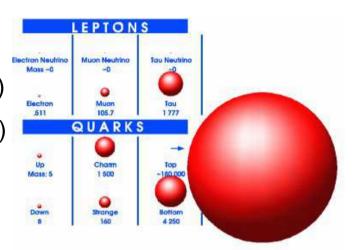


Anomalous Top Couplings in WHIZARD

Fabian Bach in collaboration with Thorsten Ohl

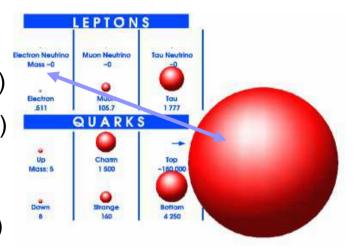
Institut für Theoretische Physik und Astrophysik, Uni Würzburg WHIZARD Workshop, DESY Hamburg, 22.11.2011

funded by:



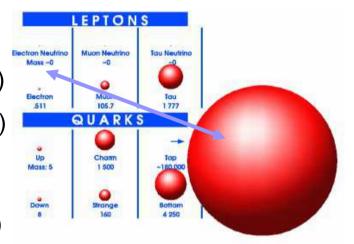
Outline

- 1. Motivation
- 2. Effective Lagrangian Approach
- 3. Gauge Invariance & Redundancies
- 4. Single Top Cross Section
- 5. Conclusions



- SM describes high energy physics up to o(100 GeV) very well, but...
 - → 19 free parameters (couplings, masses etc.)
- theoretical clue of gauge boson masses (EWSB...)
- fermion masses seem arbitrary

- SM describes high energy physics up to o(100 GeV) very well, but...
 - → 19 free parameters (couplings, masses etc.)
- theoretical clue of gauge boson masses (EWSB...)
- fermion masses seem arbitrary
 - → no understanding of large mass hierarchy, i.e. $m_{e,v}$ « m_t ~ v / $\sqrt{2}$ (top Yukawa coupl. ~ 1)


• exp. knowledge of top couplings from indirect measurements (e.g. $b \rightarrow s\gamma$ loop)

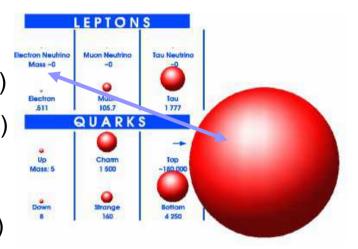
- SM describes high energy physics up to o(100 GeV) very well, but...
 - → 19 free parameters (couplings, masses etc.)
- theoretical clue of gauge boson masses (EWSB...)

→ no understanding of large mass hierarchy, i.e. $m_{e,v}$ « $m_t \sim v / \sqrt{2}$ (top Yukawa coupl. ~ 1)

• exp. knowledge of top couplings from indirect measurements (e.g. $b \rightarrow s\gamma$ loop)

• numbers on direct measurements:	Tevatron	LHC
	(1.96 TeV)	(14 TeV)

→ ttbar production cross section: 7.5 pb ~ 900 pb (QCD prediction)


number of top pairs: 50,000 tot. 10^7 per year (Run II) $(L = 10^{33} \text{ cm}^{-2}\text{s}^{-1})$

- SM describes high energy physics up to o(100 GeV) very well, but...
 - → 19 free parameters (couplings, masses etc.)
- theoretical clue of gauge boson masses (EWSB...)

→ no understanding of large mass hierarchy, i.e. $m_{e,v}$ « $m_t \sim v / \sqrt{2}$ (top Yukawa coupl. ~ 1)

• exp. knowledge of top couplings from indirect measurements (e.g. $b \rightarrow s\gamma$ loop)

• numbers on direct measurements:

Tevatron (1.96 TeV)

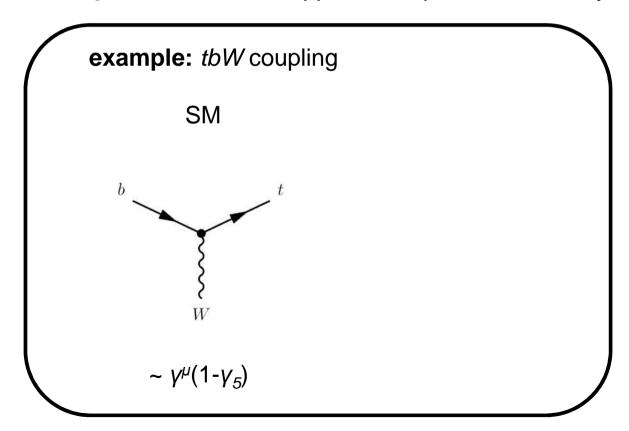
LHC (14 TeV)

→ ttbar production cross section:

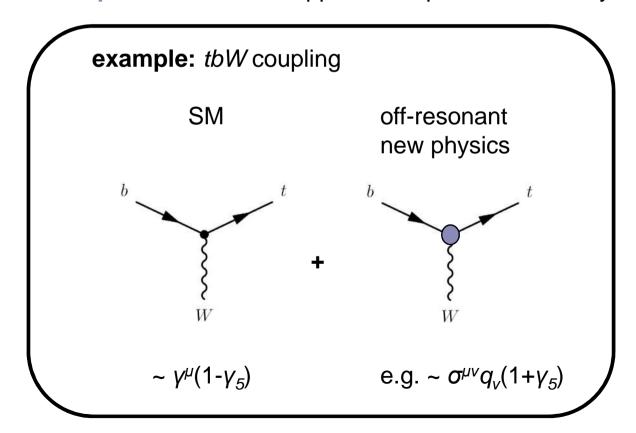
7.5 pb

~ 900 pb (QCD prediction)

→ number of top pairs:


50,000 tot. $(L = 10^{33} \text{ cm}^{-2}\text{s}^{-1})$

- idea:
 - → use the large statistics at LHC to constrain anomalous trilinear top couplings to vector bosons with previously unknown precision
 - → model-independent effective approach to parameterize any new physics



- idea:
 - → use the large statistics at LHC to constrain anomalous trilinear top couplings to vector bosons with previously unknown precision
 - → model-independent effective approach to parameterize any new physics

- idea:
 - → use the large statistics at LHC to constrain anomalous trilinear top couplings to vector bosons with previously unknown precision
 - → model-independent effective approach to parameterize any new physics

• idea:

- → use the large statistics at LHC to constrain anomalous trilinear top couplings to vector bosons with previously unknown precision
- → model-independent effective approach to parameterize any new physics

what has been done:

- → theoretical understanding of the relations and redundancies among different operators in a full gauge invariant operator set generating the various anomalous trilinear top couplings
- → first phenomenological studies on anomalous QCD and tbW couplings

• idea:

- → use the large statistics at LHC to constrain anomalous trilinear top couplings to vector bosons with previously unknown precision
- → model-independent effective approach to parameterize any new physics

what has been done:

- → theoretical understanding of the relations and redundancies among different operators in a full gauge invariant operator set generating the various anomalous trilinear top couplings
- → first phenomenological studies on anomalous QCD and tbW couplings

what we want to contribute:

- → provide all possible anomalous top couplings in one exhaustive MC tool, i. e. WHIZARD 2 with anomalous tops
- → automatically ensure gauge invariance for all hard amplitudes relevant for detector level, including off-shell top production and subsequent decays
- → link to hadron shower/fragmentation to produce detector-relevant final states
- → do some phenomenological studies at *LHC*

- integrate out model-dependent heavy excitations of new physics contributions
 - → effective operators with higher mass dim and suppression scale \(\Lambda\):

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{SM}} + \frac{1}{\Lambda} \mathcal{L}_5 + \frac{1}{\Lambda^2} \mathcal{L}_6 + \dots$$

- integrate out model-dependent heavy excitations of new physics contributions
 - → effective operators with higher mass dim and suppression scale \(\Lambda\):

$$\mathcal{L}_{eff} = \mathcal{L}_{SM} + \frac{1}{\Lambda} \mathcal{L}_5 + \frac{1}{\Lambda^2} \mathcal{L}_6 + \dots$$

• dim5 greatly restricted by gauge invariance without new fields ($\Lambda \sim 10^{13}$ GeV)

$$\rightarrow \mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{SM}} + \sum \frac{C_x}{\Lambda^2} O_x$$

- integrate out model-dependent heavy excitations of new physics contributions
 - → effective operators with higher mass dim and suppression scale \(\Lambda\):

$$\mathcal{L}_{eff} = \mathcal{L}_{SM} + \frac{1}{\Lambda^2} \mathcal{L}_5 + \frac{1}{\Lambda^2} \mathcal{L}_6 + \dots$$

• dim5 greatly restricted by gauge invariance without new fields ($\Lambda \sim 10^{13}$ GeV)

$$\rightarrow \mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{SM}} + \sum \frac{C_x}{\Lambda^2} O_x$$

• write down all gauge invariant dim6 O_x which contribute to anomalous top couplings of the form $f_i f_i V$ with fermions $f_{i,j} = t, b$ and vector bosons V = A, Z, W, g

- integrate out model-dependent heavy excitations of new physics contributions
 - → effective operators with higher mass dim and suppression scale \(\Lambda\):

$$\mathcal{L}_{eff} = \mathcal{L}_{SM} + \frac{1}{\Lambda^2} \mathcal{L}_5 + \frac{1}{\Lambda^2} \mathcal{L}_6 + \dots$$

• dim5 greatly restricted by gauge invariance without new fields ($\Lambda \sim 10^{13}$ GeV)

$$\rightarrow \mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{SM}} + \sum \frac{C_x}{\Lambda^2} O_x$$

- write down all gauge invariant dim6 O_x which contribute to anomalous top couplings of the form $f_i f_i V$ with fermions $f_{i,j} = t, b$ and vector bosons V = A, Z, W, g
- use eqns of motion to rewrite redundant operators (Aguilar-Saavedra 08)
 - \rightarrow simplify Lorentz structure of $f_i f_i V$: only $\sim V^{\mu}$ and $\sim \sigma^{\mu \nu} q_{\nu}$ with $q_{\nu} = (p_i p_i)_{\nu}$
 - → remove off-shell contributions (e.g. $\sim q^{\mu}$) and some quartic interactions (e.g. ttgA) at the price of introducing additional 4-fermion contact terms

- integrate out model-dependent heavy excitations of new physics contributions
 - → effective operators with higher mass dim and suppression scale \(\Lambda\):

$$\mathcal{L}_{eff} = \mathcal{L}_{SM} + \frac{1}{\Lambda^2} \mathcal{L}_5 + \frac{1}{\Lambda^2} \mathcal{L}_6 + \dots$$

• dim5 greatly restricted by gauge invariance without new fields ($\Lambda \sim 10^{13}$ GeV)

$$\rightarrow \mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{SM}} + \sum \frac{C_x}{\Lambda^2} O_x$$

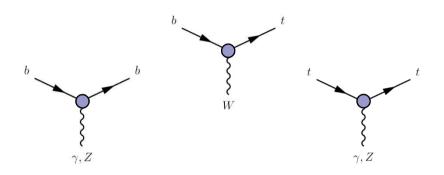
- write down all gauge invariant dim6 O_x which contribute to anomalous top couplings of the form $f_i f_i V$ with fermions $f_{i,j} = t, b$ and vector bosons V = A, Z, W, g
- use eqns of motion to rewrite redundant operators (Aguilar-Saavedra 08)
 - \rightarrow simplify Lorentz structure of $f_i f_i V$: only $\sim V^{\mu}$ and $\sim \sigma^{\mu\nu} q_{\nu}$ with $q_{\nu} = (p_i p_j)_{\nu}$
 - → remove off-shell contributions (e.g. $\sim q^{\mu}$) and some quartic interactions (e.g. ttgA) at the price of introducing additional 4-fermion contact terms
 - \rightarrow parameterize $f_i f_i V$ in full generality:

$$\mathcal{L}_{Vf_{i}f_{j}}^{\mathrm{OS}} = \bar{f}_{j} \gamma^{\mu} \left(\mathcal{A}_{L} P_{L} + \mathcal{A}_{R} P_{R} \right) f_{i} V_{\mu} \implies \text{contains SM vertices!}$$

$$+ \bar{f}_{j} i \sigma^{\mu\nu} q_{\nu} \left(\mathcal{B}_{L} P_{L} + \mathcal{B}_{R} P_{R} \right) f_{i} V_{\mu} + \text{H.c.} + \text{quartic terms}$$

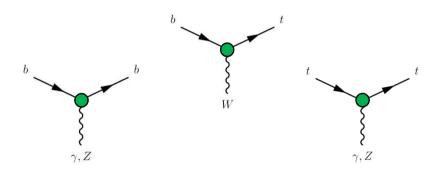
modular conception:

- take SM Lagrangian objects (fields, (covariant) derivative, etc...)
- combine group representations to build singlets



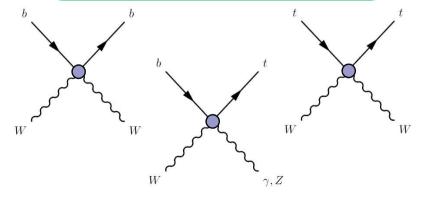
$$\begin{pmatrix}
O_{uW}^{ij} = (\bar{q}_{Li}\sigma^{\mu\nu}\tau^I u_{Rj})\tilde{\phi} W_{\mu\nu}^I \\
O_{dW}^{ij} = (\bar{q}_{Li}\sigma^{\mu\nu}\tau^I d_{Rj})\phi W_{\mu\nu}^I
\end{pmatrix}$$

$$O_{qW}^{ij} = \bar{q}_{Li} \gamma^{\mu} \tau^I D^{\nu} q_{Lj} W_{\mu\nu}^I$$

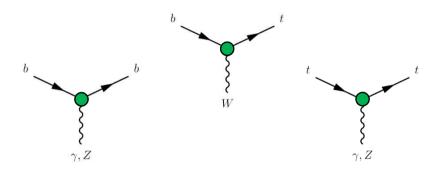


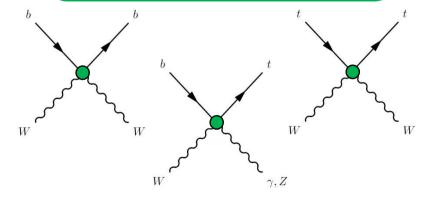
$$\begin{pmatrix}
O_{uW}^{ij} = (\bar{q}_{Li}\sigma^{\mu\nu}\tau^I u_{Rj})\tilde{\phi} W_{\mu\nu}^I \\
O_{dW}^{ij} = (\bar{q}_{Li}\sigma^{\mu\nu}\tau^I d_{Rj})\phi W_{\mu\nu}^I
\end{pmatrix}$$

$$O_{qW}^{ij} = \bar{q}_{Li} \gamma^{\mu} \tau^I D^{\nu} q_{Lj} W_{\mu\nu}^I$$


with
$$W^I_{\mu\nu} = \partial_\mu W^I_\nu - \partial_\nu W^I_\mu - g \epsilon_{IJK} W^J_\mu W^K_\nu$$

$$O_{uW}^{ij} = (\bar{q}_{Li}\sigma^{\mu\nu}\tau^I u_{Rj})\tilde{\phi} W_{\mu\nu}^I$$

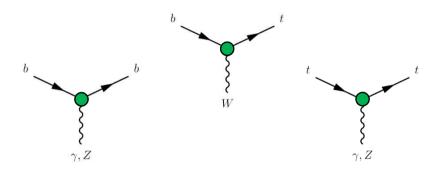

$$O_{dW}^{ij} = (\bar{q}_{Li}\sigma^{\mu\nu}\tau^I d_{Rj})\phi W_{\mu\nu}^I$$


with
$$W^I_{\mu\nu}=\partial_\mu W^I_\nu-\partial_\nu W^I_\mu-g\epsilon_{IJK}W^J_\mu W^K_
u$$

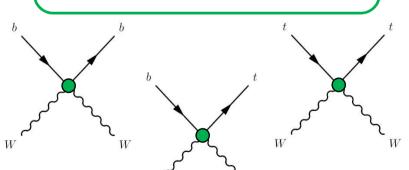
$$O_{qW}^{ij} = \bar{q}_{Li} \gamma^{\mu} \tau^I D^{\nu} q_{Lj} W_{\mu\nu}^I$$

$$O_{uW}^{ij} = (\bar{q}_{Li}\sigma^{\mu\nu}\tau^I u_{Rj})\tilde{\phi} W_{\mu\nu}^I$$

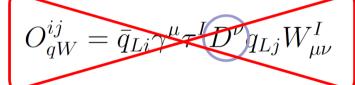
$$O_{dW}^{ij} = (\bar{q}_{Li}\sigma^{\mu\nu}\tau^I d_{Rj})\phi W_{\mu\nu}^I$$



with
$$W^I_{\mu\nu}=\partial_\mu W^I_\nu-\partial_\nu W^I_\mu-g\epsilon_{IJK}W^J_\mu W^K_\nu$$

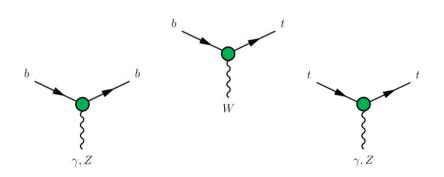

$$O_{qW}^{ij} = \bar{q}_{Li} \gamma^{\mu} \tau^{I} D^{\nu} q_{Lj} W_{\mu\nu}^{I}$$

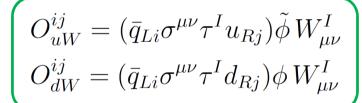
Use eqn's of motion to replace derivative

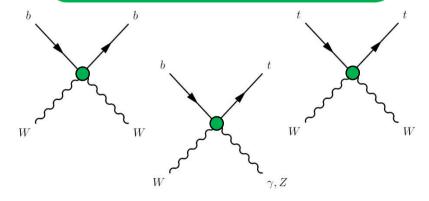


$$O_{uW}^{ij} = (\bar{q}_{Li}\sigma^{\mu\nu}\tau^I u_{Rj})\tilde{\phi} W_{\mu\nu}^I$$

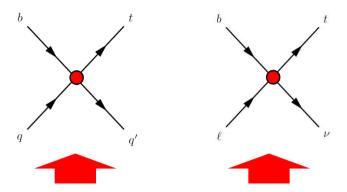
$$O_{dW}^{ij} = (\bar{q}_{Li}\sigma^{\mu\nu}\tau^I d_{Rj})\phi W_{\mu\nu}^I$$

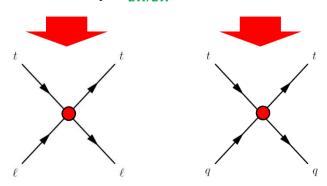



with
$$W^I_{\mu\nu}=\partial_\mu W^I_\nu-\partial_\nu W^I_\mu-g\epsilon_{IJK}W^J_\mu W^K_\nu$$

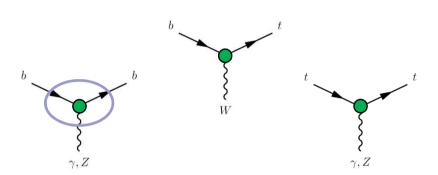


Use eqn's of motion to replace derivative and identify $O_{uW/dW}$

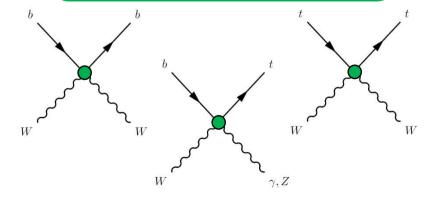


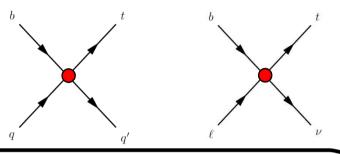


with
$$W^I_{\mu\nu}=\partial_\mu W^I_\nu-\partial_\nu W^I_\mu-g\epsilon_{IJK}W^J_\mu W^K_\nu$$



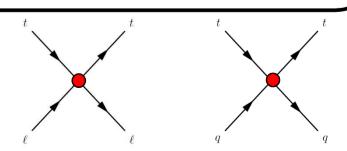
Use **eqn's of motion** to replace derivative and identify $O_{uW/dW}$ + **contact terms**



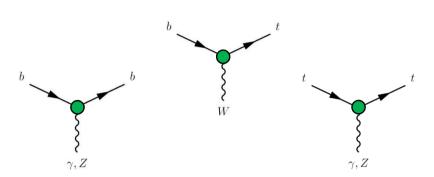


$$O_{uW}^{ij} = (\bar{q}_{Li}\sigma^{\mu\nu}\tau^I u_{Rj})\tilde{\phi} W_{\mu\nu}^I$$

$$O_{dW}^{ij} = (\bar{q}_{Li}\sigma^{\mu\nu}\tau^I d_{Rj})\phi W_{\mu\nu}^I$$

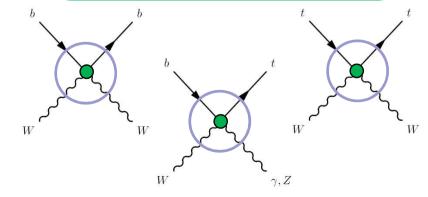


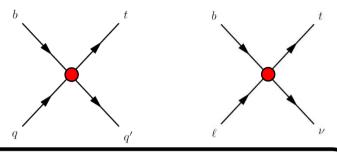
with
$$W^I_{\mu\nu}=\partial_\mu W^I_\nu-\partial_\nu W^I_\mu-g\epsilon_{IJK}W^J_\mu W^K_\nu$$



Some remarks:

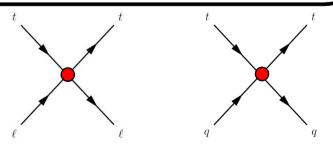
 anomalous top couplings imply anomalous b couplings



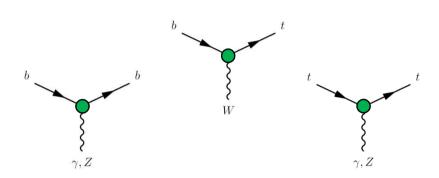


$$O_{uW}^{ij} = (\bar{q}_{Li}\sigma^{\mu\nu}\tau^I u_{Rj})\tilde{\phi} W_{\mu\nu}^I$$

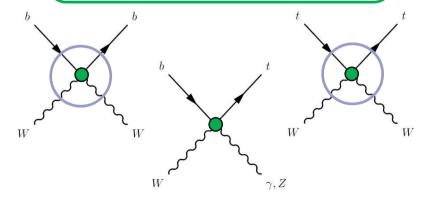
$$O_{dW}^{ij} = (\bar{q}_{Li}\sigma^{\mu\nu}\tau^I d_{Rj})\phi W_{\mu\nu}^I$$

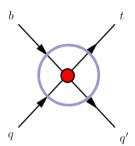


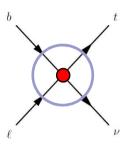
with
$$W^I_{\mu\nu}=\partial_\mu W^I_\nu-\partial_\nu W^I_\mu-g\epsilon_{IJK}W^J_\mu W^K_\nu$$



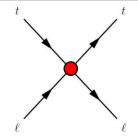
Some remarks:

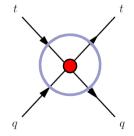

- anomalous top couplings imply anomalous b couplings
- ffVV contact terms required by gauge invariance

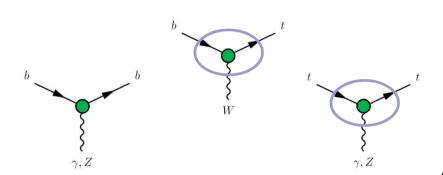




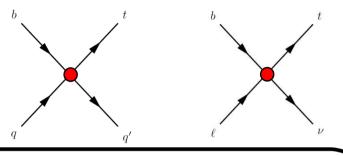
$$O_{uW}^{ij} = (\bar{q}_{Li}\sigma^{\mu\nu}\tau^I u_{Rj})\tilde{\phi} W_{\mu\nu}^I$$
$$O_{dW}^{ij} = (\bar{q}_{Li}\sigma^{\mu\nu}\tau^I d_{Rj})\phi W_{\mu\nu}^I$$


with
$$W^I_{\mu\nu}=\partial_\mu W^I_\nu-\partial_\nu W^I_\mu-g\epsilon_{IJK}W^J_\mu W^K_\nu$$



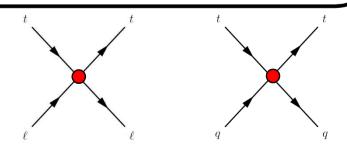

Some remarks:

- anomalous top couplings imply anomalous b couplings
- ffVV contact terms required by gauge invariance
- some ffVV and ffff contact terms may contribute to single top and top pair production as well as top decays

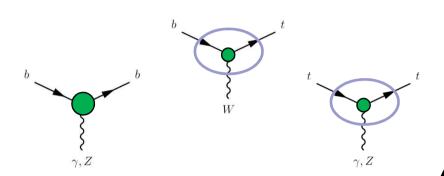


$$O_{uW}^{ij} = (\bar{q}_{Li}\sigma^{\mu\nu}\tau^I u_{Rj})\tilde{\phi} W_{\mu\nu}^I$$

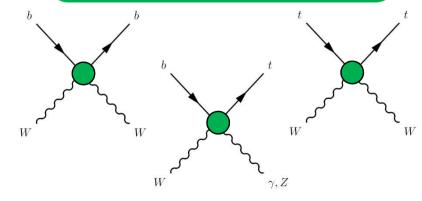
$$O_{dW}^{ij} = (\bar{q}_{Li}\sigma^{\mu\nu}\tau^I d_{Rj})\phi W_{\mu\nu}^I$$

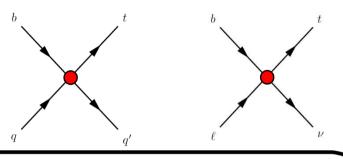


with
$$W^I_{\mu\nu}=\partial_\mu W^I_\nu-\partial_\nu W^I_\mu-g\epsilon_{IJK}W^J_\mu W^K_\nu$$



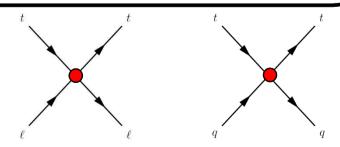
Conclusion:

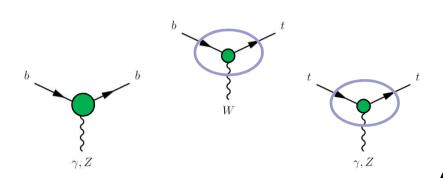

If you try to bound trilinear couplings...



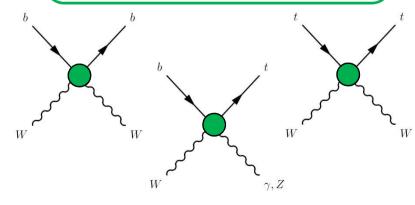
$$O_{uW}^{ij} = (\bar{q}_{Li}\sigma^{\mu\nu}\tau^I u_{Rj})\tilde{\phi} W_{\mu\nu}^I$$

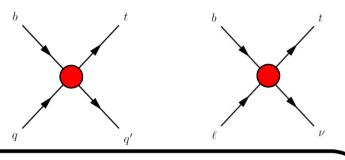
$$O_{dW}^{ij} = (\bar{q}_{Li}\sigma^{\mu\nu}\tau^I d_{Rj})\phi W_{\mu\nu}^I$$


with
$$W^I_{\mu\nu}=\partial_\mu W^I_\nu-\partial_\nu W^I_\mu-g\epsilon_{IJK}W^J_\mu W^K_\nu$$


Conclusion:

If you try to bound trilinear couplings...

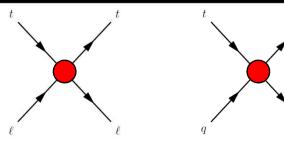

... respect the ward identities



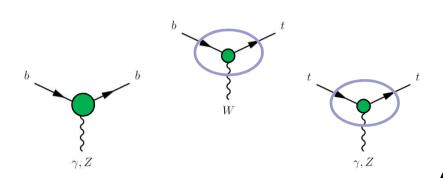
$$O_{uW}^{ij} = (\bar{q}_{Li}\sigma^{\mu\nu}\tau^I u_{Rj})\tilde{\phi} W_{\mu\nu}^I$$

$$O_{dW}^{ij} = (\bar{q}_{Li}\sigma^{\mu\nu}\tau^I d_{Rj})\phi W_{\mu\nu}^I$$

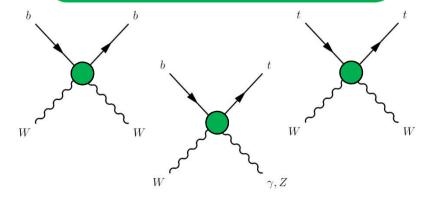
with
$$W^I_{\mu\nu}=\partial_\mu W^I_\nu-\partial_\nu W^I_\mu-g\epsilon_{IJK}W^J_\mu W^K_\nu$$

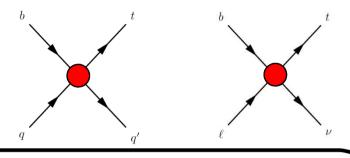


Conclusion:


If you try to bound trilinear couplings...

... respect the ward identities

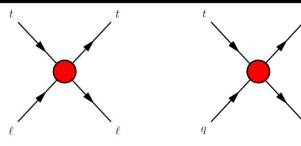

... stay fully general



$$O_{uW}^{ij} = (\bar{q}_{Li}\sigma^{\mu\nu}\tau^I u_{Rj})\tilde{\phi} W_{\mu\nu}^I$$

$$O_{dW}^{ij} = (\bar{q}_{Li}\sigma^{\mu\nu}\tau^I d_{Rj})\phi W_{\mu\nu}^I$$

with
$$W^I_{\mu\nu}=\partial_\mu W^I_\nu-\partial_\nu W^I_\mu-g\epsilon_{IJK}W^J_\mu W^K_\nu$$



Luckily

WHIZARD 2

has the full package!

Including tbW, ttZ, ttA and ttg couplings

Studies on anomalous tbW couplings (Aguilar-Saavedra et al. 07-09)

• parameterization of the vertex (Aguilar-Saavedra et al.):

$$\mathcal{L} = -\frac{g}{\sqrt{2}} \bar{b} \gamma^{\mu} (V_{L} P_{L} + V_{R} P_{R}) t W_{\mu}^{-}$$

$$-\frac{g}{\sqrt{2}} \bar{b} \frac{i \sigma^{\mu\nu} q_{\nu}}{M_{W}} (g_{L} P_{L} + g_{R} P_{R}) t W_{\mu}^{-} + \text{h.c.}$$
SM: $V_{L} = V_{tb} \approx 1$,
$$V_{R} = g_{L} = g_{R} = 0$$

→ remember. not fully general

Studies on anomalous tbW couplings (Aguilar-Saavedra et al. 07-09)

• parameterization of the vertex (Aguilar-Saavedra et al.):

$$\mathcal{L} = -\frac{g}{\sqrt{2}} \bar{b} \gamma^{\mu} (V_{L} P_{L} + V_{R} P_{R}) t W_{\mu}^{-}$$

$$-\frac{g}{\sqrt{2}} \bar{b} \frac{i \sigma^{\mu\nu} q_{\nu}}{M_{W}} (g_{L} P_{L} + g_{R} P_{R}) t W_{\mu}^{-} + \text{h.c.}$$
SM: $V_{L} = V_{tb} \approx 1$,
$$V_{R} = g_{L} = g_{R} = 0$$

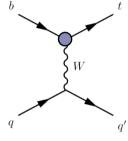
- → remember. not fully general
- general remarks:
 - 1) top pair production largely QCD
 - → cross sections **not sensitive** on anomalous *tbW* couplings
 - 2) singe top production closely dependent on the tbW couplings
 - → cross sections **sensitive** on anomalous *tbW* couplings
 - → potentially sensitive on charged-current ffff term ~ C_{aW} O_{aW}
 - 3) top decay products sensitive on ratios of anomalous tbW couplings

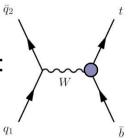
Studies on anomalous tbW couplings (Aguilar-Saavedra et al. 07-09)

• parameterization of the vertex (Aguilar-Saavedra et al.):

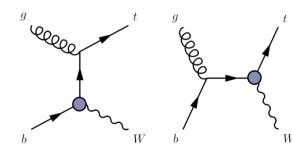
$$\mathcal{L} = -\frac{g}{\sqrt{2}} \bar{b} \gamma^{\mu} (V_{L} P_{L} + V_{R} P_{R}) t W_{\mu}^{-}$$

$$-\frac{g}{\sqrt{2}} \bar{b} \frac{i \sigma^{\mu\nu} q_{\nu}}{M_{W}} (g_{L} P_{L} + g_{R} P_{R}) t W_{\mu}^{-} + \text{h.c.}$$
SM: $V_{L} = V_{tb} \approx 1$,
$$V_{R} = g_{L} = g_{R} = 0$$


- → remember. not fully general
- general remarks:
 - 1) top pair production largely QCD
 - → cross sections **not sensitive** on anomalous *tbW* couplings
 - 2) singe top production closely dependent on the tbW couplings
 - → cross sections **sensitive** on anomalous *tbW* couplings
 - → potentially sensitive on charged-current ffff term ~ C_{aW} O_{aW}
 - 3) top decay products sensitive on ratios of anomalous tbW couplings
 - → combine measurements of single top coss sections and distributions of top decay products to get a hold of the abolute size and relative contributions of the various effective operators

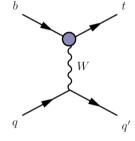

Single top cross sections (Aguilar-Saavedra 2008)

• different types of single top production considered


1) t-channel *tj* production:

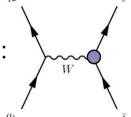
2) s-channel tb production:

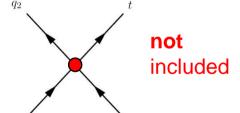
3) tW production:

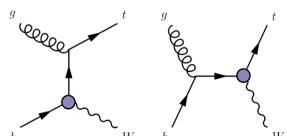


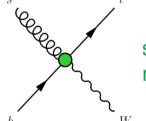
Single top cross sections (Aguilar-Saavedra 2008)

• different types of single top production considered

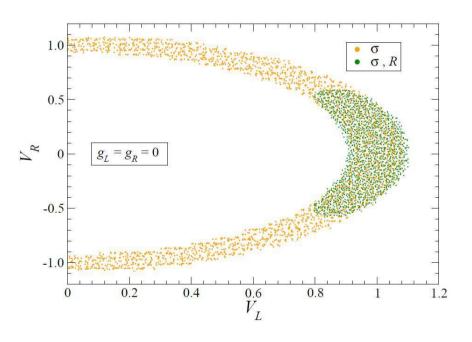

contact terms


1) t-channel *tj* production:


not included


2) s-channel *tb* production:

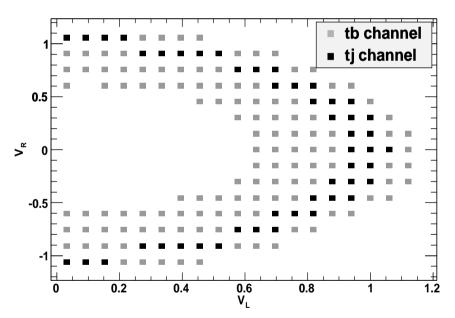
3) *tW* production:

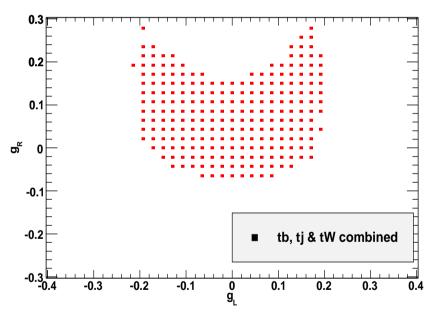


shown to be redundant

Single top cross sections (Aguilar-Saavedra 2008)

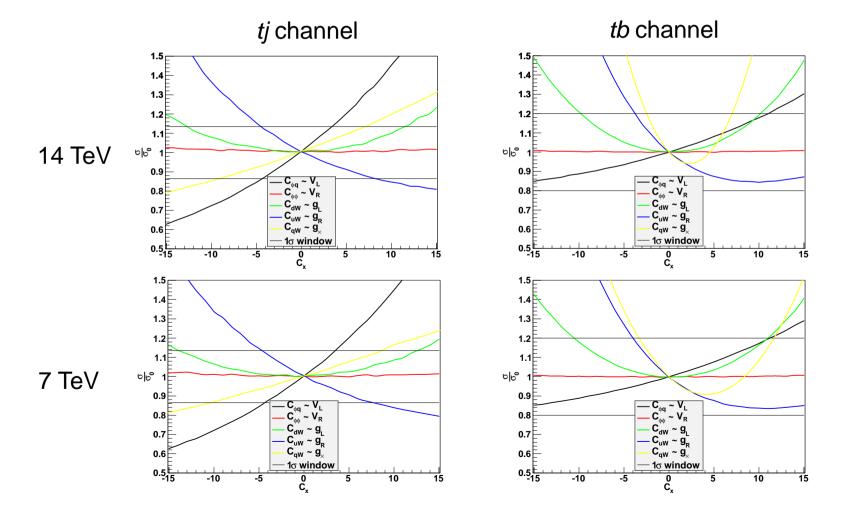
- estimated absolute bounds on V_L , V_R , g_L , g_R from a fast ATLAS detector simulation (corresponds to exp. 1σ deviations from SM x-sec's, 10 fb^{-1} @ 14 TeV)
 - → separate bounds on V_L , $V_R(g_L, g_R = 0)$ and vice versa:



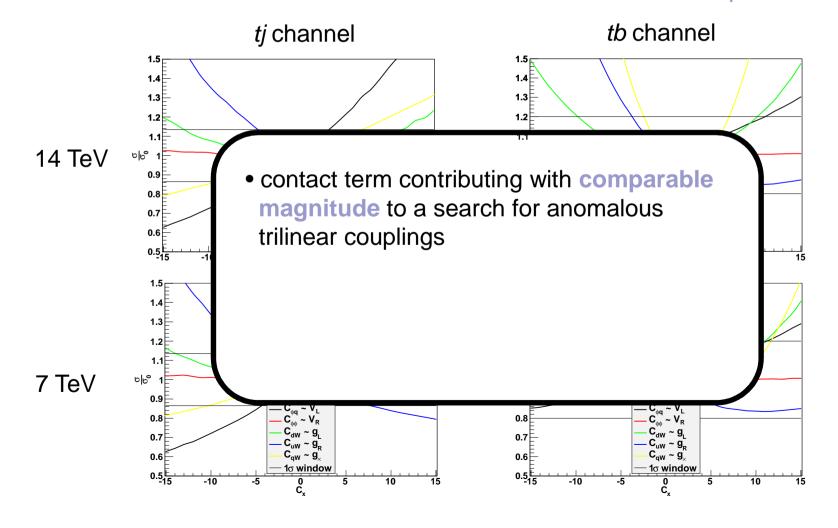


Single top cross sections (WHIZARD 2 implementation)

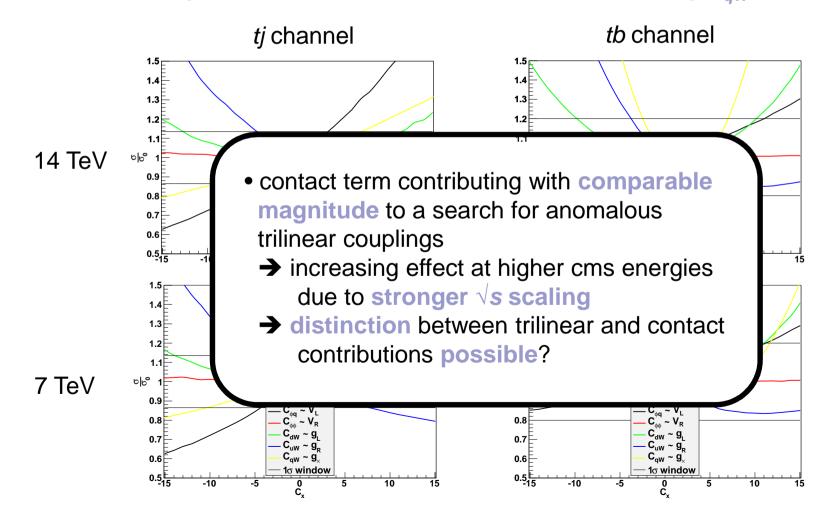
- same parameter scan in the V_L/V_R and g_L/g_R planes carried out in WHIZARD
 - → tb and tj channel with potential ffff contributions
 - → parton level with b-tagging efficiency/impurity taken into account



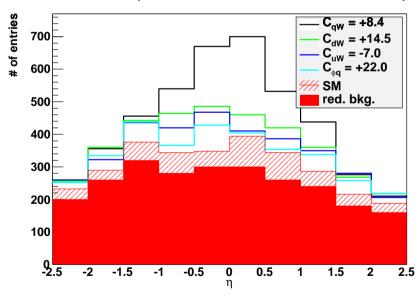
- good agreement in the vector couplings
- good agreement in the tensor couplings as soon as the tW channel is included
- now look at potential contributions to tb/tj channels from the contact terms...



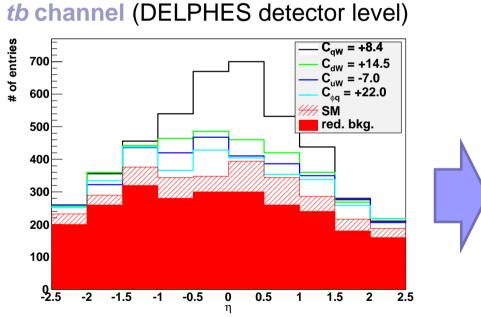
• compare separate sensitivities to the operators coefficients generating the trilinear couplings with the one of the 4-fermion contact coupling C_{aW}



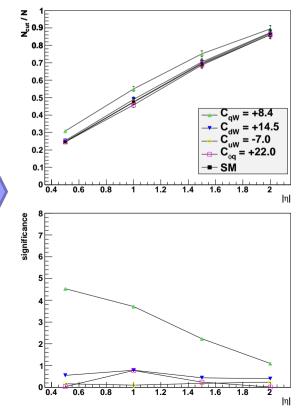
• compare separate sensitivities to the operators coefficients generating the trilinear couplings with the one of the 4-fermion contact coupling C_{aW}



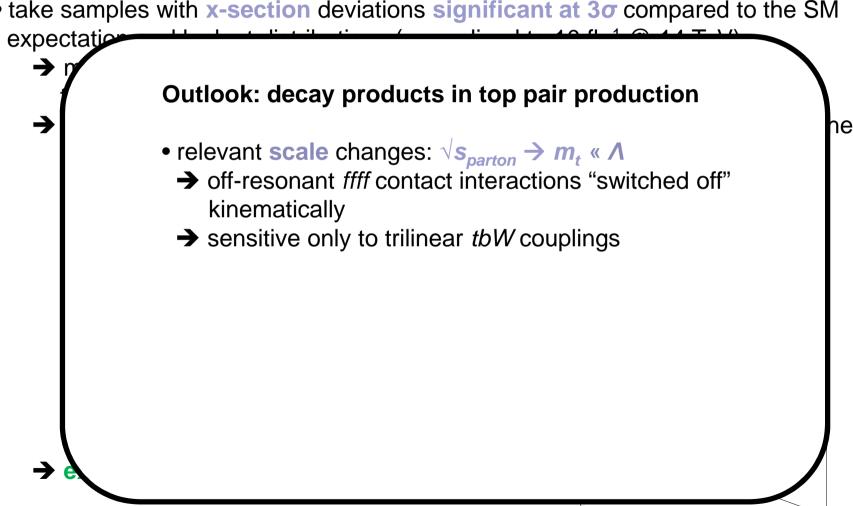
• compare separate sensitivities to the operators coefficients generating the trilinear couplings with the one of the 4-fermion contact coupling C_{aW}



- take samples with **x-section** deviations **significant at 3**σ compared to the SM expectation and look at distributions (normalized to 10 fb⁻¹ @ 14 TeV)
 - → make use of the fact that the intermediate *W* boson in diagrams with trilinear couplings is strongly boosted in s-channel *tb* production
 - → look at the η distribution of the b-jet not reconstructing the top mass in the tb channel (DELPHES detector level)



- take samples with **x-section** deviations **significant at 3**σ compared to the SM expectation and look at distributions (normalized to 10 fb⁻¹ @ 14 TeV)
 - → make use of the fact that the intermediate *W* boson in diagrams with trilinear couplings is strongly boosted in s-channel *tb* production
 - \rightarrow look at the η distribution of the b-jet **not** reconstructing the top mass in the



→ extraction of contact term seems possible

• take samples with x-section deviations significant at 3σ compared to the SM

• take samples with **x-section** deviations **significant at 3σ** compared to the SM expectations.

→ Outlook: de

Outlook: decay products in top pair production

- relevant scale changes: $\sqrt{s_{parton}} \rightarrow m_t \ll \Lambda$
 - → off-resonant ffff contact interactions "switched off" kinematically
 - → sensitive only to trilinear *tbW* couplings
- probes non-standard helicity structures
 - \rightarrow sensitive to anomalous V_R and $g_{L/R}$ but **not** V_L

→

he

• take samples with **x-section** deviations **significant at 3σ** compared to the SM expectations.

→ j

-

Outlook: decay products in top pair production

- relevant scale changes: $\sqrt{s_{parton}} \rightarrow m_t \ll \Lambda$
 - → off-resonant ffff contact interactions "switched off" kinematically
 - → sensitive only to trilinear *tbW* couplings
- probes non-standard helicity structures
 - \rightarrow sensitive to anomalous V_R and $g_{L/R}$ but **not** V_L
 - → non-SM single top x-sections in **combination** with SM-like top decays might hint at new physics parameterized by effective 4-fermion **contact interactions** (or V_L)

→

he

- abundant top production at the LHC
 - → high statistics allows for precise measurements of top couplings etc.
 - \rightarrow look for deviations from the SM in the trilinear top couplings $f_i f_j V$, ttH

- abundant top production at the LHC
 - → high statistics allows for precise measurements of top couplings etc.
 - \rightarrow look for deviations from the SM in the trilinear top couplings $f_i f_i V$, ttH
- write down all effective dim6 operators contributing to trilinear top couplings
 - → use equations of motion to remove redundancies
- most general parameterization of all anomalous trilinear top couplings:
 - \rightarrow just two different Lorentz structures: $\sim \gamma^{\mu}$ and $\sim \sigma^{\mu\nu}q_{\nu}$
 - → gauge invariance requires inclusion of quartic terms (e.g. *ttgg*, 4-fermion)

- abundant top production at the LHC
 - → high statistics allows for precise measurements of top couplings etc.
 - \rightarrow look for deviations from the SM in the trilinear top couplings $f_i f_j V$, ttH
- write down all effective dim6 operators contributing to trilinear top couplings
 - → use equations of motion to remove redundancies
- most general parameterization of all anomalous trilinear top couplings:
 - \rightarrow just two different Lorentz structures: ~ γ^{μ} and ~ $\sigma^{\mu\nu}q_{\nu}$
 - → gauge invariance requires inclusion of quartic terms (e.g. *ttgg*, 4-fermion)
- the WHIZARD 2 front: provide an exhaustive, integrated and consistent MC tool for phenomenological studies of all possible anomalous top couplings, up to detector-level final states (collaboration with I. Fleck, ATLAS, Uni Siegen)

- abundant top production at the LHC
 - → high statistics allows for precise measurements of top couplings etc.
 - \rightarrow look for deviations from the SM in the trilinear top couplings $f_i f_j V$, ttH
- write down all effective dim6 operators contributing to trilinear top couplings
 - → use equations of motion to remove redundancies
- most general parameterization of all anomalous trilinear top couplings:
 - \rightarrow just two different Lorentz structures: ~ γ^{μ} and ~ $\sigma^{\mu\nu}q_{\nu}$
 - → gauge invariance requires inclusion of quartic terms (e.g. *ttgg*, 4-fermion)
- the WHIZARD 2 front: provide an exhaustive, integrated and consistent MC tool for phenomenological studies of all possible anomalous top couplings, up to detector-level final states (collaboration with I. Fleck, ATLAS, Uni Siegen)
 - \rightarrow additional **vertex structure** ~ $\sigma^{\mu\nu}q_{\nu}$ implemented
 - → full set of **anomalous** trilinear top **couplings** (including *ttH*) provided
 - → optional q² dependence of the coupling parameters provided
 - → all relevant quartic interactions included
 - significant contribution of 4-fermion terms illustrated

References

- W. Buchmüller, D. Wyler: Nucl. Phys. B 268, 621 (1986).
- G. L. Kane, G. A. Ladinsky, C. P. Yuan: *Phys. Rev. D* 45, 124 (1992).
- P. Haberl, O. Nachtmann, A. Wilch: *Phys. Rev. D* **53**, 4875 (1997).
- B. Grzadkowski et al.: arXiv:0310.0159 [hep-ph] (2004).
- J. A. Aguilar-Saavedra et al.: arXiv:0605190v2 [hep-ph] (2007); arXiv:0705.3041v2 [hep-ph] (2007).
- J. A. Aguilar-Saavedra: *arXiv:*0803.3810 [hep-ph] (2008); *arXiv:*0811.3842v2 [hep-ph] (2008).
- CDF Collaboration: *Public CDF note* 9448 (2008).
- D0 Collaboration: *arXiv:*0903.5525 [hep-ex] (2009).
- ATLAS Collaboration: *arXiv:*0901.0512v2 [hep-ex] (2009).
- Z. Hioki, K. Ohkuma: arXiv:0910.3049v2 [hep-ph] (2009).
- D. Choudhury, P. Saha: arXiv:0911.5016v2 [hep-ph] (2009).