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Computing is everywhere … and it’s not free!

• Top 10 videos on YouTube* consumed as much as 600-700 EU persons per year (or 
about 400 North America persons)

• Training Alpha-Zero for a new game consumes as much as 100 EU persons per year 

• A mid-size datacenter alone consumes as much energy as a small town
• And that is not considering purchasing and secondary operational costs (e.g., cooling)

• In 2019 Dutch datacenters combined consumed 3-times more energy than the 
national railways

• And consumption increased by 80% in 3 years

• The ICT sector is predicted to reach 21% of the global energy consumption by 2030

*https://en.wikipedia.org/wiki/List_of_most-viewed_YouTube_videos#Top_videos
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The energy consumption of computing is substantial and 

constantly increasing! 
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Three types of stakeholders

System operators 

Ensure efficient scheduling 

of workloads on system 

resources. 

Harvest energy where 

resources/systems are 

massively underutilized. 

Developers and users 

Improve the energy efficiency 

of their own codes, making use 

of algorithmic, programming, 

and hardware tools 

Design and implement 

applications able to adapt to 

the available system resources

System integrators

Offer the right mix of resources 

for the application developers 

and system operators. 

Include efficient hardware to 

enable different application 

mixes. 



Systems 

• On-premise hardware
• Flexible, yet often limited in resources  

• Good for development 

• Limited value for production 

• Supercomputers 
• Massive machinery, high-performance 

• Partially shared 

• Less flexible in terms of infra and programming 

• Datacenters & Cloud computing 
• Scale-by-credit card 

• Excellent efficiency 

• Possible limitations in terms of performance (SLA)

• Computing continuum 
• New development in distributed computing 

• Unclear for scientific computing 

• Relevant for complete data analysis (sensor-to-result) 



Supercomputing/Data-centers

• Supercomputing is extremely high in carbon emissions, mainly due to scale.

• Embodied carbon*: Indirect emissions, e.g., production, shipping, and 

disposal of system components.

• Operational carbon: Electricity, heating, cooling, etc. for the site operation.

*Data and tools: https://boavizta.org/en

https://boavizta.org/en


Sustainable acquisition 

• We need new lifecycle assessment & procurement procedures

• Current Goal: Maximize Throughput (Workloads)

• Constraints:

• Budget = Machine Cost + Electricity;

• System Footprint/Weight; Cooling Capacity; Power Supply; … 

• New Constraint: Carbon Budget 

Courtesy of: Carsten Trinitis, TUM - at Sustainability Day @DATE, March 26, 2024, Valencia, Spain



Extend lifetime 

• We need to Extend Lifetime, Reuse, and Recycle

• System Lifetime: Typically 4-6 years

• Extended lifetime => embodied carbon reduction.

• Reuse & Recycle: Reduce carbon emissions caused 

by disposal & production

• Reuse: e.g., LRZ offers decommissioned machines for free.

• Recycling: accelerators, DRAM chips, heat pipes, cooling 

infra, ...

Courtesy of: Carsten Trinitis, TUM - at Sustainability Day @DATE, March 26, 2024, Valencia, Spain
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New scheduling & RM opportunities

• Efficient operation 

• Schedulers 

• Automated tools 

• Support/education for users 

• Additional opportunities 

• Shared resources 

• Location shifting 

• Time/Peak shifting 

 

Courtesy of: Carsten Trinitis, TUM - at Sustainability Day @DATE, March 26, 2024, Valencia, Spain
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Developers & users

• Measure/Quantify

• Select the right systems 

• Select the right implementation tools 

• Select the right algorithms

• Tweak and tune … and iterate 

Non-trivial! 

But we must start somewhere … 



Agenda

• Stakeholders & actions 

• Different views on performance

• Zero-waste computing 

• 2.5 case-studies 

• (re)Defining systems codesign  

• Take home message

This project has received funding from the European Union’s Horizon 

Research and Innovation Actions under Grant Agreement № 101093202.



Assumptions

• Modern (and future) systems are parallel and heterogeneous

• In many dimensions 

• Systems are characterized by peak performance (with various “roofs”)

• All applications want more performance 

• Applications must enable parallelism 

• One Application => n algorithms => n*m implementations

• Algorithms: characterized by complexity

• Algorithms/implementations: characterized by arithmetic/operation intensity – ops/byte



Some relevant performance metrics*

• Speed-up: how much faster do we get with new machines, algorithms, … 

  S(workload) = Perf(Old)/Perf(New)   

• Efficiency: how efficient are we in getting performance 

      E(workload) = Perf / Resources

• Energy efficiency: how energy efficient are we in getting performance

      EE(workload) = Perf / Energy

• Utilization: how efficient are we utilizing our resources 

      U(resource) = Achieved / Peak   

High-efficiency computing

High-performance computing

*please accept the naïve notation and pseudo-definitions



Waste in computing  

Unneccesary time (or energy) spent in (inefficient) 

computing is compute waste.  

To reduce compute waste, we must focus on 

efficiency-to-solution



Detecting waste [1]

• We assume computing waste is a consequence of underutilized resources.

• Informally, assume:

 

P1 = performance(algorithm, workload, system1)

P0 = idealPerformance(algorithm, workload, system1)

• “Strict” definition: 

     if (P1 < P0) => waste in P1

• “Relaxed” definition: 

     if (P0 - P1 > T ) => waste in P1

 with T = threshold for performance loss 

18

*performance is not necessarily runtime.

Ideal performance is 

non-trivial to 

quantify. 



Detecting waste [2]

• We assume computing waste is a consequence of underutilized resources.

• Informally, assume:

system1 > system2 

P1 = performance(algorithm, workload, system1)

P2 = performance(algorithm, workload, system2)

• “Strict” definition: 

     if (P1 == P2) => waste in P1

• “Relaxed” definition: 

     if ( abs (P1 - P2) > T ) => waste in P1

 with T = threshold for performance loss 

19

*performance is not necessarily runtime.

Challenges in both 

efficiency 

quantification and 

improvement.



Reducing waste in computing  

Raise awareness 

• Monitor (energy) efficiency

• Quantify waste 

Improve efficiency 

• Improve applications for the systems at hand 

• Make applications more efficient 

• Make applications share systems  

• Improve systems for the applications at hand 

• Co-design applications and systems 

Analysis

Modeling

Code++ optimization

Efficient scheduling and 

resource sharing

Application-centric system 

design

??



Systems at hand & efficiency knobs



Cores, power, energy… 

• Multi-core CPU
• Multi-core energy consumption != N * energy/core 

• Complex architecture, different clocks, shared resources 

• Various ways to implements DVFS + power reduction techniques 

• Non-trivial correlation with performance 

• GPU
• Power is significantly impacted by the type of workload and occupancy 

• Always check the power cap, too! 

• Heterogeneous & multi-node computing
• Sum of energy by components

• Networking energy lacking 

Hybrid



CPU example

• AMD EPYC CPU 

• Running SGEMM 

• Different frequencies 

 

Courtesy of Benjamin Czaja, SURF, NL



GPU example 

GPU SMs Cores/SM Total Cores Max Power [W] Idle Power [W]

A4000 48 128 6144 140 39.5

A6000 84 128 10572 300 71.5

A2 10 128 1280 60 18.1

A100 108 64 6912 250 37.9

A4000 A6000 A2 A100



GPU example (cont’d)

• Caching patterns make 

a significant difference 

• Compute vs memory 

intensive – mem 

consumes more.

• Memory coalescing, 

negligible

• Data types & 

instruction mix show 

some differences 



Performance vs. energy 

• Low performance ➔ waste in computing 

• We power resources that are not needed 

• High performance ➔ faster execution ➔ less energy consumed 

• Max energy efficiency  max performance (i.e., lowest runtime…) 

• Strong assumption that power is constant 

• DVFS is a technique to reduce the impact of underutilized hardware

• Non-linear effects on performance  

 

Goel and McKee – “A Methodology for Modeling Dynamic and Static Power Consumption for Multicore Processors”

In the context of multi-core and heterogeneous systems, minimizing 

execution time might not guarantee lowest energy consumption.

Auto-tuning, anyone?

https://doi-org.ezproxy2.utwente.nl/10.1109/IPDPS.2016.118


Case study #1: Heterogeneous systems 

Improving systems 

for the applications 

at hand.

Nick Breed

Quincy Bakker

https://gitlab.qub1.com/vrije-universiteit/master-project/thesis

https://scripties.uba.uva.nl/search?id=record_27683

https://gitlab.qub1.com/vrije-universiteit/master-project/thesis
https://scripties.uba.uva.nl/search?id=record_27683


Thousands of Cores

Few 
cores

Heterogeneous computing 

• A heterogeneous platform = a CPU + a GPU (the starting point)

• An application workload = an application + its input dataset

• Workload partitioning = workload distribution among the processing units of a 

heterogeneous system



Heterogeneous computing for all??

• Model-based load-balancing for heterogeneous computing 
• Analytical model 

• Empirical calibration 

• Embedded in the Glinda framework 

• Challenging programming 
• Leverages performance portable programming models 

• Maximizes performance and/or resource utilization => minimizes waste
• Uses all types of resources in the system 

• Driven by performance 
• Could/should be extended for energy efficiency

*Jie Shen et al., IEEE TPDS. 2015 

“Workload partitioning for accelerating applications on heterogeneous platforms”



Energy improvements 

• Basic assumptions
• Tasks run on different processors

• Idle processors waste energy

• Higher/lower operating frequencies 

• => more/less power respectively

• => reduce or increase runtime respectively

• Opportunities 
• Dynamic Voltage and Frequency Scaling (DVFS)

• Reducing operating frequencies in idle states to save energy

• No active task => no runtime increase

• Increasing operating frequencies in busy states to save energy

• Lower runtime => less time to consume energy

GPU-bound
(Matrix Multiply)

CPU-bound
(K-Means)



Approach 

• Framework to monitor and improve the energy consumption of 
heterogeneous applications  
• Analyze application at runtime 

• Use live execution data 

• Determine application states 

• CPU/GPU-utilization patterns 

• Apply DVFS for this phases 

• Observe energy changes 

• Design policies to maximize energy consumption 

• What, when, and how to apply DVFS

Analyze application

Identify phases

Select and apply 

“right” frequency

Policies for energy 

harvesting



Empirical analysis

• Workload: 10 different applications from different benchmarking suites 

• System: Geforce GTX 960 GPU and an AMD Ryzen 7 3700x CPU.

• Metrics of interest: runtime and energy consumption

• Reference implementation = “do nothing”
• Gain and/or loss against reference 

• Five policies : 

• Maximum Frequency 

• System 

• MinMax 

• Ranked MinMax 

• Scaled MinMax

 



Results



Results



Lessons learned

• Heterogeneous computing => high performance, high energy consumption

• Energy harvesting can work

• Depends a lot on the implementation  

• There is a broader question: how can we explore trade-offs between energy 

and performance ? 

• Harvesting = how to keep performance fixed 

• Energy budgets = how to maximize performance 

Git repository:

https://gitlab.qub1.com/vrije-universiteit/master-project/energymanager

Thesis:

https://gitlab.qub1.com/vrije-universiteit/master-project/thesis

https://gitlab.qub1.com/vrije-universiteit/master-project/energymanager
https://gitlab.qub1.com/vrije-universiteit/master-project/thesis


Lessons learned

• Heterogeneous computing => high performance, high energy consumption

• Energy harvesting can work

• Depends a lot on the implementation  

• There is a broader question: how can we explore trade-offs between energy 

and performance ? 

• Harvesting = how to keep performance fixed 

• Energy budgets = how to maximize performance 

Git repository:

https://gitlab.qub1.com/vrije-universiteit/master-project/energymanager

Thesis:

https://gitlab.qub1.com/vrije-universiteit/master-project/thesis

- Heterogeneous systems require 

heterogeneous applications 

- Not using the CPU/GPU is by definition 

wasteful

Reduced waste by 

frequency scaling. 

https://gitlab.qub1.com/vrije-universiteit/master-project/energymanager
https://gitlab.qub1.com/vrije-universiteit/master-project/thesis


Case study #2: Shrinking the platform

Improving systems 

for the applications 

at hand.

Jeffrey Spaan 



1. Pick a workload

2. Pick a baseline platform 

3. Reduce resources

4. Measure performance

5. Compare performance

No difference or better performance? Found waste and/or a better system.

The devil is in 

the details.

Possible workflow to identify waste

How to reduce resources? How to measure performance? How to compare?



Measuring Predicting performance

• Benchmarking

• Co-location

• Simultaneous execution with a (specific) resource-consuming application

• Partitioning

• Partitions with isolated GPU resources

• Analytical modelling

• Statistical modelling

• Simulation best option (currently) 

 Impossible

 Difficult to setup

 Not available on many systems

 Not sufficiently accurate



Proposed workflow

40



Experimental setup

Applications:

• 5 Rodinia kernels:
• Compute-bound: hotspot, k-means (2)

• Memory-bound: k-means (1)
         backpropagation (1), backpropagation (2)

Systems:

• Baseline: RTX 2060 Super

• Variables:
• SMs: 25, 30, …., 40

• Core clock: 1000, 1150, …., 1900

• Memory clock: 800, 1250, …, 3500 

Simulation run-time ≈ 24-40 hours

Simulated with:

Ask me 

more! 

https://github.com/romnn/gpucachesim



Varying SMs 

42

waste

waste

Compute-bound:

● Hotspot

● K-means (2)

Memory-bound:

● K-means (1)

● Backprop (1)

● Backprop (2)

More resources ≠ 

better performance



Core clock

43

Compute-bound:

● Hotspot

● K-means (2)

Memory-bound:

● K-means (1)

● Backprop (1)

● Backprop (2)

??

??



Memory clock

44

Compute-bound:

● Hotspot

● K-means (2)

Memory-bound:

● K-means (1)

● Backprop (1)

● Backprop (2)

waste

waste



SMs: BFS

BFS is memory bound.

Is the strict definition 

reasonable? Should we 

use the relaxed 

definition? 

Waste ?

Waste ?



Memory clock: BFS

As BFS is memory 

bound, we do expect 

to see performance 

gain when the memory 

clock speed increases.

Waste ?

Waste ?



Lessons learned 

● We demonstrated waste at resource-level can be significant 

● We demonstrated it is possible* (in simulation) to update platforms 

● New opportunities for … 
○ Partitioning 

○ Scheduling 

○ Runtime systems 

● Key challenge: can we predict waste? 
○ Roofline, maybe? 

○ Other models? 

- Waste can (/should?) be investigated per 

resource. 

- Difficult to model, trivial (but sloooow) to 

simulate. 

Reconfiguring the system 

can reduce compute waste. 



Case study #3: Embracing load imbalance

Improving systems 

for the applications 

at hand.

Jelle van Dijk

Gabor Zavodszky



HemoCell – coupled simulation

• Simulated blood flow using … 

• Fluid simulation 

• Particle simulation 

• Aims for high-performance 

• Using distributed processing & MPI 

• Observations:

• Load imbalance is difficult to fix

• … but can be easier to detect 

• Adapting the frequency of nodes to their load 

can lead to energy savings! 

• Technique: DVFS per node. 

https://hemocell.eu/



Load imbalance 

C1: Fluid imbalance.           C2: Particle Imbalance.         C3: Fluid and particle 

                      imbalance



Empirical analysis 

• 16 node experiment (DAS6 machine)

• 1,2 have higher workloads 

• 3,6 have “normal” workloads

• 3 DVFS strategies 

• Reduce the frequency of the underutilized nodes 



Energy savings [C1, C2] 

Saving of ~12% without any 

loss of performance! 

Saving of ~20% without any 

loss of performance! 



Energy savings [C3]

Saving of ~6% without any 

loss of performance! 

Saving of ~20% without any 

loss of performance! 



Lessons learned 

● We demonstrated waste due to load imbalance  

● We demonstrated it is possible* to make use of load imbalance to reduce 

energy consumption 

● New opportunities for … 
○ Runtime systems 

○ Scheduling 

● Key challenge: can we automate the process? 
○ Detect load imbalance 

○ Select correct frequencies 

○ Apply DVFS 



Lessons learned 

● We demonstrated waste due to load imbalance  

● We demonstrated it is possible* to make use of load imbalance to reduce 

energy consumption 

● New opportunities for … 
○ Runtime systems 

○ Scheduling 

● Key challenge: can we automate the process? 
○ Detect load imbalance 

○ Select correct frequencies 

○ Apply DVFS 

- Waste due to load imbalance does happen 

- Difficult to re-balance, easier to save energy

DVFS remains is a valid 

approach, when permitted. 



Co-designing systems and applications 

Can we co-design?



Co-design

“Co-design is the process of involving multiple stakeholders in the design and 

development of products, services, or systems with the goal of creating solutions 

that are more relevant, effective, and satisfying to the people who will use them.” [1]

“Hardware/Software Codesign is the design of cooperating hardware components 

and software components in a single design effort.” [2] 

“Co-design: to design (something) by working with one or more others : to design 

(something) jointly” [3]

[1] https://www.mural.co/blog/co-design-method

[2] Patrick R. Schaumont, “A Practical Introduction to Hardware/Software Codesign”

[3] https://www.merriam-webster.com/dictionary/codesign



Application 

specification 

Final 

code
fast

slow

Draft code

Performance 

analysis

Code 

tuning

slow

promising

Physicist

Performance 

hacker

Bob

*Wishful thinking included…

Today’s approach to high-performance 

Alice

Not sustainable! 



(An ideal) Future (WiP)

Application 

specification 

Functional

requirements

Performance

requirements

Application 

design

Performanc

e prediction

refinement

Domain 

specialist 

Performance 

engineer

Automated

code generation 

and tuning.

Final 

application
Automated 

tools



Open questions

• What is the right abstraction for the input? 

• How do we split the workload in “basic units”? 

• How do we build “basic units” performance models? 

• How do we prune the search space? 

• How do we do code building and tuning? 

• What about the data? 

• …



In summary … 



Take home message

• High-efficiency computing is needed to avoid a (computing) energy crisis 
• Zero-waste computing is a strong motivating example … 

• … but we need tools and methods for it. 

• Reduce waste in computing is within reach
• Improve applications and improve systems

• Tempting to co-design applications and systems 
• Performance engineering to the rescue

• Many practical questions still arise …

• We propose a co-design approach in Graph-Massivizer 

to-the-office



Towards Zero-waste Computing 

• Awareness: utilizing computing resources with little efficiency is 

equivalent to wasting computing.

• Performance and efficiency: non-functional properties, such as 

performance and efficiency, are essential to understand computing waste. 

• Design-time: performance/efficiency must be essential concerns, like 

functionality

• Stakeholders: domain-specialists/application owners must (also) take 

responsibility in reducing waste in computing.



To do: Zero-waste computing 

• Design and development: 

“Build the right computing system for the job at hand”
• Better hardware 

• Design and modeling to build the right infrastructure 

• Better software 
• Performance and energy analysis is essential to improve efficiency 

• Better tools 
• For design, analysis, and modeling 

• Awareness:

“Acknowledge and improve the efficiency of ‘generic’ systems”
• Better metrics 

• To demonstrate the waste in computing 

• Better methods
• To analyse the complex tradeoffs between performance, energy, QoS, … 
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