
TOWARDS

ZERO-WASTE COMPUTING

Ana-Lucia Varbanescu

CAES @ EEMCS

a.l.varbanescu@utwente.nl

This project has received funding from the European Union’s Horizon

Research and Innovation Actions under Grant Agreement № 101093202.

mailto:a.l.varbanescu@utwente.nl

TOWARDS

ZERO-WASTE COMPUTING

Ana-Lucia Varbanescu

CAES @ EEMCS

a.l.varbanescu@utwente.nl

This project has received funding from the European Union’s Horizon

Research and Innovation Actions under Grant Agreement № 101093202.

Work & results with Nick Breed, Quincy Bakker,

Duncan Bart, Jeffrey Spaan, Jelle van Dijk.

mailto:a.l.varbanescu@utwente.nl

Computing is everywhere … and it’s not free!

• Top 10 videos on YouTube* consumed as much as 600-700 EU persons per year (or
about 400 North America persons)

• Training Alpha-Zero for a new game consumes as much as 100 EU persons per year

• A mid-size datacenter alone consumes as much energy as a small town
• And that is not considering purchasing and secondary operational costs (e.g., cooling)

• In 2019 Dutch datacenters combined consumed 3-times more energy than the
national railways

• And consumption increased by 80% in 3 years

• The ICT sector is predicted to reach 21% of the global energy consumption by 2030

*https://en.wikipedia.org/wiki/List_of_most-viewed_YouTube_videos#Top_videos

Computing is everywhere … and it’s not free!

• Top 10 videos on YouTube* consumed as much as 600-700 EU persons per year (or
about 400 North America persons)

• Training Alpha-Zero for a new game consumes as much as 100 EU persons per year

• A mid-size datacenter alone consumes as much energy as a small town
• And that is not considering purchasing and secondary operational costs (e.g., cooling)

• In 2019 Dutch datacenters combined consumed 3-times more energy than the
national railways

• And consumption increased by 80% in 3 years

• The ICT sector is predicted to reach 21% of the global energy consumption by 2030

The energy consumption of computing is substantial and

constantly increasing!

*https://en.wikipedia.org/wiki/List_of_most-viewed_YouTube_videos#Top_videos

Three types of stakeholders

System operators

Ensure efficient scheduling

of workloads on system

resources.

Harvest energy where

resources/systems are

massively underutilized.

Developers and users

Improve the energy efficiency

of their own codes, making use

of algorithmic, programming,

and hardware tools

Design and implement

applications able to adapt to

the available system resources

System integrators

Offer the right mix of resources

for the application developers

and system operators.

Include efficient hardware to

enable different application

mixes.

Systems

• On-premise hardware
• Flexible, yet often limited in resources

• Good for development

• Limited value for production

• Supercomputers
• Massive machinery, high-performance

• Partially shared

• Less flexible in terms of infra and programming

• Datacenters & Cloud computing
• Scale-by-credit card

• Excellent efficiency

• Possible limitations in terms of performance (SLA)

• Computing continuum
• New development in distributed computing

• Unclear for scientific computing

• Relevant for complete data analysis (sensor-to-result)

Supercomputing/Data-centers

• Supercomputing is extremely high in carbon emissions, mainly due to scale.

• Embodied carbon*: Indirect emissions, e.g., production, shipping, and

disposal of system components.

• Operational carbon: Electricity, heating, cooling, etc. for the site operation.

*Data and tools: https://boavizta.org/en

https://boavizta.org/en

Sustainable acquisition

• We need new lifecycle assessment & procurement procedures

• Current Goal: Maximize Throughput (Workloads)

• Constraints:

• Budget = Machine Cost + Electricity;

• System Footprint/Weight; Cooling Capacity; Power Supply; …

• New Constraint: Carbon Budget

Courtesy of: Carsten Trinitis, TUM - at Sustainability Day @DATE, March 26, 2024, Valencia, Spain

Extend lifetime

• We need to Extend Lifetime, Reuse, and Recycle

• System Lifetime: Typically 4-6 years

• Extended lifetime => embodied carbon reduction.

• Reuse & Recycle: Reduce carbon emissions caused

by disposal & production

• Reuse: e.g., LRZ offers decommissioned machines for free.

• Recycling: accelerators, DRAM chips, heat pipes, cooling

infra, ...

Courtesy of: Carsten Trinitis, TUM - at Sustainability Day @DATE, March 26, 2024, Valencia, Spain

Three types of stakeholders

System operators

Ensure efficient scheduling

of workloads on system

resources.

Harvest energy where

resources/systems are

massively underutilized.

Developers and users

Improve the energy efficiency

of their own codes, making use

of algorithmic, programming,

and hardware tools

Design and implement

applications able to adapt to

the available system resources

System integrators

Offer the right mix of resources

for the application developers

and system operators.

Include efficient hardware to

enable different application

mixes.

New scheduling & RM opportunities

• Efficient operation

• Schedulers

• Automated tools

• Support/education for users

• Additional opportunities

• Shared resources

• Location shifting

• Time/Peak shifting

Courtesy of: Carsten Trinitis, TUM - at Sustainability Day @DATE, March 26, 2024, Valencia, Spain

Three types of stakeholders

System operators

Ensure efficient scheduling

of workloads on system

resources.

Harvest energy where

resources/systems are

massively underutilized.

Developers and users

Improve the energy efficiency

of their own codes, making use

of algorithmic, programming,

and hardware tools

Design and implement

applications able to adapt to

the available system resources

System integrators

Offer the right mix of resources

for the application developers

and system operators.

Include efficient hardware to

enable different application

mixes.

Developers & users

• Measure/Quantify

• Select the right systems

• Select the right implementation tools

• Select the right algorithms

• Tweak and tune … and iterate

Non-trivial!

But we must start somewhere …

Agenda

• Stakeholders & actions

• Different views on performance

• Zero-waste computing

• 2.5 case-studies

• (re)Defining systems codesign

• Take home message

This project has received funding from the European Union’s Horizon

Research and Innovation Actions under Grant Agreement № 101093202.

Assumptions

• Modern (and future) systems are parallel and heterogeneous

• In many dimensions

• Systems are characterized by peak performance (with various “roofs”)

• All applications want more performance

• Applications must enable parallelism

• One Application => n algorithms => n*m implementations

• Algorithms: characterized by complexity

• Algorithms/implementations: characterized by arithmetic/operation intensity – ops/byte

Some relevant performance metrics*

• Speed-up: how much faster do we get with new machines, algorithms, …

 S(workload) = Perf(Old)/Perf(New)

• Efficiency: how efficient are we in getting performance

 E(workload) = Perf / Resources

• Energy efficiency: how energy efficient are we in getting performance

 EE(workload) = Perf / Energy

• Utilization: how efficient are we utilizing our resources

 U(resource) = Achieved / Peak

High-efficiency computing

High-performance computing

*please accept the naïve notation and pseudo-definitions

Waste in computing

Unneccesary time (or energy) spent in (inefficient)

computing is compute waste.

To reduce compute waste, we must focus on

efficiency-to-solution

Detecting waste [1]

• We assume computing waste is a consequence of underutilized resources.

• Informally, assume:

P1 = performance(algorithm, workload, system1)

P0 = idealPerformance(algorithm, workload, system1)

• “Strict” definition:

 if (P1 < P0) => waste in P1

• “Relaxed” definition:

 if (P0 - P1 > T) => waste in P1

 with T = threshold for performance loss

18

*performance is not necessarily runtime.

Ideal performance is

non-trivial to

quantify.

Detecting waste [2]

• We assume computing waste is a consequence of underutilized resources.

• Informally, assume:

system1 > system2

P1 = performance(algorithm, workload, system1)

P2 = performance(algorithm, workload, system2)

• “Strict” definition:

 if (P1 == P2) => waste in P1

• “Relaxed” definition:

 if (abs (P1 - P2) > T) => waste in P1

 with T = threshold for performance loss

19

*performance is not necessarily runtime.

Challenges in both

efficiency

quantification and

improvement.

Reducing waste in computing

Raise awareness

• Monitor (energy) efficiency

• Quantify waste

Improve efficiency

• Improve applications for the systems at hand

• Make applications more efficient

• Make applications share systems

• Improve systems for the applications at hand

• Co-design applications and systems

Analysis

Modeling

Code++ optimization

Efficient scheduling and

resource sharing

Application-centric system

design

??

Systems at hand & efficiency knobs

Cores, power, energy…

• Multi-core CPU
• Multi-core energy consumption != N * energy/core

• Complex architecture, different clocks, shared resources

• Various ways to implements DVFS + power reduction techniques

• Non-trivial correlation with performance

• GPU
• Power is significantly impacted by the type of workload and occupancy

• Always check the power cap, too!

• Heterogeneous & multi-node computing
• Sum of energy by components

• Networking energy lacking

Hybrid

CPU example

• AMD EPYC CPU

• Running SGEMM

• Different frequencies

Courtesy of Benjamin Czaja, SURF, NL

GPU example

GPU SMs Cores/SM Total Cores Max Power [W] Idle Power [W]

A4000 48 128 6144 140 39.5

A6000 84 128 10572 300 71.5

A2 10 128 1280 60 18.1

A100 108 64 6912 250 37.9

A4000 A6000 A2 A100

GPU example (cont’d)

• Caching patterns make

a significant difference

• Compute vs memory

intensive – mem

consumes more.

• Memory coalescing,

negligible

• Data types &

instruction mix show

some differences

Performance vs. energy

• Low performance ➔ waste in computing

• We power resources that are not needed

• High performance ➔ faster execution ➔ less energy consumed

• Max energy efficiency max performance (i.e., lowest runtime…)

• Strong assumption that power is constant

• DVFS is a technique to reduce the impact of underutilized hardware

• Non-linear effects on performance

Goel and McKee – “A Methodology for Modeling Dynamic and Static Power Consumption for Multicore Processors”

In the context of multi-core and heterogeneous systems, minimizing

execution time might not guarantee lowest energy consumption.

Auto-tuning, anyone?

https://doi-org.ezproxy2.utwente.nl/10.1109/IPDPS.2016.118

Case study #1: Heterogeneous systems

Improving systems

for the applications

at hand.

Nick Breed

Quincy Bakker

https://gitlab.qub1.com/vrije-universiteit/master-project/thesis

https://scripties.uba.uva.nl/search?id=record_27683

https://gitlab.qub1.com/vrije-universiteit/master-project/thesis
https://scripties.uba.uva.nl/search?id=record_27683

Thousands of Cores

Few
cores

Heterogeneous computing

• A heterogeneous platform = a CPU + a GPU (the starting point)

• An application workload = an application + its input dataset

• Workload partitioning = workload distribution among the processing units of a

heterogeneous system

Heterogeneous computing for all??

• Model-based load-balancing for heterogeneous computing
• Analytical model

• Empirical calibration

• Embedded in the Glinda framework

• Challenging programming
• Leverages performance portable programming models

• Maximizes performance and/or resource utilization => minimizes waste
• Uses all types of resources in the system

• Driven by performance
• Could/should be extended for energy efficiency

*Jie Shen et al., IEEE TPDS. 2015

“Workload partitioning for accelerating applications on heterogeneous platforms”

Energy improvements

• Basic assumptions
• Tasks run on different processors

• Idle processors waste energy

• Higher/lower operating frequencies

• => more/less power respectively

• => reduce or increase runtime respectively

• Opportunities
• Dynamic Voltage and Frequency Scaling (DVFS)

• Reducing operating frequencies in idle states to save energy

• No active task => no runtime increase

• Increasing operating frequencies in busy states to save energy

• Lower runtime => less time to consume energy

GPU-bound
(Matrix Multiply)

CPU-bound
(K-Means)

Approach

• Framework to monitor and improve the energy consumption of
heterogeneous applications
• Analyze application at runtime

• Use live execution data

• Determine application states

• CPU/GPU-utilization patterns

• Apply DVFS for this phases

• Observe energy changes

• Design policies to maximize energy consumption

• What, when, and how to apply DVFS

Analyze application

Identify phases

Select and apply

“right” frequency

Policies for energy

harvesting

Empirical analysis

• Workload: 10 different applications from different benchmarking suites

• System: Geforce GTX 960 GPU and an AMD Ryzen 7 3700x CPU.

• Metrics of interest: runtime and energy consumption

• Reference implementation = “do nothing”
• Gain and/or loss against reference

• Five policies :

• Maximum Frequency

• System

• MinMax

• Ranked MinMax

• Scaled MinMax

Results

Results

Lessons learned

• Heterogeneous computing => high performance, high energy consumption

• Energy harvesting can work

• Depends a lot on the implementation

• There is a broader question: how can we explore trade-offs between energy

and performance ?

• Harvesting = how to keep performance fixed

• Energy budgets = how to maximize performance

Git repository:

https://gitlab.qub1.com/vrije-universiteit/master-project/energymanager

Thesis:

https://gitlab.qub1.com/vrije-universiteit/master-project/thesis

https://gitlab.qub1.com/vrije-universiteit/master-project/energymanager
https://gitlab.qub1.com/vrije-universiteit/master-project/thesis

Lessons learned

• Heterogeneous computing => high performance, high energy consumption

• Energy harvesting can work

• Depends a lot on the implementation

• There is a broader question: how can we explore trade-offs between energy

and performance ?

• Harvesting = how to keep performance fixed

• Energy budgets = how to maximize performance

Git repository:

https://gitlab.qub1.com/vrije-universiteit/master-project/energymanager

Thesis:

https://gitlab.qub1.com/vrije-universiteit/master-project/thesis

- Heterogeneous systems require

heterogeneous applications

- Not using the CPU/GPU is by definition

wasteful

Reduced waste by

frequency scaling.

https://gitlab.qub1.com/vrije-universiteit/master-project/energymanager
https://gitlab.qub1.com/vrije-universiteit/master-project/thesis

Case study #2: Shrinking the platform

Improving systems

for the applications

at hand.

Jeffrey Spaan

1. Pick a workload

2. Pick a baseline platform

3. Reduce resources

4. Measure performance

5. Compare performance

No difference or better performance? Found waste and/or a better system.

The devil is in

the details.

Possible workflow to identify waste

How to reduce resources? How to measure performance? How to compare?

Measuring Predicting performance

• Benchmarking

• Co-location

• Simultaneous execution with a (specific) resource-consuming application

• Partitioning

• Partitions with isolated GPU resources

• Analytical modelling

• Statistical modelling

• Simulation best option (currently)

 Impossible

 Difficult to setup

 Not available on many systems

 Not sufficiently accurate

Proposed workflow

40

Experimental setup

Applications:

• 5 Rodinia kernels:
• Compute-bound: hotspot, k-means (2)

• Memory-bound: k-means (1)
 backpropagation (1), backpropagation (2)

Systems:

• Baseline: RTX 2060 Super

• Variables:
• SMs: 25, 30, …., 40

• Core clock: 1000, 1150, …., 1900

• Memory clock: 800, 1250, …, 3500

Simulation run-time ≈ 24-40 hours

Simulated with:

Ask me

more!

https://github.com/romnn/gpucachesim

Varying SMs

42

waste

waste

Compute-bound:

● Hotspot

● K-means (2)

Memory-bound:

● K-means (1)

● Backprop (1)

● Backprop (2)

More resources ≠

better performance

Core clock

43

Compute-bound:

● Hotspot

● K-means (2)

Memory-bound:

● K-means (1)

● Backprop (1)

● Backprop (2)

??

??

Memory clock

44

Compute-bound:

● Hotspot

● K-means (2)

Memory-bound:

● K-means (1)

● Backprop (1)

● Backprop (2)

waste

waste

SMs: BFS

BFS is memory bound.

Is the strict definition

reasonable? Should we

use the relaxed

definition?

Waste ?

Waste ?

Memory clock: BFS

As BFS is memory

bound, we do expect

to see performance

gain when the memory

clock speed increases.

Waste ?

Waste ?

Lessons learned

● We demonstrated waste at resource-level can be significant

● We demonstrated it is possible* (in simulation) to update platforms

● New opportunities for …
○ Partitioning

○ Scheduling

○ Runtime systems

● Key challenge: can we predict waste?
○ Roofline, maybe?

○ Other models?

- Waste can (/should?) be investigated per

resource.

- Difficult to model, trivial (but sloooow) to

simulate.

Reconfiguring the system

can reduce compute waste.

Case study #3: Embracing load imbalance

Improving systems

for the applications

at hand.

Jelle van Dijk

Gabor Zavodszky

HemoCell – coupled simulation

• Simulated blood flow using …

• Fluid simulation

• Particle simulation

• Aims for high-performance

• Using distributed processing & MPI

• Observations:

• Load imbalance is difficult to fix

• … but can be easier to detect

• Adapting the frequency of nodes to their load

can lead to energy savings!

• Technique: DVFS per node.

https://hemocell.eu/

Load imbalance

C1: Fluid imbalance. C2: Particle Imbalance. C3: Fluid and particle

 imbalance

Empirical analysis

• 16 node experiment (DAS6 machine)

• 1,2 have higher workloads

• 3,6 have “normal” workloads

• 3 DVFS strategies

• Reduce the frequency of the underutilized nodes

Energy savings [C1, C2]

Saving of ~12% without any

loss of performance!

Saving of ~20% without any

loss of performance!

Energy savings [C3]

Saving of ~6% without any

loss of performance!

Saving of ~20% without any

loss of performance!

Lessons learned

● We demonstrated waste due to load imbalance

● We demonstrated it is possible* to make use of load imbalance to reduce

energy consumption

● New opportunities for …
○ Runtime systems

○ Scheduling

● Key challenge: can we automate the process?
○ Detect load imbalance

○ Select correct frequencies

○ Apply DVFS

Lessons learned

● We demonstrated waste due to load imbalance

● We demonstrated it is possible* to make use of load imbalance to reduce

energy consumption

● New opportunities for …
○ Runtime systems

○ Scheduling

● Key challenge: can we automate the process?
○ Detect load imbalance

○ Select correct frequencies

○ Apply DVFS

- Waste due to load imbalance does happen

- Difficult to re-balance, easier to save energy

DVFS remains is a valid

approach, when permitted.

Co-designing systems and applications

Can we co-design?

Co-design

“Co-design is the process of involving multiple stakeholders in the design and

development of products, services, or systems with the goal of creating solutions

that are more relevant, effective, and satisfying to the people who will use them.” [1]

“Hardware/Software Codesign is the design of cooperating hardware components

and software components in a single design effort.” [2]

“Co-design: to design (something) by working with one or more others : to design

(something) jointly” [3]

[1] https://www.mural.co/blog/co-design-method

[2] Patrick R. Schaumont, “A Practical Introduction to Hardware/Software Codesign”

[3] https://www.merriam-webster.com/dictionary/codesign

Application

specification

Final

code
fast

slow

Draft code

Performance

analysis

Code

tuning

slow

promising

Physicist

Performance

hacker

Bob

*Wishful thinking included…

Today’s approach to high-performance

Alice

Not sustainable!

(An ideal) Future (WiP)

Application

specification

Functional

requirements

Performance

requirements

Application

design

Performanc

e prediction

refinement

Domain

specialist

Performance

engineer

Automated

code generation

and tuning.

Final

application
Automated

tools

Open questions

• What is the right abstraction for the input?

• How do we split the workload in “basic units”?

• How do we build “basic units” performance models?

• How do we prune the search space?

• How do we do code building and tuning?

• What about the data?

• …

In summary …

Take home message

• High-efficiency computing is needed to avoid a (computing) energy crisis
• Zero-waste computing is a strong motivating example …

• … but we need tools and methods for it.

• Reduce waste in computing is within reach
• Improve applications and improve systems

• Tempting to co-design applications and systems
• Performance engineering to the rescue

• Many practical questions still arise …

• We propose a co-design approach in Graph-Massivizer

to-the-office

Towards Zero-waste Computing

• Awareness: utilizing computing resources with little efficiency is

equivalent to wasting computing.

• Performance and efficiency: non-functional properties, such as

performance and efficiency, are essential to understand computing waste.

• Design-time: performance/efficiency must be essential concerns, like

functionality

• Stakeholders: domain-specialists/application owners must (also) take

responsibility in reducing waste in computing.

To do: Zero-waste computing

• Design and development:

“Build the right computing system for the job at hand”
• Better hardware

• Design and modeling to build the right infrastructure

• Better software
• Performance and energy analysis is essential to improve efficiency

• Better tools
• For design, analysis, and modeling

• Awareness:

“Acknowledge and improve the efficiency of ‘generic’ systems”
• Better metrics

• To demonstrate the waste in computing

• Better methods
• To analyse the complex tradeoffs between performance, energy, QoS, …

	Slide 1: TOWARDS Zero-WASTE computing
	Slide 2: TOWARDS Zero-WASTE computing
	Slide 3: Computing is everywhere … and it’s not free!
	Slide 4: Computing is everywhere … and it’s not free!
	Slide 5: Three types of stakeholders
	Slide 6: Systems
	Slide 7: Supercomputing/Data-centers
	Slide 8: Sustainable acquisition
	Slide 9: Extend lifetime
	Slide 10: Three types of stakeholders
	Slide 11: New scheduling & RM opportunities
	Slide 12: Three types of stakeholders
	Slide 13: Developers & users
	Slide 14: Agenda
	Slide 15: Assumptions
	Slide 16: Some relevant performance metrics*
	Slide 17: Waste in computing
	Slide 18: Detecting waste [1]
	Slide 19: Detecting waste [2]
	Slide 20: Reducing waste in computing
	Slide 21: Systems at hand & efficiency knobs
	Slide 22: Cores, power, energy…
	Slide 23: CPU example
	Slide 24: GPU example
	Slide 25: GPU example (cont’d)
	Slide 26: Performance vs. energy
	Slide 27: Case study #1: Heterogeneous systems
	Slide 28: Heterogeneous computing
	Slide 29: Heterogeneous computing for all??
	Slide 30: Energy improvements
	Slide 31: Approach
	Slide 32: Empirical analysis
	Slide 33: Results
	Slide 34: Results
	Slide 35: Lessons learned
	Slide 36: Lessons learned
	Slide 37: Case study #2: Shrinking the platform
	Slide 38: Possible workflow to identify waste
	Slide 39: Measuring Predicting performance
	Slide 40: Proposed workflow
	Slide 41: Experimental setup
	Slide 42: Varying SMs
	Slide 43: Core clock
	Slide 44: Memory clock
	Slide 45: SMs: BFS
	Slide 46: Memory clock: BFS
	Slide 47: Lessons learned
	Slide 48: Case study #3: Embracing load imbalance
	Slide 49: HemoCell – coupled simulation
	Slide 50: Load imbalance
	Slide 51: Empirical analysis
	Slide 52: Energy savings [C1, C2]
	Slide 53: Energy savings [C3]
	Slide 54: Lessons learned
	Slide 55: Lessons learned
	Slide 56: Co-designing systems and applications
	Slide 57: Co-design
	Slide 58: Today’s approach to high-performance
	Slide 59: (An ideal) Future (WiP)
	Slide 60: Open questions
	Slide 61: In summary …
	Slide 62: Take home message
	Slide 63: Towards Zero-waste Computing
	Slide 64: To do: Zero-waste computing

