and kinematic cuts:

- $p_T(I) > 15 \text{ GeV}$, $p_T(j) > 15 \text{ GeV}$, $\Delta R(j,j) > 1.0$, $M_{II} > 20 \text{ GeV}$
- $\sqrt{s} = 7 \text{ TeV}, m_H = 120 \text{ GeV}$
- PDFset: CTEQ6I
- G_F scheme for electroweak coupling ($\alpha_{QED} = 1/132.5$)

Configuration as similar as possible to get comparable results


Monte Carlo Predictions for VBS Cross Sections

Cross sections for process as defined above

Generator	$\sigma_{ m EW}[{ m fb}]$	$\sigma_{ m EWQCD}$ [fb]
SHERPA	44.35	1262.13
WHIZARD	29.42	790.180

Differences between the generators: \sim 35%

Whizard vs. Sherpa M_{\parallel}

 \rightarrow generate more exclusive samples to find origin of the differences

- Same Sign/ Opposite Sign
- WW/WZ/ZZ

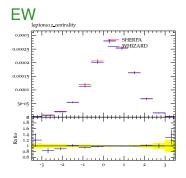
invariant mass of charged leptons (EW)

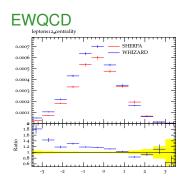
Investigation of Exclusive Samples

Investigate cross section differences

VV	SHERPA		WHIZARD	
	EW	EWQCD	EW	EWQCD
W^+W^+	0.72	1.73	0.71	1.98
W^+W^-/ZZ	1.03	4.67	0.74	4.44
W ⁺ W ⁻	1.00	4.31	0.67	3.93
ZZ	0.081	0.30	0.067	0.26
	W ⁺ W ⁺ W ⁺ W ⁻ /ZZ W ⁺ W ⁻	W ⁺ W ⁺ 0.72 W ⁺ W ⁻ /ZZ 1.03 W ⁺ W ⁻ 1.00	EW EWQCD W+W+ 0.72 1.73 W+W-/ZZ 1.03 4.67 W+W- 1.00 4.31	EW EWQCD EW W+W+ 0.72 1.73 0.71 W+W-/ZZ 1.03 4.67 0.74 W+W- 1.00 4.31 0.67

(cross-sections in fb)

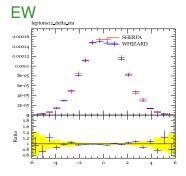

Couplings in event Generation

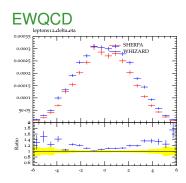

EW
$$\alpha_s = 0$$
 $\mathcal{O}(\alpha_w^4)$
EWQCD $\alpha_s = \alpha_s(m_Z)$ any $\mathcal{O}(\alpha_w^n)\mathcal{O}(\alpha_s^m)$ incl. $\mathcal{O}(\alpha_w^4)\mathcal{O}(\alpha_s^0)$ (=EW)

Following kinematic distributions to compare WHIZARD and SHERPA

Same Sign $uu \rightarrow dde^+\mu^+\nu_e\nu_\mu$: W⁺W⁺

Centrality of leptons

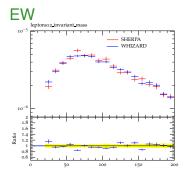


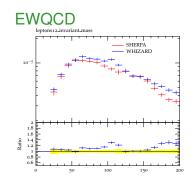


- EW: perfect agreement (cross section difference <1 %)</p>
- EWQCD: WHIZARD produces more leptons with small centrality
- \rightarrow Overview of <u>EW</u> and <u>EWQCD</u> plots for this channel

Same Sign $uu \rightarrow dde^+\mu^+\nu_e\nu_\mu$: W⁺W⁺

$\Delta \eta$ of leptons

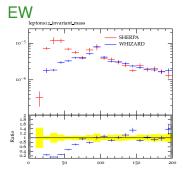


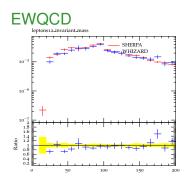


- EW: perfect agreement (cross section difference <1 %)
- **EWQCD:** WHIZARD produces excess of leptons with larger $\Delta \eta$
- \rightarrow Overview of <u>EW</u> and <u>EWQCD</u> plots for this channel

Same Sign $uu \rightarrow dde^+\mu^+\nu_e\nu_u$: W⁺W⁺

Invariant mass of leptons



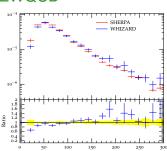


- EW: perfect agreement (cross section difference <1 %)</p>
- EWQCD: WHIZARD excess around 100 GeV
- \rightarrow Overview of <u>EW</u> and <u>EWQCD</u> plots for this channel

Opposite Sign $ud \rightarrow ude^+e^-\nu_e\bar{\nu_e}$: W+W-/ZZ

Invariant mass of leptons

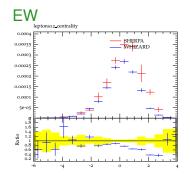
- EW: SHERPA excess at small invariant masses of leptons
- EWQCD: difference consistent with being fully due to EW contribution
- \rightarrow Overview of <u>EW</u> and <u>EWQCD</u> plots for this channel

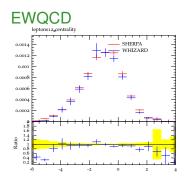

Opposite Sign $ud \rightarrow ude^+e^-\nu_e\bar{\nu_e}$: W+W-/ZZ

Transverse momentum of leading lepton

EW

10⁻⁵ WHIZARD 10⁻⁶ 10⁻⁷ 1

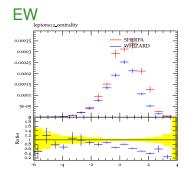

EWQCD

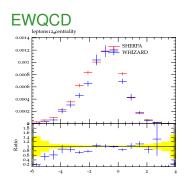


- EW: Sherpa excess at small transverse momentum.
- EWQCD: difference consistent with being fully due to EW contribution
- → Overview of <u>EW</u> and <u>EWQCD</u> plots for this channel

Opposite Sign $ud \rightarrow ude^+e^-\nu_e\bar{\nu_e}$: W+W-/ZZ

Lepton centrality

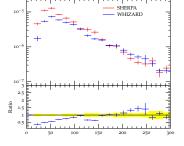




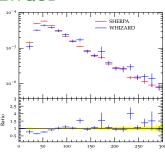
- EW: SHERPA excess at higher centrality
- EWQCD: difference consistent with being fully due to EW contribution
- \rightarrow Overview of <u>EW</u> and <u>EWQCD</u> plots for this channel

Opposite Sign $ud \rightarrow ude^+\mu^-\nu_e\bar{\nu_\mu}$: **W**⁺**W**⁻ **only**

Lepton centrality



- EW: SHERPA excess at higher centrality
- EWQCD: difference consistent with being fully due to EW contribution
- \rightarrow Overview of <u>EW</u> and <u>EWQCD</u> plots for this channel


Opposite Sign $ud \rightarrow ude^+\mu^-\nu_e\bar{\nu_\mu}$: W+W- only

Transverse momentum of leading lepton

EW

EWQCD

- **EW**: Sherpa more at low p_T ; Whizard more at high p_T
- EWQCD: difference consistent with being fully due to EW contribution

Outlook and Plans

- Find reason for discrepancies between WHIZARD and SHERPA
- Validate signal samples in ATLAS
- Measure SM vector boson scattering with ATLAS data 2011/2012
- Probe EWSB mechanism in this channel with model-independent Lagrangian
- Set limits on anomalous contributions to this process

BACKUP

Scattering of longitudinally polarized vector bosons

Unitarity violation only for longitudinal gauge-boson scattering:

■
$$\mathcal{A}(V_TV_T \to V_TV_T) \sim \mathcal{O}(1)$$
:
 \to no violation of unitarity

■
$$\mathcal{A}(V_L V_L \to V_L V_L) \sim \frac{s}{m_V^2}$$
:

→ violates unitarity above $\sqrt{s_{VV}} \approx 1.2 \text{ TeV}$

 V_L scattering associated to scattering of "Goldstone" scalars (w, z) via equivalence theorem:

$$\mathcal{A}(W_LW_L o W_LW_L) = \mathcal{A}(ww o ww)$$

 $\mathcal{A}(W_LZ_L o W_LZ_L) = \mathcal{A}(wz o wz)$ etc.

Branching ratios of various decay channels

VBS contributions from different final states of W decays

$$qq
ightarrow q_{ ext{tag}} q_{ ext{tag}} WW$$
: $WW
ightarrow \ell
u \ell
u VW
ightarrow qq \ell
u$ BR 0.046

 $WW
ightarrow qq \ell
u$ BR 0.292

Final states: $WZ
ightarrow \ell
u \ell
u VZ
ightarrow qq \ell
u$ BR 0.015

 $WZ
ightarrow qq \ell
u$ BR 0.055

 $WZ
ightarrow qq \ell
u$ BR 0.005

 $ZZ
ightarrow qq \ell
u$ BR 0.094

 $ZZ
ightarrow \ell
u
u$ BR 0.027

(with
$$I = e, \mu$$
)